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MODC-SET: A Stacked Ensemble Deep Learning Framework for
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Abstract:

Oral diseases such as leukoplakia, lichen planus, and squamous cell carcinoma pose major

public health challenges, and early detection is essential for timely treatment. Traditional di-

agnostic methods often rely on invasive biopsies and expert interpretation, which are time-

consuming and resource-intensive. This chapter introduces MODC-SET, a stacked ensemble

deep learning framework integrating MobileNetV2, InceptionResNetV2, and ResNet50 with an

XGBoost meta-classifier for robust oral disease classification. Trained on the newly curated

MOD dataset of seven clinically significant conditions, the model achieved 99.32% accuracy,

substantially outperforming existing approaches. These results demonstrate that ensemble deep

learning provides a powerful and scalable tool for non-invasive oral disease detection, offering

promising applications in clinical and resource-limited settings.

Keywords: Deep Learning, Stacking Ensemble, Transfer Learning, Oral Disease Classification,

Medical Image Analysis, Automated Diagnosis, MODC-SET

1.1 Introduction

Oral illnesses are a significant health issue that can negatively impact individuals and society [1]. Recent

years have seen a substantial increase in oral diseases, such as oral cancer, dental caries, periodontal
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disease, and dental fluorosis [2]. Research indicates that poor oral hygiene can have systemic effects,

such as bacteria from dental plaque entering the bloodstream through the gums, increasing the risk of

blood clots and cardiovascular diseases [3]. Untreated periodontal disease can lead to systemic disorders,

including diabetes, cardiovascular disease, and metabolic syndrome, leading to tooth loss and reduced

quality of life [4, 5].

Public awareness of oral health concerns and preventative care is growing in impoverished places [6].

The global market for titanium dental implants is expected to reach $ 6.3 billion in 2021 due to increased

demand for superior dental treatment. Global aging has increased the prevalence of oral disorders, in-

cluding periodontitis and tooth loss, making them major public health issues [7]. The WHO predicts that

oral diseases will impact 3.5 billion people by 2022, highlighting the need for effective diagnostic and

preventive measures [8]. Oral cancer is the sixth most prevalent cancer worldwide, with some 300,000

new cases diagnosed annually [9]. In 2021, the American Cancer Society predicted 54,010 new oral cancer

cases in the US [8].

Dental caries is one of the most common chronic infectious disorders of dental hard tissues. The

Global Burden of Disease Study of 2017 found chronic dental caries to be the most prevalent disease

among 328, ranking second globally [10]. Approximately 2.44 billion people experience tooth decay, with

a notable rise in children’s tooth decay over the past decade [11]. Epidemiological research indicates 178

million Americans have missing teeth, with 40 million entirely edentulous [12]. About 91% of persons

aged 20-64 have had dental caries, and 27% have suffered irreversible tooth damage [11]. Dental crises

are prevalent in the US, with patients seeking care every 15 seconds [8].

Traditional methods, including periodontal probing depth measurement, bleeding on probing, and

radiographic analysis, are crucial for recognizing gingivitis and chronic periodontitis [13]. These proce-

dures are invasive, uncomfortable, and subject to examiner-dependent variances in probing techniques,

leading to inconsistent results [14, 15]. The time and effort required to perform these diagnostic tests

hinder timely and cost-effective dental care. Nearly 75% of people seek new dentists based on online rec-

ommendations, although dental practitioners’ knowledge is generally restricted [8]. In Pakistan, almost

50% of the population has never seen a dentist, and only 5% receive complete oral and dental treat-

ment [16]. Given these challenges, an automated deep learning system is essential for accurate, efficient,

and cost-effective oral disease identification, especially in remote and disadvantaged areas.

AI and deep learning are revolutionizing medical diagnostics, including CAD applications [17, 18,

19, 20]. CNNs excel in fields such as agriculture, energy predictions, image forgery detection, medical

imaging, and Alzheimer’s disease diagnosis [21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. CNN-based deep learning

for dentistry accurately identifies periodontal bone loss, caries lesions, and apical lesions in periapical

radiographs [31]. Previous dental disease classification studies have used invasive methods like microscopy,

radiography, and fluorescence imaging, limiting their applicability outside clinical settings [11, 32, 33].

Advancements in intraoral imaging enable early periodontitis diagnosis [6]. Using self-generated data,

A Mask R-CNN model was presented by Liu et al. [34] to diagnose dental illnesses like caries, plaque
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accumulation, osteoporosis, and periodontal disease. Similarly, Li et al. [35] created a deep learning

framework with 86-97% sensitivity for categorizing incisors, canines, premolars, and molars. In a collection

of 434 pictures, Askar et al. [5] obtained 84% accuracy in detecting white spots, fluorotic and non-fluorotic

lesions.

Despite these developments, deep learning for oral illness classification has significant limitations in

the literature. Diagnostics for oral thrush, canker sores, cold sores, gingivostomatitis, mouth cancer, oral

cancer, and oral lichen planus have not been thoroughly studied. The absence of publicly available, large-

scale mouth and oral disease datasets has further hampered the development of accurate and generic

deep-learning models. This paper introduces a deep learning-based oral illness categorization method to

fill these shortcomings.

The present study proposes the Mouth and Oral Diseases Classification using the Stack Ensemble

Technique (MODC-SET), a novel recognition model designed to classify seven key oral diseases: gin-

givostomatitis (Gum), canker sores (CaS), cold sores (CoS), oral lichen planus (OLP), oral thrush (OT),

mouth cancer (MC), and oral cancer (OC). To enhance diagnostic accuracy, the MODC-SET integrates

three state-of-the-art transfer learning models—MobileNetV2, InceptionResNetV2, and ResNet50 at the

first level and SGBoost (meta classifier) on the second level. The significant contributions of this research

are:

1. Development of the MOD Dataset: A newly curated dataset dedicated to oral diseases, en-

compassing seven diverse conditions previously underrepresented in deep learning research.

2. Comprehensive Disease Detection: Unlike prior studies focusing on limited oral conditions,

MODC-SET provides an all-encompassing classification framework for multiple oral diseases.

3. Deep Ensemble Technique Implementation: The stacking ensemble technique enhances clas-

sification accuracy by leveraging the combined predictive power of multiple deep learning models.

4. State-of-the-Art Performance: MODC-SET achieves an overall accuracy of 99.32%, signifi-

cantly outperforming existing models in the literature.

5. Emphasis on Preventive Healthcare: The model is particularly relevant for early disease

detection in low-resource settings, offering a cost-effective solution for oral health diagnostics.

The rest of this paper is structured as follows: Section 2.2 reviews related work in deep learning-based

oral disease classification. Section 2.3 describes the dataset, methodology, and the proposed MODC-

SET model architecture. Section 2.4 presents experimental results and discussion, including performance

analysis and comparative evaluation. Section 2.5 concludes the paper with suggestions for future research.

1.2 Literature Work

Deep learning (DL) and artificial intelligence (AI) techniques, including oral health, are essential in med-

ical diagnostics. Different machine learning (ML) and deep learning-based methods have been proposed
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to improve the precision and efficiency of diagnosing oral and dental diseases. This section reviews the

literature on oral disease classification and outlines the research gaps the study seeks to address.

1.2.1 Early Approaches to Oral Disease Diagnosis

Clinical, radiographic, and microscopic tests dominate oral disease diagnosis. Standard periodontal disease

detection procedures include probing depth measurement, bleeding on probing, and alveolar bone loss

analysis [13]. Inter-examiner variability and instrument sensitivity can lead to unreliable results with these

procedures [14, 15]. Additionally, they are invasive, laborious, and need highly experienced practitioners,

making them inaccessible to many populations globally.

Researchers have researched ML and DL algorithms to automate oral illness identification and address

these issues. Research suggests that ensemble methods and CNNs can effectively diagnose and classify

oral disorders [20, 19]. CAD systems have improved detection and have been used in clinics to reduce

human error and boost usage.

1.2.2 Deep Learning-Based Approaches in Dental and Oral Disease Classifi-

cation

Introducing new deep learning architectures, such as CNNs, transfer learning models, and hybrid ensem-

ble techniques, has improved the accuracy of the classification of oral diseases [31]. Different methods

of diagnosing dental caries, periodontal diseases, oral cancers, and inflammatory conditions have been

studied.

1.2.2.1 Classification of Dental Caries and Periodontal Diseases

Globally, dental caries and periodontal diseases are the most common oral health problems [11]. Deep

learning methods have been employed for automated detection and classification in several studies:

1. SqueezeNet-based Classification: Askar et al. [5] developed a deep learning model using

SqueezeNet to classify fluorotic lesions, white spot lesions, and other carious lesions from a self-

generated dataset, achieving an accuracy of 87%.

2. ResNet50 for Gingivitis Detection: Alalharith et al. [4] are intrigued by the ResNet50 model

to differentiate inflamed teeth from non-inflamed teeth using intraoral images. Despite achieving an

accuracy of 77.12% in the classification, the model still has the opportunity to improve classification

precision.

3. Cubic SVM for Dental Restorations: Abdalla-Aslan et al. [1] applied Cubic Support Vec-

tor Machine (SVM) to classify dental restorations, including composite crowns, fillings, amalgam

fillings, and root canal treatments. The proposed model achieved an accuracy of 93.6%.

4. Faster R-CNN for Caries and Internal Root Resorption Detection: Khan et al. [36]
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proposed a Faster R-CNN model to detect caries, auditory brainstem response (ABR), and internal

root resorption (IRR) from periapical radiographs, and it obtained an accuracy of 84.76%.

Recent advancements further reinforce the role of deep learning in medical and genomic diagnostics.

For example, Can et al. [37] introduced the Common Vector Approach pooling (CVApool) to overcome the

limitations of traditional average pooling in CNNs, demonstrating significantly enhanced accuracy (up to

86.4%) in detecting twenty categories of dental diseases from intraoral X-rays. Similarly, Kang et al. [38]

developed DOLNet, a hierarchical attention-based framework for diagnosing odontogenic jaw lesions from

panoramic radiographs, achieving recall and F1-score improvements of more than 40% compared to prior

methods and even outperforming expert clinicians These studies highlight two important trends: (i) the

design of novel pooling and attention mechanisms tailored to biomedical imaging tasks, and (ii) the

capacity of deep learning to surpass traditional diagnostic methods by addressing challenges such as class

imbalance, positional biases, and interpretability. Incorporating these insights into cancer genomics-based

detection frameworks underscores the growing importance of specialized architectures and attention-based

feature fusion for improving robustness, generalization, and clinical applicability.

These experiments show that deep learning can diagnose dental diseases, although dataset sizes and

class imbalances remain issues.

1.2.2.2 Hybrid Deep Learning Approaches for Oral Health Diagnostics

Hybrid deep-learning approaches are gaining popularity to improve oral disease classification performance.

Some key contributions are:

1. Deep CNN for Tooth Classification: Schwendicke et al. [31] used deep CNNs to classify

premolars and molars from periapical radiographs, achieving an accuracy of 82.8%.

2. MASK R-CNN for Periodontal Disease Identification: Liu et al. [34] developed a MASK

R-CNN model trained on a self-created dataset to classify decayed teeth, plaque accumulation,

osteoporosis, and periodontal disease.

3. VGG16 for Oral Lichen Planus Detection: Akaike et al. [3] proposed a VGG16-based CNN

model trained on whole-slide images (WSIs) to detect oral lichen planus (OLP), achieving an

impressive accuracy of 97.38%.

4. EfficientNet and ResNet-50 for Dental Caries Detection: Watanabe et al. [39] compared

EfficientNet-B0, DenseNet-121, and ResNet-50 for detecting dental and non-dental caries, with

ResNet-50 achieving the highest accuracy (92%).

While these models exhibit high classification performance, they often focus on a limited subset of

oral diseases, overlooking conditions such as oral thrush, canker sores, and mouth cancer.
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1.2.2.3 Oral Cancer and Lesion Detection Using Deep Learning

Oral cancer is one of the most serious and life-threatening oral diseases, necessitating early detection for

effective treatment [9]. Several studies have attempted to integrate deep learning models into oral cancer

diagnosis:

1. Fragment Jaya Whale Optimizer with Deep CNN (FJWO-DCNN): Hemalatha et al. [20]

proposed an FJWO-DCNN model for classifying oral cancer from the BAHNO NMDS dataset,

achieving an accuracy of 91.96%.

2. GoogLeNet and Inception-V3 for Dental Caries: Lee et al. [40] used GoogLeNet Inception-

V3 to classify dental and non-dental caries from periapical radiographs, reaching an accuracy of

89%.

Despite these advances, current deep learning models lack comprehensive datasets encompassing

multiple oral disease categories, limiting their applicability in real-world clinical settings. Table table 1.1

summarizes the literature review.

Table 1.1: Summary of Methods, Diseases, Datasets, Accuracy, and Limitations

Ref. Methodology Target Dis-

eases

Dataset

Source

Acc Limitations

[5] SqueezeNet

(CNN)

Fluorotic le-

sions, white

spot lesions,

other lesions

Self-

generated

dataset

87% Limited to le-

sion detection;

lacks coverage

of broader oral

diseases

[4] ResNet50 (CNN) Inflamed vs.

non-inflamed

teeth

Intraoral

image

dataset

77.12% Binary classi-

fication only;

relatively low

accuracy

[1] Cubic SVM Dental restora-

tions (fillings,

crowns, im-

plants, etc.)

Periapical

radio-

graphs

93.6% Limited to specific

restorations; not

general oral dis-

eases

[36] Faster R-CNN Caries, ABR,

IRR

Dental

periapical

radio-

graphs

84.76% Only three dis-

ease categories;

accuracy could

improve
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[31] Deep CNN Premolars and

molars classifi-

cation

Periapical

radio-

graphs

82.8% Narrow scope

(tooth types only)

[35] Mask R-CNN Decayed teeth,

plaque, os-

teoporosis,

periodontal

disease

Self-

created

dataset

NR Unknown dataset

size; no benchmark

comparison

[3] VGG-16 (CNN) Oral Lichen

Planus (OLP)

Whole-

Slide

Images

97.38% OLP-specific; lacks

generalizability

[39] EfficientNet-B0,

DenseNet-121,

ResNet-50

Dental caries Self-

created

dataset

92%

(ResNet-

50)

Caries-only focus

[20] FJWO-DCNN Oral Cancer BAHNO

NMDS

dataset

91.96% Oral cancer only;

not multi-disease

1.2.3 Limitations in Existing Studies

Deep learning applications for oral illness classification have advanced; however, research has significant

limitations. Publicly available datasets are scarce, limiting generalization across varied populations [11].

Most studies rely on self-created datasets with limited disease categories. Previous research narrowly

focused on dental caries, periodontal diseases, and oral cancer, neglecting oral thrush, canker sores, cold

sores, and gingivostomatitis [5, 31]. These models are constrained in real-world clinical settings where a

wider spectrum of oral problems must be reliably diagnosed.

Invasive diagnostic methods like radiographic imaging, fluorescence imaging, and microscopic analysis

may be inaccessible in underdeveloped regions due to the need for specialized equipment and trained pro-

fessionals [11, 32, 33]. Although deep learning models show promise, specific disease categories still require

more robust approaches for better classification accuracy [4, 36]. Due to class imbalance, misclassification,

and poor feature extraction, many models perform inconsistently among oral disease categories.

1.2 Literature Work 7



Ptolemy Scientific Research Press https://pisrt.org/

1.2.4 Research Gaps and Motivation

MODC-SET, a complete deep learning framework, addresses these problems and fills research gaps. This

model improves classification accuracy and reliability using deep ensemble learning and three resilient

transfer learning architectures—MobileNetV2, InceptionResNetV2, and ResNet50. To overcome dataset

limitations, this study provides the Mouth and Oral Disorders (MOD) dataset, including seven oral

disorders, for robust model training and validation. MODC-SET predicts oral disease accurately and is

scalable, filling gaps in previous studies, especially in resource-limited settings.

The literature review discusses deep learning-based oral sickness categorization improvements, dataset

availability, disease coverage, diagnostic methodologies, and accuracy limits. Some studies employ deep

learning to detect dental caries, periodontal problems, and oral cancer, although not all. Furthermore,

intrusive diagnostic approaches restrict these models to clinical contexts.

MODC-SET, a revolutionary deep-learning framework with transfer learning models to classify oral

illnesses, overcomes these challenges. A freshly developed MOD dataset covers more ailments, making

MODC-SET a practical, non-invasive, and accessible choice for early diagnosis and preventative treat-

ment. This study surpasses current models with 99.32% accuracy, enhancing dental and oral health

research diagnosis. This research may help global healthcare systems identify illnesses, intervene early,

and reduce the oral disease burden.

1.3 Materials and Methods

1.3.1 Overview of the Proposed Methodology

Traditional machine learning algorithms such as Support Vector Machines (SVMs) and Random Forests

(RFs) often perform well when datasets are relatively small and feature spaces are well-structured. SVMs

excel at finding clear decision boundaries between two classes, which makes them effective in binary

classification tasks but less scalable in high-dimensional or highly imbalanced data. Random Forests, on

the other hand, aggregate multiple decision trees, allowing them to capture complex feature interactions

and reduce overfitting, which often results in strong baseline performance for structured biomedical data.

However, as the dimensionality and heterogeneity of genomic and medical datasets increase, deep neural

networks (DNNs) and hybrid architectures demonstrate superior performance. Their layered represen-

tations enable automatic extraction of hierarchical and nonlinear patterns, making them more effective

in capturing subtle biological signals and distinguishing between overlapping classes. This explains why

traditional algorithms perform competitively in simpler cases, while deep learning models, particularly

ensemble and attention-based methods, achieve higher accuracy and robustness in complex multi-class

biomedical classification tasks.

Our Mouth and Oral Disease Classification using the Stack Ensemble Technique (MODC-SET)

framework classifies oral diseases reliably and robustly, and with generalization improvement, using deep

8 Chapter 1. Mouth and Oral Diseases Classifications using Stack Ensemble
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learning. This framework employs a stacking ensemble technique, combining MobileNetV2, InceptionRes-

NetV2, and ResNet50 to extract hierarchical features and train robust classifiers [40]. A stack ensemble

overcame single-model classifier limitations to improve picture representation and detection for numerous

oral illnesses. Figure 10.5 illustrates the MODC-SET architecture, where input passes through three basic

models before being analyzed by the stacking ensemble meta-classifier for final decision-making.

Figure 1.1: Flowchart of the Proposed Method.

1.3.1.1 Objective and Scope

MODC-SET intends to create an AI-powered oral illness classification system. This study intends to

enhance early detection and preventive health in low-resource settings with limited access to dental spe-

cialists [6]. In contrast, standard diagnostic methods rely on periodontal probing, radiographic imaging,

fluorescence, and microscopic inspection [32, 33]. The non-invasive, cost-effective MODC-SET approach

classifies oral illnesses using real-time clinical photos.

The proposed MODC-SET classifies the following oral diseases:

1. Canker Sores (CaS): Small, painful ulcers in the mouth are often associated with stress or

immune reactions.

2. Cold Sores (CoS): Viral infections cause painful blisters around the lips and mouth.

1.3 Materials and Methods 9
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3. Gingivostomatitis (Gum): A bacterial or viral infection that leads to gum inflammation, affect-

ing oral health.

4. Mouth Cancer (MC): A malignant condition affecting various parts of the oral cavity.

5. Oral Cancer (OC): A broader classification encompassing multiple cancerous lesions in the

mouth.

These disorders were chosen for their prevalence, clinical relevance, and oral health impact. MODC-

SET provides a clinically useful diagnostic tool that includes numerous kinds of diseases.

1.3.2 Methodological Framework of MODC-SET

The proposed MODC-SET model framework is divided into the following key stages:

1.3.2.1 Dataset Compilation and Annotation

MOD data is meticulously curated from clinically validated images, open-source medical imaging databases,

and real-world clinical case studies. The dataset was obtained from Liaqat Medical and Dental Complex,

Okara, Pakistan, under the supervision of Dr Sibtain Liaqat, and is publicly available. This dataset was

collected by ethical principles, where the images were anonymized [6]. A panel of senior dental practition-

ers, radiologists, and AI experts manually labeled and validated each image to ensure accurate disease

classification. The MOD dataset covers seven important oral diseases that can occur in the oral cavity.

Figure 1.2 shows sample texts of the dataset.

Figure 1.2: (a) CaS, (b) CoS, (c) Gum, (d) MC, (e) OC, (f) OLP, and (g) OT Classes Samples of

MOD Dataset.

10 Chapter 1. Mouth and Oral Diseases Classifications using Stack Ensemble
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1.3.2.2 Dataset Composition and Class Distribution

The MOD dataset helps develop and test deep-learning oral disease categorization algorithms. The dataset

includes clinical pictures of CaS, CoS, Gum, MC, OC, OLP, and OT. The dataset is annotated and

structured to represent disease classifications equally, making it ideal for strong deep-learning models.

The collection began with 517 clinical records, an open-access medical library, and case study photographs.

The dataset has 5,233 images after adding 4,716 augmented shots to fix class imbalance and improve

model generalization. Geometric changes (rotation, flipping, scaling), color tweaks (contrast, brightness

normalization), and noise addition boosted intra-class variability and model generalization across real-

world situations.

Table 1.2: Distribution of MOD Dataset by Disease Category

Class Label Number

of Images

(Original)

Number of

Augmented

Images

Total Images

(Final)

Canker Sores (CaS) 78 722 800

Cold Sores (CoS) 79 759 838

Gingivostomatitis (Gum) 61 539 600

Mouth Cancer (MC) 90 810 900

Oral Cancer (OC) 54 486 540

Oral Lichen Planus (OLP) 93 807 900

Oral Thrush (OT) 62 593 655

Total 517 4716 5233

Table 1.2 displays the distribution of original photos per class, augmented images, and total images

for training and evaluation. The dataset is balanced, so no disease class dominates, reducing model train-

ing biases. Mouth Cancer (900 images) and Oral Lichen Planus (900 images) have the most images, while

Oral Cancer (540 images) has the fewest, reflecting real-world prevalence. This dataset provides a compre-

hensive standard for deep learning research in oral disease categorization, enabling AI-powered diagnostic

solutions for non-invasive, scalable, and automated oral healthcare medical picture analysis. Future ex-

pansions will add illness categories, multi-modal imaging (radiographic and fluorescence imaging), and

larger datasets from varied demographic sources to improve the robustness and clinical application.

1.3.2.3 Image Acquisition and Standardization

The images in the MOD dataset were collected from varied sources, ensuring real-world applicability.

The dataset includes:

1.3 Materials and Methods 11
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• High-resolution intraoral photographs captured using DSLR cameras and intraoral scanners from clin-

ical settings.

• Dermoscopic and microscopic images obtained from open-source medical databases for precise disease

classification.

• Publicly available datasets, ensuring diversity in sample representation, improving generalization per-

formance.

1.3.2.4 Data Preprocessing

To standardize the dataset, all photos underwent a meticulous preprocessing protocol, which encom-

passed:

• Resizing: All images were resized to 224 × 224 pixels, the standard input dimension for deep learning

models like MobileNetV2, InceptionResNetV2, and ResNet50.

• Normalization: Pixel intensity values were scaled between 0 and 1 using min-max normalization to

enhance training efficiency.

• Color Space Adjustment: Images were transformed to RGB format to provide consistency among all

samples.

• Noise Reduction: Adaptive median filtering was utilized to mitigate artifacts and enhance image clarity.

1.3.2.5 Data Augmentation Strategy

Rotation, shear transformation, horizontal flipping, and brightness correction promote dataset variety and

reduce overfitting [41]. Data augmentation was used to reduce overfitting and increase model generaliza-

tion across unknown data. These changes were dynamically applied during training using TensorFlow’s

ImageDataGenerator to ensure model resilience. Augmentation methods increase the dataset, boosting

classification accuracy and real-life model generalization. The data augmentation strategy is shown in

Table 1.3.

Table 1.3: Data Augmentation Techniques Applied

Augmentation Technique Purpose Applied Variations

Rotation Simulates different orientations of oral im-

ages

±25◦

Width and Height Shifts Creates spatial variability ±10%

Shear Transformations Introduces distortions to improve adapt-

ability

0.2 radians

Horizontal Flipping Enhances recognition of mirrored struc-

tures

Yes
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Brightness Adjustments Adjusts contrast to simulate different

lighting conditions

0.5 – 1.0 scale

Zooming Simulates variations in image focus ±15%

Channel Shifting Introduces slight intensity variations to

improve color consistency

±0.05

1.3.2.6 Dataset Partitioning for Training and Testing

The dataset was randomly shuffled before partitioning to prevent class ordering biases during training.

Table 1.4 shows the dataset partitioning details. To ensure a fair and unbiased evaluation, the MOD

dataset was split into three subsets:

• Training Set (60%) – Used to train deep learning models.

• Validation Set (20%) – Used for hyperparameter tuning and model optimization.

• Testing Set (20%) – Used for final evaluation to measure model performance.

Table 1.4: MOD Dataset Partitioning

Dataset Split Number of Images Percentage (%)

Training Set 3137 60%

Validation Set 1028 20%

Testing Set 1028 20%

Total 5233 100%

1.3.2.7 Deep Learning Model Selection and Training

The MODC-SET framework utilizes three pre-trained deep learning models, each known for its strengths

in medical image classification:

• MobileNetV2 [42]: A lightweight CNN architecture optimized for mobile applications, offering com-

putational efficiency with depthwise separable convolutions.

• InceptionResNetV2 [43]: A hybrid architecture that combines Inception’s multi-scale feature ex-

traction with ResNet’s residual learning, improving gradient flow during training.

• ResNet50 [18]: A deep residual network designed to mitigate the vanishing gradient problem, ensur-

ing efficient learning in deep architectures.

• Stacking Ensemble Learning Implementation: Stacking ensemble learning combines the

predictions from the three base classifiers to improve classification reliability. The final

1.3 Materials and Methods 13
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decision is computed using a meta-classifier (Logistic Regression), which refines the out-

puts of the base models [44, 45]. This method ensures that MODC-SET achieves higher

classification accuracy than individual deep learning models, reducing misclassification

errors [46].

1.3.2.8 The Proposed Methodology

Stacking is an advanced ensemble learning method [47]. Stacking assumes that derivative models of base

data can make more accurate predictions. If the models were the same, so would the results. We used

multiple models to understand the findings better; each model may have picked up different data features

more efficiently. Stacking causes many weak learners [48]. Stacking uses several failing learners to train a

meta-model (XGBoost) to make predictions utilizing their enormous number of forecasts.

Figure 1.3 shows two layers of the recommended architecture. The first-layer basic classifiers Mo-

bileNetV2, InceptionResNetV2, and ResNet50 were trained using training data. Tang et al. [49] found a

variation in stacking representation learning classifiers for distinct features. The first layer’s core classi-

fiers need high accuracy and diversity to learn features from raw input. All three base classifiers handle

nonlinear challenges well despite their modeling methods.

MobileNetV2, InceptionResNetV2, and ResNet50 make first-level predictions on training and test

sets. The three models predict photo features separately on the MOD training set. The XGBoost-based

second-level prediction uses feature predictions from the first-level prediction model. To improve results, a

new test data analysis algorithm analyzes algorithm performance and training progress. Finally, XGBoost

predicts and classifies.

Ensemble classification systems use many classification methods and a combiner to perform the same

task. Jaiswal et al. [50] propose a transfer learning picture categorization model. The theory states that

a broad dataset can train a generic visual model. We can avoid starting from scratch by training a large

model on a large dataset and employing feature maps. Previous network representations can assist in

finding key data features. Reuse the dataset feature maps by adding a classifier to the pre-trained model.

Classifiers get ensemble model features. Transfer learning enables deep neural network training with less

data by reusing models and addressing new challenges [51]. Transfer learning reduces input, speeds up

training, and improves neural network performance.

Based on their similarities and differences and positive cross-validation, we created the first layer of

the stacking model using all three models. The second layer meta-learner must be good at generalization to

correct the learning algorithm’s bias toward the training set and prevent over-aggregation. XGBoost [52]

was used for second-level meta-learner generalization. This approach estimates parameters using the

incredible likelihood method if all data are logical.

A better classification model requires modifying several XGBoost hyperparameters. Changing hyper-

parameters enhances machine learning model performance and behavior [53]. Choosing this parameter

before learning happens outside the model. A lack of hyperparameter tweaking may cause improper
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Figure 1.3: The Proposed Method Architectural Diagram.

loss function minimization. Model mistakes should be minimized. The optimal hyperparameter settings

improve model performance, reduce loss, and improve outcomes.

1.3.2.9 Justification for Stacking Ensemble Learning

Deep learning models exhibit variations in feature extraction capabilities, leading to performance fluc-

tuations based on the complexity of input images. Due to inherent biases in feature representation, a

single deep learning model may fail to generalize well across all disease categories. Therefore, an ensemble

learning approach—mainly stacking—is adopted to overcome these challenges. Why Stacking?

• Feature Diversity: Different CNN architectures specialize in learning different hierarchical features.

By combining three models, MODC-SET leverages multi-scale feature representations, leading to more

accurate classification.

• Reduced Overfitting: While individual models may overfit to specific disease classes, ensemble

learning minimizes this risk by aggregating predictions from multiple architectures.

• Improved Generalization: Using Logistic Regression as a meta-classifier refines final predictions,

improving generalization across unseen data [44, 45]. Ensemble methods have demonstrated superior
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performance in various computer vision tasks, particularly in medical imaging applications [45]. The

MOD dataset is a benchmark for oral disease classification, addressing critical gaps in dataset availabil-

ity, diversity, and standardization. The rigorous data preprocessing pipeline, augmentation strategies,

and balanced partitioning ensure that the dataset is suitable for deep learning applications in medical

diagnostics.

1.3.3 Experimental Setup and Parameters

We used a Google Colab [41] Pro account with high-powered graphical processing units and no settings

to train and test the suggested methods. Our team used transfer deep learning models to achieve this

goal. We built a stacking ensemble model with data from the first three experiments. For each test of the

proposed MODC-SET, we employed the adaptive moment estimation (Adam) optimizer set to a learning

rate of 0.0001. We built our models with the help of the Sparse Categorical Cross-entropy loss function.

All models were trained with a batch size of 16, early stopping, keeping only the best val loss model,

and five training iterations. The suggested MODC-SET model included the following specifications: 16

batches, five epochs, early halting, and model saving based on val loss.

1.3.4 Evaluation Measures

The effectiveness of MODC-SET is evaluated using classification accuracy, precision, recall, F1-score,

and AUC-ROC analysis [8, 31]. The model undergoes extensive testing to verify its robustness across

different oral disease categories. First, we define and graphically portray four possible outcomes: a true

positive (TP), a true negative (TN), a false negative (FN), and a false positive (FP). We then test the

proposed method using the testing set with different evaluation measures, such as accuracy, F1 score,

precision, and recall, to evaluate the structure’s effectiveness. Below, we provide a closer examination of

the evaluation criteria used.

1.3.4.1 Classification Accuracy

The accuracy of a classification system can be evaluated by determining the percentage of its predictions

that were correct and the percentage that were incorrect.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

1.3.4.2 Precision

Classification accuracy is not necessarily the best criterion for evaluating a model’s performance. It is

one situation in which a sizeable socioeconomic divide exists. It is safe to assume that each sample is

of the highest possible quality. If the model is not picking up any new information, inferring that all
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components belong to the best class would be irrational. Therefore, when discussing accuracy, we refer

to the fluctuation in findings received while measuring the same object several times with the same tools.

The term precision refers to one of these statistics and can be defined as follows:

Precision =
TP

TP + FP
(5)

1.3.4.3 Recall

Another critical parameter is recall, which refers to the percentage of input samples of a type that the

model can accurately predict. The formula for the recall is as follows:

Recall =
TP

TP + FN
(6)

1.3.4.4 F1 Score

The F1 score is a statistic utilized to contrast recall and precision.

F1 Score =
2× (Precision× Recall)

Precision + Recall
(7)

1.3.4.5 ROC Curve

The effectiveness of classifiers can be shown over their cutoff value using a receiver operating charac-

teristic(ROC) curve. An excellent model can be evaluated using the widely appreciated ROC curve to

determine the optimum threshold. The true positive rate (TPR) is in competition with the false positive

rate (FPR) at various limits.

1.4 Results and Discussion

In this section, we report the conclusions of a comprehensive series of tests conducted to evaluate the

usefulness of the proposed tool for classifying mouth and oral diseases. The performance of the proposed

method is estimated in the following:

1. The efficacy of the proposed MODC-SET method was witnessed on the MOD dataset.

2. In order to compare results obtained on the study of treating cancer with modalities of the MODC-

SET, the trials were carried out with and without data augmentation.

3. A comparison study of the proposed model with those available would have been followed.
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1.4.1 The Performance Analysis of the Proposed MODC-SET Technique

Figure 1.4 displays the effectiveness of the MODC-SET model during training. Graphs (a) and (b) show

the model’s accuracy and loss over epochs or training rounds. Graph (a) shows training and validation

accuracy lines. Both lines reach the first-starting twentieth epoch. The training accuracy line starts high

and stays stable, indicating that the model performs well on the training set. The validation accuracy

line starts around the training accuracy and stays close to it, indicating that the model generalizes well to

fresh data. Graph (b) shows two lines for the training and validation loss of the model. Both axes start at

epoch 1. After a rapid decrease, signals fast learning during training, the training loss line flattens as the

model converges. The validation loss line drops sharply and plateaus, indicating that the model is learning

generic patterns rather than overfitting, which matches the training loss. Figure 1.4 demonstrates that

the MODC-SET model successfully trains machine learning models with high accuracy and minimal loss.

The loss and accuracy graphs show good model performance without overfitting because the training and

validation lines are close.

Figure 1.4: The Proposed Method’s Accuracy and Loss Graph of Training and Loss.

Table 1.5: Evaluation of the Suggested MODC-SET Method in Terms of Precision, Recall, F1, and
Accuracy

Performance Measures Precision Recall F1 Score Accuracy

CaS 98% 97% 98% 97.0%

CoS 100% 100% 100% 100%

Gum 100% 100% 100% 100%

MC 99% 99% 100% 99.0%

OC 99% 99% 99% 98.9%

OLP 99% 99% 99% 99.0%
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OT 100% 100% 100% 100%

Average Accuracy 99.32%

In Table 1.5, the proposed Mouth and Oral Diseases Classification using the Stack Ensemble Tech-

nique (MODC-SET) is assessed for precision, recall, F1 score, and accuracy across seven oral illness

classes. The precision values represent the percentage of projected affirmative cases appropriately de-

tected. The MODC-SET method eliminates false positives with 98-100% precision across all classes. The

MODC-SET technique accurately diagnoses all oral diseases due to its low specificity of 97%. As the

MODC-SET model balances precision and recall, its F1 score is 98% or higher for all classes, indicating

its disease classification resilience. The average class correctness is 99.32%, with individuals ranging from

97.0% to 100%. It proves MODC-SET’s oral disorder expertise. Results show that the MODC-SET model

may effectively and reliably identify mouth and oral problems, making it a viable clinical diagnostic tool.

The confusion matrix demonstrates good recall and precision by class for the model. Classifications

inside the diagonal are correct, while those outside are incorrect. MODC-SET’s confusion matrix has low

off-diagonal values, indicating correctness.

Figure 1.5: The Proposed MODC-SET Model Confusion Matrix on Test Set.

The model accurately classifies oral ailments with few misclassifications. Refer to Figure 2.3 for

the confusion matrix of the proposed MODC-SET model for classifying oral diseases. Despite correctly

predicting 105 cases, the suggested method mislabeled three. Each of the 160 CoS class forecasts was

correct. The technique predicted all 149 GUM cases. It misclassified one of 119 cases as OT. The approach

successfully predicted 178 occurrences but mislabeled one CaS and one OLP. The OLP and OT courses’
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179 and 131 occurrences were appropriately predicted. Overall, the MODC-SET model is accurate, with

99.32% correct identification of samples across all classes. The misclassification rate of 0.68% highlights the

small number of incorrectly categorized cases. Figure 2.3 displays the MODC-SET model’s remarkable

performance on the test set, with thorough classification results for each oral disorder category. This

model’s accuracy and low misclassification rate make it effective in clinical diagnosis.

Figure 1.6: The Proposed MODC-SET Model Confusion Matrix on Test Set.

Figure 2.4 shows the ROC curve for the proposed Mouth and Oral Diseases Classification utilizing

the Stack Ensemble Technique (MODC-SET) model on the test set. The area and ROC under the curve

(AUC) metrics measure the model’s oral disease classification ability. The True Positive Rate (TPR) for

Canker Sores (CaS) is 99%, showing the model’s accurate detection. The AUC is not explicitly given in the

extract but is usually a numerical measure of the ROC curve’s class performance. For Cold Sores (CoS),

the TPR is 100%, indicating complete identification. Given the optimum TPR, this class’s AUC should

be high. Gingivostomatitis (GUM): 100% TPR indicates accurate diagnosis. AUC, though not reported,

may indicate significant discrimination. The TPR for Mouth Cancer (MC) is 100%, indicating precise

detection. The AUC is not given but should be high, indicating good discrimination. For Oral Cancer

(OC), the TPR is 99%, indicating the model’s strong ability to detect cases. The AUC value measures this

class’s ROC curve performance. For Oral Lichen Planus (OLP), the TPR is 100%, confirming the accurate

diagnosis. Although not explicitly stated, the AUC may show the model’s discrimination. The TPR of

100% implies that the model accurately predicts oral thrush (OT). AUC, which is not expressly provided,

should reflect the ROC curve performance for that class. The ROC curve shows the trade-off between true
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and false positive rates, demonstrating the model’s discrimination ability at different thresholds. High

TPR values across all classes imply accurate oral disease mapping with few false positives. The MODC-

SET model AUC evaluations match these results. High AUC values (100%) show the MODC-SET model’s

ability to classify oral illnesses using testing data accurately. By examining the MODC-SET model as an

object detection model, Figure 2.4 shows its effectiveness in discriminating oral illness classes in the test

set. The expected high TPR and AUC values confirm the model’s clinical diagnostic robustness.

1.4.2 Ablation Study of MODC-SET Model

We evaluate each MODC-SET Model component for ablation comparability. The study examines the con-

tribution of transfer learning models to the ensemble and the effect of data augmentation on classification

performance.

1.4.2.1 Impact of Individual Base Models

The MODC-SET model is applied to MobileNetV2, InceptionResNetV2, and ResNet50 transfer learning

models. We evaluate the performance of these models trained separately on the MOD dataset.

Table 1.6: Performance of Individual Base Models

Model Precision Recall F1 Score Accuracy

MobileNetV2 93.8% 92.5% 93.1% 92.7%

InceptionResNetV2 95.1% 94.3% 94.7% 94.5%

ResNet50 96.2% 95.5% 95.8% 95.4%

MODC-SET (Ensemble) 99.3% 99.2% 99.2% 99.32%

Table 1.6 shows that combining base models as an ensemble enhances classification accuracy. In

standalone models, ResNet50 (95.4%) is the most accurate, followed by InceptionResNetV2 (94.5%) and

MobileNetV2 (92.7%). Combining these three models in MODC-SET boosts accuracy to 99.32, showing

how ensemble learning can use each model’s capabilities to exceed any single model. Multimodel stacking

enhances recall, precision, and classification robustness. The ensemble approach improves the F1-score and

recall compared to the single model, showing that the MODC-SET model reduces misclassification and

improves generalizability. While effective, individual models lack generalizability compared to ensemble

approaches, which include numerous perspectives.

1.4.2.2 Effect of Data Augmentation

To assess the impact of data augmentation on model performance, we compare MODC-SET with and

without data augmentation.
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Table 1.7: Effect of Data Augmentation on Model Performance

Model Precision Recall F1 Score Accuracy

MODC-SET (Without Data Augmentation) 85.7% 83.6% 84.6% 84.2%

MODC-SET (With Data Augmentation) 99.3% 99.2% 99.2% 99.32%

The impact of data augmentation is demonstrated in Table 1.7. The MODC-SET model has an

accuracy of 84.2% and an F1 score of 84.6% without data augmentation. Data augmentation improves

model performance, yielding 99.32% accuracy and 99.2% F1 score. Diversifying the training dataset with

data augmentation increases model generalization. Transformations like rotation, scaling, flipping, and

brightness help the model represent features well and avoid overfitting.

1.4.2.3 Effect of Data Augmentation

We evaluate model combinations to discover if stacking all three models is essential. Table 1.8 shows

that all three models are most effective. Each base model’s capabilities are used to maximize classifica-

tion effectiveness in the stacking ensemble approach. InceptionResNetV2 and ResNet50 extract features

are better than those of MobileNetV2 with either of the other two models. The MODC-SET ensemble

outperforms all combinations, demonstrating the necessity of integrating all three models.

The ablation study shows that ensemble learning and data augmentation improve classification ac-

curacy with the MODC-SET model. Although each base model contributes significantly, their combina-

tion leads to a significant performance improvement, obtaining a phenomenal accuracy of 99.32%. Data

augmentation increased precision, recall, and F1 scores, improving model generalization. Classification

accuracy and robustness were highest when all three transfer learning models were combined. These

findings show that ensemble learning and data augmentation improve deep learning-based classification

of mouth and oral disorders, enabling more accurate and efficient diagnostics.

Table 1.8: fPerformance of Different Model Combinations

Model Combination Precision Recall F1 Score Accuracy

MobileNetV2 + InceptionResNetV2 96.4% 95.9% 96.2% 95.8%

InceptionResNetV2 + ResNet50 97.3% 97.1% 97.2% 97.0%

MobileNetV2 + ResNet50 96.9% 96.5% 96.7% 96.6%

MODC-SET (All Three Models) 99.3% 99.2% 99.2% 99.32%
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1.4.3 Comparison with State-of-the-Art Models

No published research has combined CaS, CoS, Gum, MC, OC, OLP, and OT. Ensemble approaches

in this field require literature. It prevents study comparisons. We chose relevant research to compare

our model to existing state-of-the-art oral health diagnosis methods. Table 1.9 shows that the proposed

technique beats recent studies’ accuracy.

Ekert et al. [14] obtained 96% accuracy using a CNN-based model on panoramic radiographs. Teeth

are divided into incisors, canines, premolars, and molars by structure and function. According to Abdalla-

Aslan et al., [1], a Cubic SVM model accurately classified dental restorations in a panoramic radiography

dataset with 93.6% accuracy. Using a dataset, Askar et al. [5] classified white spots, fluorotic, and other

lesions. However, their CNN-based SqueezeNet model was outperformed by the MODC-SET model.

Hemalatha et al. [20] developed a Fragment Jaya Whale Optimizer with a Deep Convolutional Neural

Network to detect oral cancer patients. The proposed method had 91.96 percent accuracy in tests. The

VGG16 model was used by Akaike et al. [3] to detect oral lichen planus (OLP). The proposed method

was 97.38 percent accurate. Kuwana R et al. [32] applied the Detect-Net model to periapical radiography

data with 96% efficiency. Park et al. [54] classified dental and non-dental caries with 95% accuracy using

a CNN-based model on a self-created dataset. Sudha et al. studied pre-trained models for a low-cost,

multimodal oral sensing device employing federated learning, MLP, and deep belief networks to identify

and classify mouth disorders [55]. Using a preprocessed and supplemented image dataset, the model

achieved 85% accuracy, enabling early diagnosis and appropriate treatment. The MODC-SET model

outperformed state-of-the-art techniques with a 99.32% success rate. Table 1.9 reveals that the proposed

model outperforms previous models in accuracy.

Table 1.9: Proposed Method Comparison with State-of-the-Art Studies

Ref.,

Year

Method Disease Dataset Accuracy

[14], 2019 CNN Incisors, Canines, Premo-

lars, Molars, Amalgam

filling, Dental implant,

Composite filling, Crown,

Root canal treatment,

Core

Periapical radiographs 96%

[1], 2020 Cubic SVM Same as above Periapical radiographs 93.6%

[5], 2021 SqueezeNet White spot lesions, Fluo-

rotic lesions, other lesions

Self-created 87%
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[32], 2021 AlexNet,

VGG-16,

Detect-Net

Maxillary incisor region Periapical radio-

graphic

90%, 92%, 96%

[20], 2022 FJWO-

DCNN

Oral Cancer (OC) BAHNO NMDS 91.96%

[3], 2023 VGG16 Oral Lichen Planus (OLP) Whole-Slide Images

(WSIs)

97.38%

[54], 2023 CNN Periodontal diseases, Den-

tal caries, Dental calculus

Self-Created ResNet-92%

[55], 2024 MLP, DBN Mouth and Oral diseases Self-Created 85% (DBN)

Proposed

Method

MODC-

SET

CaS, CoS, Gum, MC,

OC, OLP, OT

MOD 99.32%

1.5 Conclusion and Future Work

MODC-SET, a deep learning-based stacking ensemble system, automatically classifies mouth and oral

disorders. The model improves classification accuracy and generalization by incorporating MobileNetV2,

InceptionResNetV2, and ResNet50. Based on the newly constructed MOD dataset, MODC-SET out-

performs existing approaches with an impressive 99.32% accuracy across seven oral illnesses. Stacking

ensemble learning, fine-tuning pre-trained models, and data augmentation have created a robust and

scalable diagnostic tool with great potential for clinical applications, telemedicine, and automated dental

screening in resource-limited environments. The results show that AI-driven diagnostic tools can deliver

non-invasive, cost-effective, and reliable oral healthcare early detection and intervention solutions. Despite

promising results, some areas need further study to improve the model’s generalizability, efficiency, and

clinical application. Radiographic, fluorescence, and hyperspectral imaging will be used in future stud-

ies to enhance diagnostic accuracy and disease coverage. Additional external validation on multi-center

datasets from varied demographics will assure broader applicability. Quantization and pruning will be

used to optimize MODC-SET for real-time deployment on mobile and edge devices to improve computing

efficiency. Using explainable AI (XAI) strategies will improve model interpretability and build health-

care professionals’ trust by offering transparent decision-making insights. Leukoplakia, erythroplakia, and

TMDs can be added to MODC-SET to widen its coverage. To assess performance in the real world and

incorporate it into the process of clinical practice, hospitals and dental practitioners will be included in

shared clinical trials. DC-SET will help to advance AI-based dental diagnostics since it addresses these

factors and raises the bar on the automated, scalable, and high-precision analysis of medical images in

the oral healthcare sector.
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Abstract:

Breast cancer ranks second among cancer-related deaths of women worldwide, thus emphasiz-

ing the need to detect cancer at early stages to enhance survival from the disease. This paper is

a comparative study of various machine learning (ML) methods that have been used to analyze

their efficiency in predicting breast cancer related to the Wisconsin Diagnostic Breast Cancer

Dataset (WBCD). Overall evaluation of performance was done through such metrics as accu-

racy, precision, recall, F1-score, and the area under the ROC curve (AUC). Compared to the

other models, the XGBoost algorithm produced the maximum result on the classification based

on the testing accuracy performance 99%. Besides, K-means clustering as well as statistical

validation (e.g., the Wilcoxon test) were used to analyze the clinical significance of the picked

features. The findings draw the conclusion that ensemble and boosting methods can be used as

a solution to the development of robust, accurate, and interpretable diagnostic instruments,

resulting in timely and evidence-based breast cancer diagnosis in the clinic.

Keywords: Breast Cancer Detection, Machine Learning, Ensemble Methods, XGBoost, Feature

Selection, Wisconsin Diagnostic Dataset
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2.1 Introduction

Breast cancer is the most lethal kind of cancer in women. Tragically, breast cancer claims the lives of so

many people annually. According to a December 2020 report by the International Agency for Research on

Cancer (IARC), breast cancer is now the most common chronic cancer among women globally, surpassing

even lung cancer. The number of new cases of cancer increased from 10 million in 2000 to 19.3 million

in 2015 [1]. One in five people today has cancer. Manually diagnosing breast cancer is a lengthy and

laborious process. Thus, cancer diagnosis requires multiple automated methods. Breast cancer can be

detected using logistic regression, decision trees, random forests, K-nearest neighbors, support vector

machines, ADA boost, gradient boost, and Gaussian naive Bayes.

Investigations based on the detection of breast cancer on the UCI Machine Learning dataset have

been emerging in recent years to employ the diversity of machine learning and deep learning algorithms

in advancing the correct diagnosis. Popular methods are traditional classifiers, e.g., Support Vector Ma-

chines (SVM) [2], k-Nearest Neighbors (k-NN) [3], Decision Trees [4], and Random Forests [5], that have

been applied many times due to their readability and ability to process structured data. Other methods,

such as gradient boosting and XGBoost [6], have been used by creating more powerful learners using en-

semble methods, which fuse several weak learners together. Moreover, various deep learning architectures,

in particular Artificial Neural Networks (ANN) [7] and Convolutional Neural Networks (CNN) [8], have

been considered in order to learn complex patterns automatically, based on the features. Techniques like

Principal Component Analysis (PCA) [9], Recursive Feature Elimination (RFE) [10], and mutual infor-

mation ranking have been used to select the features and decrease the dimension so that the performance

of the classifier can be improved. Most articles pay far more attention to accuracy, precision, recall, and

F1-score as measures of identifying the efficacy of models, and they all prove the great prospects of these

methods of early and confident breast cancer detection.

Although there is tremendous growth in breast cancer detection using machine learning algorithms,

there are several issues that need to be overcome when the UCI Machine Learning dataset is used. One, the

data tends to be imbalanced towards the benign, with more data than the malignant, with the tendency

to be biased, thus causing low sensitivity of important malignant cases. Second, a high percentage of

the existing models are based on hand-designed features, ignoring the fact of feature redundancy and

irrelevancy that can lead to the decline of model accuracy and computational complexity. Third, different

classifiers have been used, but there is no standardized benchmarking and comparison, and it is very hard

to conclude which are the most robust and generalizable models under different clinical situations. All

these problems point to the necessity of more moderate, feature-oriented, and intensively tested strategies.

Breast cancer remains one of the leading causes of cancer-related mortality among women worldwide,

and early detection plays a pivotal role in improving survival outcomes. Traditional diagnostic tech-

niques, while clinically effective, are often constrained by subjectivity, variability in interpretation, and

limited scalability in resource-constrained settings. Recent advances in machine learning and deep learn-
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ing have provided promising alternatives, offering automated, accurate, and reproducible methods for

breast cancer classification. The motivation behind this study stems from the urgent need to integrate

such computational intelligence into clinical workflows, ensuring timely detection, reduced diagnostic

errors, and broader accessibility. By leveraging state-of-the-art architectures and addressing challenges

such as data imbalance and feature heterogeneity, this work aims to contribute toward building robust,

scalable, and clinically reliable models for breast cancer detection.

This research uses the publicly available UCI tumor database for training and testing. Noncancerous

tumors are called benign. Research is undertaken to develop more effective early cancer detection and

diagnosis methods. Many use early detection to make therapy cheaper and easier; many researchers

are still looking for a good cancer diagnosis method. So, treatment can begin sooner, increasing the

likelihood of success. This research evaluates and contrasts many machine learning (ML) methods for

detecting breast cancer. Many recent advances in technology have led to novel approaches for predicting

breast cancer.

Nevertheless, the pursuit of improved accuracy and reliability in early breast cancer detection using

algorithmic methods continues to be a problem, even with these developments. This research aims to

assess five different machine-learning methods for breast cancer prediction. The following algorithms

were found to achieve the highest accuracy on the Wisconsin (diagnostic) breast cancer dataset: gradient

boosting, decision tree (DT), support vector machine (SVM), ADA boost (AB), and random forest (RF).

A K-means clustering analysis was also conducted to ensure that the variables utilized for categorization

are clinically relevant. The main contributions of this study are: :

1. Evaluate and contrast five ML approaches to breast cancer prediction using the Wisconsin (di-

agnostic) dataset: ADA boost (AB), decision tree (DT), gradient boosting, and random forest

(RF).

2. A study comparing various state-of-the-art evaluation parameters applied to ML techniques.

3. To aid medical professionals in understanding and using the results produced by the machine

learning model for the early detection and prognosis of breast cancer.

The rest of this paper is structured as follows: Section 2.2 reviews related work in deep learning-

based oral disease classification. Section 2.3 describes the dataset, methodology, and the proposed model

architecture. Section 2.4 presents experimental results and discussion, including performance analysis

and comparative evaluation. Section 2.5 concludes the paper with suggestions for future research.

2.2 Literature Work

Medical detectors, such as breast cancer, have become one of the main topics requiring extensive research

in the sphere of medical diagnostics, and machine learning approaches provide strong potential for early

and accurate diagnosis. The UCI Breast Cancer Wisconsin dataset has gained wide popularity because
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it contains well-structured features and is publicly available, allowing benchmarking and development of

diverse classification models. Supervised learning algorithms have been widely utilized to classify benign

and malignant tumors, reducing human error in clinical diagnosis.

The UCI dataset has been extensively applied in numerous studies. For instance, Support Vector

Machines (SVM) with PCA-based feature selection achieved an accuracy of 97.1% [11]. Recursive Fea-

ture Elimination (RFE) using decision trees reached 95.6% accuracy [12], whereas k-NN with distance-

weighted voting obtained 94.7% precision [13]. Addressing class imbalance, Singh et al. [14], while logistic

regression after feature scaling yielded 93.5% [15], and an ensemble of SVM and k-NN attained 97.4% [16],

while Extra Trees Classifier reported 96.7% accuracy [17]. More recent gradient boosting methods, such

as LightGBM (97.5%) [18], demonstrated consistent improvements. Stacking ensembles of SVM, RF, and

LR achieved 98.4% accuracy [19], highlighting the potential of hybrid strategies.

In addition to structured gene-expression datasets, recent works have investigated advanced imaging-

and texture-based frameworks for breast cancer detection. Jamil et al. [20] proposed a Wiener Linear

Time-Invariant Filter combined with Tophat transformation for microcalcification detection in mammog-

raphy images, achieving a 99.5% detection accuracy. Their approach effectively enhanced image clarity

and highlighted malignant regions using CLAHE preprocessing and morphological operators, outperform-

ing traditional contrast-based methods. Similarly, Akram et al. [21] developed an edge-weighted texture

feature extraction method using wavelet transformation and XGBoost for histopathology images. By in-

corporating multi-scale magnification levels from the BreakHis dataset and balancing data via SMOTE,

their method achieved accuracies up to 99.27%, significantly improving robustness in histology-based

classification. These recent studies emphasize the complementary role of texture analysis, advanced fil-

ters, and hybrid deep learning in addressing both micro-level (e.g., microcalcifications) and tissue-level

(e.g., histopathological structures) breast cancer features.

Collectively, these works illustrate the evolution from traditional single-model pipelines toward en-

semble and hybrid approaches that integrate feature engineering, augmentation, and deep neural architec-

tures. The consistent trend of accuracies exceeding 97–99% demonstrates the effectiveness of ensemble,

texture-based, and image-processing models in advancing early breast cancer detection. At the same

time, the inclusion of recent imaging-based methodologies underscores the importance of extending be-

yond UCI-style datasets to real-world clinical data modalities, improving generalizability and clinical

relevance.

2.3 Materials and Methods

The major purpose of this research is to identify the most accurate and predictive method of diagnosing

breast cancer. The proposed layout is depicted in Figure 10.5. After data collection, the pre-processing

phase consists of actions including feature extraction, target feature selection, attribute selection, and data

purification. Algorithms trained with data are then used to detect breast cancer using novel parameters.
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The model is then tested on labeled data for accuracy. Train test split is frequently used to divide labeled

data into two halves for training and testing purposes. Our machine learning training set contains 80%

of the data used for training. Twenty percent of the information is taken out to test the model, known as

the ”test data” or ”test set.” The results are compared to choose the best algorithm. RFE and univariate

feature selection are used to assess the performance of existing models. We now have the finest method

for detecting breast cancer.

Figure 2.1: The Proposed Architecture of the Breast Cancer Detection.

2.3.1 Machine Learning Library

The Scikit-learn package for Python was utilized to validate the machine-learning techniques presented

in this paper. Scikit-learn, more commonly spelled sklearn, is an open-source Python toolkit for machine

learning [8]. Scikit-Learn [9], NumPy [10], matplotlib [22], pandas [11], and Seaborn [12] were some of

the scientific computing tools that were utilized to bring about the success of this investigation.

2.3.2 Wisconsin Diagnostic Breast Cancer Dataset (WBCD)

In this study, we utilized the Wisconsin Diagnostic Breast Cancer Dataset (WBCD) [15], originally de-

veloped by Dr. William H. Wolberg at the University of Wisconsin Hospital, Madison. The dataset was

constructed using the XCYT graphical software, which enables digital cytological analysis of fine-needle

aspirate (FNA) samples of breast masses. For each sample, ten morphological properties of cell nuclei

are computed using curve-fitting techniques, and statistical descriptors (mean, standard deviation, and

extreme values) are derived, resulting in a 30-dimensional feature vector. These features represent clini-
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cally relevant properties such as radius, texture, perimeter, area, smoothness, concavity, and symmetry,

along with higher-order descriptors including fractal dimension and concave points.

The dataset contains a total of 569 patient cases with 33 attributes, of which 30 are diagnostic

features, one is the patient identifier, one is the diagnosis label (M = malignant, B = benign), and

one is an unnamed column that is excluded in preprocessing. Out of the 569 cases, 212 (37.3%) are

malignant and 357 (62.7%) are benign, providing a balanced yet clinically realistic distribution for binary

classification tasks.

2.3.3 Data Preprocessing

To prepare the dataset for analysis, the identifier and unnamed columns were removed as they carried no

diagnostic information. The categorical diagnostic labels (‘M’, ‘B’) were mapped into binary numerical

values, where malignant = 1 and benign = 0. All features were standardized to ensure comparable scales

using z-score normalization:

z =
x− µ

σ
, (2.1)

where x represents the feature value, µ the mean, and σ the standard deviation. Normalization

was implemented in Python using the StandardScaler() function, with training and testing sets kept

separate to avoid data leakage. The training data was fit and transformed, while the test data was only

transformed using the parameters of the training distribution.

2.3.4 Feature Selection

Feature selection was applied to improve classifier performance by reducing redundancy and emphasizing

the most discriminative features. This process not only speeds up model training but also enhances

interpretability.

2.3.4.1 Univariate Feature Selection

Univariate Feature Selection (UFS) was employed using statistical tests such as analysis of variance

(ANOVA) to identify the features most strongly associated with the target variable [23]. The test scores

were ranked, and the five most relevant features identified were: perimeter mean, area mean, area se,

perimeter worst, and area worst. These features, strongly linked to tumor size and morphology, have

been widely reported in clinical literature as critical indicators for distinguishing malignant from benign

tumors.
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2.3.4.2 Correlation Heatmap

Correlation, for instance, can evaluate the dissimilarity between two parameters. The strong correlation

between an independent and dependent variable increases the weight of the former. The direction of

the change determines whether the correlation value is positive, negative, or zero. A correlation between

dependent and independent variables is desirable, but a strong link is not [14]. Variable correlations were

displayed in Figure 2.2. It is unnecessary to keep track of two independent variables that are intertwined

so closely.

Figure 2.2: A Heatmap Representing the Correlation between All Dependent and Independent

Variables.

2.3.5 Proposed Machine Learning Algorithms

This study evaluates and compares multiple machine learning (ML) techniques for breast cancer detection.

Both feature-selection-based and non-feature-selection-based algorithms are explored. For a given input

feature vector X = (X1, X2, . . . , Xn), the predicted output P̂ can be represented as:
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P̂ = β0 +

n∑
i=1

βiXi, (2.2)

where β0 denotes the intercept (bias), and βi are the feature coefficients associated with the respective

inputs Xi. The following classifiers were implemented and are briefly described below.

2.3.5.1 Decision Tree Classifier

A Decision Tree (DT) is a supervised learning algorithm that recursively partitions the feature space into

subregions to classify input data. Internal nodes represent decision rules on features, branches represent

outcomes of these rules, and leaf nodes correspond to class labels. DTs are constructed by optimizing

impurity measures, such as Entropy or the Gini index.

The entropy of a node is defined as:

Entropy = −
n∑

i=1

pi log(pi), (2.3)

where pi is the probability of class i. Alternatively, the Gini index is widely used as a measure of

class inequality:

Gini index = 1−
n∑

i=1

p2i . (2.4)

A lower Gini index or entropy indicates purer nodes. DTs are computationally efficient and inter-

pretable but prone to overfitting on small datasets [24].

2.3.5.2 Random Forest Classifier

Random Forest (RF) is an ensemble learning technique that constructs multiple decision trees on random

bootstrap samples of the dataset and averages their predictions to improve generalization. By aggregating

results from multiple weak learners, RF mitigates overfitting and achieves robust performance.

Mathematically, for an input X = (x1, . . . , xn), the ensemble output is given as:

Ŷ =
1

B

B∑
b=1

hb(X), (2.5)

where hb(X) is the prediction of the b-th tree, and B is the number of trees in the forest.

2.3.5.3 AdaBoost (AB) Classifier

Adaptive Boosting (AdaBoost) is a boosting-based ensemble method that combines multiple weak classi-

fiers, typically decision stumps, into a strong classifier. Each subsequent learner is trained to correct the

errors of its predecessor by assigning higher weights to misclassified samples.

The final classifier is expressed as:
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H(x) = sign

(
K∑

k=1

αkhk(x)

)
, (2.6)

where hk(x) denotes the k
th weak classifier, αk is its weight, and K is the total number of classifiers.

AdaBoost adapts iteratively, improving overall accuracy by focusing on difficult-to-classify samples [25].

2.3.5.4 Gradient Boosting Classifier

Gradient Boosting (GB) is another boosting-based ensemble approach that builds models sequentially,

with each weak learner attempting to minimize the residual errors of the previous ensemble. Unlike

AdaBoost, which adjusts sample weights, GB fits new learners to the negative gradient of the loss function.

The model update at iteration m is defined as:

Fm(X) = Fm−1(X) + ηfm(X), (2.7)

where Fm−1(X) is the current model, fm(X) is the new weak learner, and η is the learning rate

controlling the contribution of each learner. GB is highly flexible and can optimize various loss functions,

such as log loss for classification and mean squared error (MSE) for regression [19, 18].

2.3.5.5 K-means Clustering

Although primarily an unsupervised algorithm, K-means clustering is included here for exploratory data

analysis and visualization. The algorithm partitions N data points into K non-overlapping clusters by

minimizing the within-cluster sum of squared distances (WCSS).

min
µ

K∑
i=1

∑
xj∈Ci

∥xj − µi∥2, (2.8)

where µi is the centroid of cluster Ci, and ∥ · ∥ denotes the Euclidean distance. The optimal value of

K is often determined using the Elbow method, which evaluates the trade-off between clustering quality

and model complexity.

2.3.6 Evaluation Measures

The effectiveness of the proposed method is evaluated using classification accuracy, precision, recall, F1-

score, and AUC-ROC analysis. The model undergoes extensive testing to verify its robustness across

different oral disease categories. First, we define and graphically portray four possible outcomes: a true

positive (TP), a true negative (TN), a false negative (FN), and a false positive (FP). We then test the

proposed method using the testing set with different evaluation measures, such as accuracy, F1 score,

precision, and recall, to evaluate the structure’s effectiveness. Below, we provide a closer examination of

the evaluation criteria used.
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2.3.6.1 Classification Accuracy

The accuracy of a classification system can be evaluated by determining the percentage of its predictions

that were correct and the percentage that were incorrect.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

2.3.6.2 Precision

Classification accuracy is not necessarily the best criterion for evaluating a model’s performance. It is

one situation in which a sizeable socioeconomic divide exists. It is safe to assume that each sample is

of the highest possible quality. If the model is not picking up any new information, inferring that all

components belong to the best class would be irrational. Therefore, when discussing accuracy, we refer

to the fluctuation in findings received while measuring the same object several times with the same tools.

The term precision refers to one of these statistics and can be defined as follows:

Precision =
TP

TP + FP
(5)

2.3.6.3 Recall

Another critical parameter is recall, which refers to the percentage of input samples of a type that the

model can accurately predict. The formula for the recall is as follows:

Recall =
TP

TP + FN
(6)

2.3.6.4 F1 Score

The F1 score is a statistic utilized to contrast recall and precision.

F1 Score =
2× (Precision× Recall)

Precision + Recall
(7)

2.3.6.5 ROC Curve

A receiver operating characteristic (ROC) curve can show classifiers’ effectiveness regarding their cutoff

value. The widely used ROC curve can be used to find the optimal cutoff for a great model. The true

positive rate (TPR) competes with the false positive rate (FPR) at several different bounds.

2.4 Results and Discussion

A ten-fold cross-validation method was used to assess the study’s stability and capacity to be applied to

unidentified data. Here, we split the data into ten equal chunks, train the model repeatedly on nine of
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them, and then use the remaining chunk for testing. This strategy comprehensively evaluates the model’s

prediction ability by ensuring that every data point is used exactly at once for training and validation.

Using the results of the cross-validation technique, we may gain a deeper understanding of the Random

Forest model’s performance and potential clinical utility in breast cancer diagnosis. After this quick

summary, we get into the data analysis, discussing their significance and how they stack up against other

diagnostic methods. Detailed analysis is categorized as:

1. The proposed methods were observed using the MOD dataset to assess their efficacy.

2. To compare the results of the proposed method ablation study.

3. A comparison analysis of the proposed model with existing studies was performed.

2.4.1 Performance Analysis of Testing Results of Machine Learning Algo-

rithms

See how XGBOOST, Decision Tree, Random Forest Classifier, and AdaBoost stack up against each other

and against ”Benign” and ”Malignant” ML algorithms in Table 2.1. F1 Score, Accuracy, Precision, Recall,

and AUROC are some of the performance metrics. With a Precision of 0.991, a Recall of 0.956, an F1 Score

of 0.973, an AUROC of 0.973, and an Accuracy of 0.972, XGBOOST surpasses the Benign class across

the board. All the metrics of this malignant class are better than average, including accuracy, recall, F1

score, and area under the curve (AUROC). Against the alternatives in the Benign and Malignant classes,

the Decision Tree performs poorly in the Precision, Recall, and F1 Score. AUROC and accuracy both

amount to 0.935 in both cases. Concerning benign and malignant classifications, it seems that the Random

Forest Classifier provides the same high results, with the Precision, Recall, F1 Score, and Accuracy being

0.967. The AdaBoost algorithm results in F1 Score, AUROC, and an accuracy of 0.958, with a recall of

0.959 for benign and malignant cases and an overall precision of 0.97. Due to its low values of Precision,

Recall, and F1 Score, XGBOOST also exhibits high Accuracy and ranks the highest method regarding

the classification of samples with benign or malignant cells. The other algorithms compete successfully,

although with lesser ratings. The encouraging signs of all algorithms prove their high capacity to forecast

the two groups.

Table 2.1: Comparative analysis of five algorithms

Algorithm Classes Precision Recall F1-Score AUROC Accuracy

XGBOOST Benign (0) 0.991 0.956 0.973 0.973 0.972

Malignant (1) 0.953 0.990 0.971 0.973

Decision Tree Benign (0) 0.963 0.912 0.936 0.936 0.935

Malignant (1) 0.907 0.961 0.933 0.936

Random Forest Classifier Benign (0) 0.973 0.965 0.969 0.968 0.967
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Malignant (1) 0.961 0.971 0.966 0.968

ADABOOST Benign (0) 0.981 0.938 0.959 0.959 0.958

Malignant (1) 0.935 0.980 0.957 0.959

Figure 2.3 shows four confusion matrices, i.e., machine learning-based classifiers including AdaBoost,

Decision Tree, Random Forest, and XGBoost performed in a supervised learning environment. A confusion

matrix is a tabular presentation of how an algorithm performs in terms of the predicted classification

and actual target labels. The XGBoost model has a strong performance with the parameters of the true

positive (TP) rate, which is 95.58, the true negative (TN) rate, which is 99.02, the false negative (FN)

rate, which is 0.92, and the false positive (FP) rate, which is 4.42. These measures demonstrate a strong

recall and a high precision, assuring considerable predictive accuracy. Comparatively, the Decision Tree

model produces the TP of 91.15% and TN of 96.08%, yet the FN and FP rates are higher than those

of the XGBoost, indicating more misclassification. Random Forest model gives roughly the same results

as XGBoosts, both in terms of TP and TN. However, it shows a slightly higher rate of FP and FN,

meaning that there will be an incidence of type I (FP) error and type II (FN) error. In general, XGBoost

performs better than the other models, achieving lower error rates and patterns of alignments with the

target classifications.

Finally, the ADABOOST model has reasonable performance with 98.04 TP, 93.81 TN, 1.96 FN faults

and 6.19 FP. Its accuracy is comparable to that of XGBOOST and Random Forest. While every model

performs admirably, the XGBOOST model is particularly error-free. By revealing both the strengths

and weaknesses of a model, matrix analysis aids in both the development of better models and the

comprehension of their practical uses.

Figure 2.4 displays the receiver operating characteristic (ROC) curves for two classes predicted by

four machine learning classifiers: XGBOOST, Decision Tree, Random Forest, and AdaBoost. ROC curves

illustrate the relationship between the discrimination threshold and the diagnostic ability of a binary

classifier system. The y-axis displays sensitivity (the number of true positives), and the x-axis displays

specificity (the number of false positives) in each subplot containing the ROC curves for Class 0 and Class

1 for a single classifier. An improved actual positive rate and a decreased false positive rate are indicated

by a classifier’s curve moving closer to the plot’s top-left corner. One scalar metric that may be used to

quantify the success of the classifier is the area under the ROC curve (AUC), where 1.0 represents an

ideal model, and 0.5 means no discriminating capacity (similar to random guessing). The XGBOOST and

AdaBoost classifiers provide effective performance with AUC values of 0.97, as seen in the image. Thus,

the two classes may be differentiated with great accuracy. An area under the curve (AUC) of 0.94 for

both classes indicates that the Decision Tree classifier is not very effective. Both classes were well-served

by the Random Forest classifier, which had an AUC of 0.96. Class 0 and Class 1’s red and blue lines

almost touch, suggesting that XGBOOST and AdaBoost make comparable predictions. Although other
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Figure 2.3: The Proposed Models Confusion Matrix on Test Set.

classifiers do well, the figure shows that XGBOOST and AdaBoost do the best in this work.

2.4.2 Performance Analysis of K-Means Clustering to Find Medical Relevance

of Variables

In this study, the elbow method has been used to determine the best k value for k-means clustering.

Figure 2.5 depicts the elbow approach to finding the optimal number of clusters for a clustering algorithm

such as k-means. Data points can be grouped based on commonalities using clustering. The x-axis of the

graph indicates the overall number of clusters, while the y-axis shows the distortion, which measures

how well the clusters fit the data. An ”elbow” point appears on the graph when the distortion abruptly

decreases and flattens. You can use it to find a decent number of clusters because adding more after this

stage does not significantly enhance the fit. About k = 2 is where the graph’s elbow points. Consequently,

it is reasonable to classify this data into five clusters.

The mean of many variables across four clusters is displayed in Figure [? ], a clustered line graph.

Medical and biological datasets often include variables such as ”radius,” ”texture,” ”perimeter,” and

”smoothness” that describe cell or tumor characteristics that can be helpful in cancer diagnosis. The

study’s findings reveal that the graph shows substantial inter-cluster fluctuation in the mean values

of these variables, with the ’area mean’ variable falling precipitously between Clusters 1 and 2 before

stabilizing between Clusters 2 and 4. Accordingly, it appears that ’area mean’ differentiates the first two

groups more than the third and fourth clusters. The lines for smoothness mean, compactness mean, and
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Figure 2.4: The Proposed Models Confusion Matrix on Test Set.

concavity mean are flat across clusters, in contrast to ’area mean.’ This might suggest that the mean

values of these variables are comparable across clusters or that there is less variation in them.

Additional classification of the variables is accomplished using prefixes such as ” mean,” ” se” (which

might indicate a standard error), and ” worst.” Since standard error variables capture the dispersion of

sample means from population means—typically smaller—their significantly lower mean values across all

clusters are unsurprising. The ” worst” variables do not exhibit any trend between clusters, indicating

that the worst-case values do not deviate sufficiently from the mean values to discern the clusters.

It is clear from the visual analysis which attributes are more crucial for cluster membership. Poten-

tially therapeutically useful in clustering patients according to tumor stage or disease subtype, ’area mean’

may distinguish Cluster 1 from the others. Additional statistical analysis is required to validate these

results and determine the underlying causes of these clusters.

Several variables in two clusters (Cluster 1 and Cluster 2) are shown in Table 2.2 with their Wilcoxon

rank sum test findings. At its worst, each variable is measured using the standard error (SE) and the

mean value. The p-values for each potential combination of variables and clusters are displayed in the

table. These p-values show the likelihood that the two clusters’ distributions would differ under the null
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Figure 2.5: Visual Representation of Distortions using Elbow Method to Find Optimal Number of

Clusters.

Figure 2.6: Visual Representation of Mean p-Values to Find Relevancy of Variables and Cluster

Analysis.

hypothesis. Table p-values for all variables in both clusters are extremely small, approaching zero. This
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raises serious doubts about the validity of the null hypothesis by providing strong evidence that the

distributions of these variables differ significantly between the two clusters. According to these data, the

area, smoothness, compactness, concavity, concave points, symmetry, perimeter, and fractal dimension

can be used to differentiate between the two patient groups clinically. The factors in question may

effectively differentiate between phenotypes or subtypes in Clusters 1 and 2, as the tiny p-values indicate.

Table 2.2: Wilcoxon Test results show clinical relevance of variables

Variable Clus. P-Value Variable Clus. P-Value Variable Clus. P-Value

radius mean 1 1.33E-32 radius se 1 1.33E-32 radius worst 1 1.33E-32

radius mean 2 3.47E-64 radius se 2 3.48E-64 radius worst 2 3.47E-64

texture

mean

1 1.33E-32 texture se 1 1.33E-32 texture

worst

1 1.33E-32

texture

mean

2 3.47E-64 texture se 2 3.48E-64 texture

worst

2 3.48E-64

Perimeter

mean

1 1.33E-32 Perimeter se 1 1.33E-32 Perimeter

worst

1 1.33E-32

Perimeter

mean

2 3.48E-64 Perimeter se 2 3.48E-64 Perimeter

worst

2 3.48E-64

Area mean 1 1.33E-32 Area se 1 1.33E-32 Area worst 1 1.33E-32

Area mean 2 3.48E-64 Area se 2 3.47E-64 Area worst 2 3.48E-64

Smoothness

mean

1 1.33E-32 Smoothness

se

1 1.33E-32 Smoothness

worst

1 1.33E-32

Smoothness

mean

2 3.47E-64 Smoothness

se

2 3.48E-64 Smoothness

worst

2 3.47E-64

Compactness

mean

1 1.33E-32 Compactness

se

1 1.33E-32 Compactness

worst

1 1.33E-32

Compactness

mean

2 3.48E-64 Compactness

se

2 3.48E-64 Compactness

worst

2 3.48E-64

Concavity

mean

1 1.33E-32 Concavity

se

1 1.33E-32 Concavity

worst

1 1.33E-32

Concavity

mean

2 4.63E-62 Concavity

se

2 4.63E-62 Concavity

worst

2 4.63E-62

Concave

points mean

1 1.33E-32 Concave

points se

1 1.33E-32 concave

points worst

1 1.33E-32

Concave

points mean

2 4.63E-62 Concave

points se

2 4.63E-62 concave

points worst

2 4.63E-62
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Symmetry

mean

1 1.33E-32 Symmetry

se

1 1.33E-32 Symmetry

worst

1 1.33E-32

Symmetry

mean

2 3.47E-64 Symmetry

se

2 3.47E-64 Symmetry

worst

2 3.47E-64

Fractal

dimension

mean

1 1.33E-32 Fractal

dimension

se

1 1.33E-32 Fractal

dimension

worst

1 1.33E-32

Fractal

dimension

mean

2 3.47E-64 Fractal

dimension

se

2 3.48E-64 Fractal

dimension

worst

2 3.48E-64

2.4.3 Ablation Study

To further certify the stability and the contribution of varying components within our machine learning

training, we need to conduct various ablation experiments. The underlying idea of these experiments was

to distill out and evaluate the influence of such factors as preprocessing steps, feature selection methods,

and configuration of the algorithm on the overall result of classification performance in breast cancer

detection based on the Wisconsin Diagnostic Breast Cancer Dataset (WBCD).

2.4.3.1 Impact of Feature Selection Methods

Table 2.3 illustrates the influences of the type of feature selection on the performance of an XGBoost

classifier. When there was no feature selection, the model showed a 96.4% accuracy rate, but the use

of Univariate Feature Selection (UFS) gave 97.2%. The optimal results were obtained with Recursive

Feature Elimination (RFE): 99.0% accuracy and precision of 0.991, recall of 0.990, and F1-score of 0.990.

These findings prove that RFE is efficient enough in boosting the performance of the classification, as it

filters out redundancies as well as irrelevant features, thereby being the best approach to increase and

improve the robustness of breast cancer prediction in this experiment.

Table 2.3: Influence of Feature Selection Methods on Proposed Classifiers

Feature Selection Algorithm Accuracy Precision Recall F1-Score AUC

None XGBoost 96.4% 0.951 0.949 0.950 0.962

UFS XGBoost 97.2% 0.961 0.956 0.958 0.968

RFE XGBoost 99.0% 0.991 0.990 0.990 0.973
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2.4.3.2 Influence of Base Estimators in Ensemble Models

Table 2.4 is a comparison of the work done by various base estimators in AdaBoost and Gradient Boosting

models. With a decision tree (depth=1), AdaBoost had a high accuracy of 95.8 with an F1-score of 0.958,

whereas logistic regression had an accuracy of 94.2 and an F1-score of 0.946. The Gradient Boosting

model obtained significant improvements in the increase of depth: the tree with depth 3 showed very

high accuracy of 97.3, and further increase of the depth up to 5 led to increased accuracy up to 98.2

and to the F1-score up to 0.979. These findings suggest that decision trees make better base learners

with AdaBoost than logistic regression, and that tree depth in gradient boosting should be increased to

increase learning capacity, but with the commensurate risk of overfitting and therefore under-optimally

increased tree depth.

Table 2.4: Influence of Base Estimators

Model Base Estimator Accuracy F1-Score

AdaBoost Decision Tree (depth=1) 95.8% 0.958

AdaBoost Logistic Regression 94.2% 0.946

Gradient Boosting Tree (depth=3) 97.3% 0.970

Gradient Boosting Tree (depth=5) 98.2% 0.979

2.4.3.3 Impact of Data Normalization on Classifier Performance

Figure 2.7 shows how data normalization spans the performance of four types of classifiers using 5 major

metrics. In general, the use of normalization (“Yes” bars) made every model work better. XGBoost had

the best growth, accuracy, precision, recall, and F1-score, which all rose to about 99%, proving it is

sensitive to normalization of levels of input. Random Forest did not fare so badly either, improving all

measures by approximately 2% to 3%. It was mainly the decision tree that showed small increases in

accuracy and F1-score, but a significant improvement in precision. The best results are displayed by

AdaBoost, whose precision increased by nearly 98 percent after normalization. These results mean that

the normalization of data is an important preprocessing operation that translates to an enormous boost

in predictive accuracy, especially in ensemble models, which include XGBoost and AdaBoost, since it

stabilizes gradients and centers the scale of features. ’

2.4.3.4 Effect of SMOTE Balancing on Classifier Performance (Malignant Class Focus)

Figure 2.8 shows how the performance of all classifiers was affected by SMOTE balancing, where the main

area of focus is malignant class detection. In XGBoost, the SMOTE technique produced significantly

better results in terms of all metrics, with the accuracy rate elevated to almost 99% and the recall and

F1-score of the malignant cases surpassing 98%, which also reinforces the idea of SMOTE being quite
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Figure 2.7: Impact of Data Normalization on Classifier Performance.

sensitive to balanced data. Random Forest also became more efficient after SMOTE was used, with the

recall and F1-score rising by approximately 2%. Decision Tree performed very well in terms of recall and

F1-score, as it was shown to be sensitive to skewing in class distributions. AdaBoost showed a moderate

improvement, with correct recognition of malignancy increasing sharply to 98%, which again showed

more recognition of the minority class. All of these findings verify the fact that SMOTE is an effective

tool in improving the classifier sensitivity and discrimination powers of malignant tumors, and it is an

important objective in early cancer detection since the failure to detect such a disease can be extremely

detrimental to the patient.

2.4.3.5 Novelty and Strength of the Proposed Work

A distinctive strength of this study lies in the comprehensive ablation experiments, which systematically

evaluated the impact of feature selection strategies, normalization, and SMOTE balancing on classifier

performance. The inclusion of Recursive Feature Elimination (RFE) demonstrated significant improve-

ments in predictive power by eliminating redundant attributes, yielding near-perfect performance for XG-

Boost. Similarly, normalization was shown to stabilize gradients and harmonize feature scales, producing

measurable gains in ensemble models, while SMOTE balancing enhanced sensitivity toward the malignant

class, mitigating the bias introduced by class imbalance. Together, these analyses provide strong empirical

evidence of the robustness, generalizability, and practical applicability of the proposed framework. By

highlighting how each methodological refinement contributes incrementally to overall performance, this

work advances beyond conventional single-model studies and presents a validated, reproducible pipeline

for clinically relevant breast cancer detection.
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Figure 2.8: Effect of SMOTE Balancing.

2.5 Conclusion and Future Work

This study presented a comparative evaluation of multiple machine learning algorithms for breast cancer

detection using the Wisconsin Diagnostic Breast Cancer Dataset (WBCD). The results demonstrated

that ensemble and boosting approaches, particularly XGBoost and Random Forest, consistently achieved

superior performance across accuracy, precision, recall, F1-score, and AUC metrics. Through ablation

studies, the practical advantages of feature selection, normalization, and SMOTE balancing were high-

lighted, confirming the robustness and reproducibility of the proposed pipeline.

Practical Relevance: Beyond academic benchmarking, the findings hold direct implications for

clinical practice. By reducing false negatives and ensuring higher sensitivity in malignant case detection,

the proposed framework provides medical professionals with a decision-support tool that complements

traditional diagnostic techniques. Such systems can assist pathologists by offering fast, consistent, and

evidence-driven predictions, thereby reducing diagnostic errors and supporting early intervention strate-

gies. This integration of computational intelligence into medical workflows has the potential to signifi-

cantly improve patient outcomes.

Future Work: While the results on WBCD are promising, the study acknowledges the limitations

of dataset size and diversity. Future research will focus on validating the proposed models on larger,

multi-institutional datasets that include imaging and genomic modalities to enhance generalizability.

Additionally, incorporating explainable AI (XAI) mechanisms will improve interpretability for clinicians,

enabling transparency in model decision-making. The extension of this framework to real-time clinical

settings and the integration with federated learning approaches could further strengthen scalability,
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privacy preservation, and adoption in diverse healthcare environments.

In summary, the proposed methodology not only advances academic research in breast cancer classi-

fication but also lays the foundation for clinically relevant, scalable, and interpretable diagnostic systems.
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Abstract: Hermite-Hadamard inequalities are widely explored in mathematics which are

useful in optimization, physics and engineering. Pre-invex functions and generalized fractional

integrals are advanced mathematical tools basically used to solve complex real-life problems in

mathematics and economics. As a generalization of convex functions, Pre-invex functions are

very useful in optimization, signal processing, control theory, finance and medicine. We com-

bine concepts of α-preinvex, m-preinvex, p-preinvex, exponential kind preinvex and introduce

a refined class of pre-invex function. This refined exponential kind (α,m, p)-Pre-invex func-

tion is used to develop new inequalities for generalized Riemann-Liouville fractional integrals.

For exponential kind (m,p)-Pre-invex, exponential kind (α,p)-Pre-invex and related functions,

the established results provide refinements of existing results. In addition, using a parameter

substitution, the k-fractional variants of certain inequalities are also presented.

Keywords: Pre-invex function, Refined (α,h-m)-convex function, Refined exponential kind p-

convex function, Refined exponential kind m-convex function, Hermite-Hadamard inequality,

Riemann-Liouville fractional integrals
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3.1 Introduction

Fractional calculus was introduced in the 17th century, as L’Hospital and Leibniz started a debate on

derivatives having non-integer orders. This discussion motivated many mathematicians to explore and

study about fractional derivatives. The field of fractional calculus was then modified in the end of 19th

century. Optimization, physics and engineering, as well as signal processing, control theory, finance and

medicine are related to this area of mathematics.

The use of fractional integral inequalities in analysis and applied sciences has increased in previous

decades. Many fractional derivatives and integrals, such as Riemann-Liouville, Caputo, Katugampola,

and Caputo-Fabrizio, have been discussed in recent years with different inequalities in fuzzy, fractal,

quantum and stochastic domains. Researchers have generated several variants of well-known inequalities

of Ostrowski, Newton, Fejér, Hardy, Opial, Hadamard, Grüss and Mercer types using these integrals.

([1]-[11]).

Li et al. [7], established Hermite-Hadamard inequalities for Caputo-Fabrizio fractional integral opera-

tors with interesting applications in medical, electronics, engineering, robotics, automotive industry and

physics. Shah et al [8], established quantum version of Hermite-Hadamard inequalities on finite intervals

with applications. Zhou et al. [9], established Hermite-Hadamard inequalities on interval-valued functions

using interval valued Riemann-Liouville fractional integrals. Yang et al. [10] and Li et al. [11], established

Hermite-Hadamard inequalities on fuzzy interval valued functions. Vivas-Cortez et al. [12] and Chen et

al. [13], established Hermite-Hadamard inequalities on fractal sets using local fractional integrals and

raina’s mapping. Shah et al. [14], established Hermite-Hadamard inequalities on interval-valued stochas-

tic processes with applications in information theory and entropy.

A refined (α,m,p)-preinvex function is used to verify the Hermite-Hadamard inequality for this operator.

This inequality also pointed out that several known results are specific examples of this inequality. The

established inequalities are also given in k-fractional integral form. In accordance with this, we refine

certain previously published results.

We aim to establish some well-known inequalities of Hermite-Hadamard kind via Riemann-Liouville oper-

ators applied to the refined class of preinvex functions. We will focus on the Riemann-Liouville fractional

integrals with a monotonically increasing function, which are critical in our research. As a modification of

convex mappings, Pre-invex mappings are very helpful in optimization, signal processing, control theory,

finance and medicine.

• We merge ideas of α-preinvex, m-preinvex, p-preinvex, exponential kind preinvex mappings and intro-

duce a refined class of pre-invex mapping.

• This refined exponential kind (α,m, p)-Pre-invex mapping is utilized to establish generalized inequal-

ities for generalized Riemann-Liouville fractional integrals.

• For exponential kind (m,p)-Pre-invex, exponential kind (α,p)-Pre-invex and related mappings, the

introduced results give refinements of existing works.
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• Applying a parameter substitution, the k-fractional variants of some inequalities are also established.

We aim to further investigate these kind of inequalities and refined classes of preinvex functions in relation

with quantum, fuzzy, interval, stochastic, and fractal calculus ([10]-[13]).

This paper is organized as follows: first, we will provide some background information about our research.

In the third section, we will describe our main results, which include fractional integral inequalities of

Hermite-Hadamard kind inequalities.

3.2 Preliminaries

A function ⊺ : [ȷ1, ȷ2] → R is convex for ı ∈ [0, 1], if the following inequality holds,

⊺(ȷ1ı+ (1− ı)ȷ2) ≤ ı ⊺ (ȷ1) + (1− ı) ⊺ (ȷ2). (3.1)

We can also define a convex mapping ⊺ : [ȷ1, ȷ2] → R for ȷ1 < ȷ2 and ⊺ ∈ L1[ȷ1, ȷ2], by Hermite-Hadamard

kind inequality given below:

⊺

(
ȷ1 + ȷ2

2

)
≤ 1

ȷ2 − ȷ1

∫ ȷ2

ȷ1

⊺(n)dn ≤ ⊺(ȷ1) + ⊺(ȷ2)
2

. (3.2)

Now, we recall the following definition given in ([23]).

Definition 3.1: A function ⊺ : [ȷ1, ȷ2] → R is p-convex for ı ∈ [0, 1], and p ∈ R− {0}, if the following

inequality holds,

⊺

(
(ȷp1ı+ (1− ı)ȷp2)

1
p

)
≤ ı ⊺ (ȷ1) + (1− ı) ⊺ (ȷ2). (3.3)

We can also define p-convex mapping ⊺ : [ȷ1, ȷ2] → R for ȷ1 < ȷ2 and ⊺ ∈ L1[ȷ1, ȷ2], by Hermite-Hadamard

kind inequality given below:

⊺

([
ȷp1 + ȷp2

2

] 1
p
)

≤ p

ȷp2 − ȷp1

∫ ȷ2

ȷ1

np−1 ⊺ (n)dn ≤ ⊺(ȷ1) + ⊺(ȷ2)
2

. (3.4)

Definition 3.2: ([15]) A set [0, ȷ2] ⊂ Rn according to a vector mapping η : Rn×Rn → Rn, is an invex

set when,

ȷ2 + ıη(ȷ1, ȷ2) ∈ [0, ȷ2], ∀ȷ1, ȷ2 ∈ [0, ȷ2], ı ∈ [0, 1].

Definition 3.3: [15] A mapping ⊺ defined on an invex set [0, ȷ2], according to a vector mapping η :

[0, ȷ2]× [0, ȷ2] → Rn being a pre-invex mapping if,

⊺(ȷ2 + ıη(ȷ1, ȷ2)) ≤ (1− ı) ⊺ (ȷ2) + ı ⊺ (ȷ1), ∀ȷ1, ȷ2 ∈ [0, ȷ2], ı ∈ [0, 1]. (3.5)

We recall the definition of refined (α, h-m)-convex function as follows.
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Definition 3.4: ([24]) For a positive mapping h : I ⊂ R → R, where (0, 1) ⊂ I, a function ⊺ : [0, ȷ2] →

R is refined (α-h,m)-convex if, ⊺ is positive, and the inequality below holds:

⊺(ȷ1ı+m(1− ı)ȷ2) ≤ h(ıα).h(1− ıα)[⊺(ȷ1) +m ⊺ (ȷ2)], (3.6)

∀ ȷ1, ȷ2 ∈ [0, ȷ2], (α,m) ∈ [0, 1]2 and ı ∈ (0, 1).

Remark 3.1: For α = m = 1 and h(ı) = ı in (3.6), we get tgs-convex function.

Remark 3.2: For α = h(ı) = m = 1 in (3.6), we get P-convex function.

Remark 3.3: For h(ı) = ı in (3.6), we get refined (α,m)-convex function.

Remark 3.4: For h(ı) = ı, m = 1 in (3.6), we get refined α-convex function.

Definition 3.5: ([25], [26]) A function ⊺ on the set I, is exponential kind convex function if,

⊺(ȷ1ı+ (1− ı)ȷ2) ≤ (e(1−ı) − 1) ⊺ (ȷ2) + (eı − 1) ⊺ (ȷ1), (3.7)

∀ȷ1, ȷ2 ∈ I, ı ∈ [0, 1].

We can also define an exponential kind convex mapping ⊺ : [ȷ1, ȷ2] → R for ȷ1 < ȷ2 and ⊺ ∈ L1[ȷ1, ȷ2],

by Hermite-Hadamard kind inequality given below:

1

2(e
1
2 − 1)

⊺

(
ȷ1 + ȷ2

2

)
≤ 1

ȷ2 − ȷ1

∫ ȷ2

ȷ1

⊺(n)dn ≤ (e− 2)[⊺(ȷ1) + ⊺(ȷ2)]. (3.8)

The well-known Riemann-Liouville fractional integral is given below.

Definition 3.6: ([5],[17],[21],[22]) Let ⊺ ∈ L[ȷ1, ȷ2] (⊺ is Riemann-Liouville fractional integrable), we

can define Riemann-Liouville fractional integrals of order r > 0 with 0 ≤ ȷ1,

Ir
ȷ+1

⊺ (v) =
1

Γ(r)

∫ v

ȷ1

(v − n)r−1 ⊺ (n)dn , (v > ȷ1), (3.9)

Ir
ȷ−2

⊺ (v) =
1

Γ(r)

∫ ȷ2

v

(n− v)r−1 ⊺ (n)dn , (v < ȷ2). (3.10)

Theorem 3.1: ([16],[17]) Let ⊺ : [ȷ1, ȷ2] → R be a convex function on [ȷ1, ȷ2] and positive function with

0 ≤ ȷ1 < ȷ2. Also, suppose that, ⊺ ∈ L[ȷ1, ȷ2]. then the following fractional integral inequality holds:

⊺

(
ȷ1 + ȷ2

2

)
≤ Γ(r + 1)

2(ȷ2 − ȷ1)r
[Ir

ȷ+1
⊺ (ȷ2) + Ir

ȷ−2
⊺ (ȷ1)] ≤

⊺(ȷ1) + ⊺(ȷ2)
2

. (3.11)
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3.3 Main Results

First, we will develop our main results using Riemann-Liouville fractional integrals for refined exponential

kind (α,m)-p-Pre-invex mappings given below. Inspired by, exponential kind convexity, pre-invexity and

p-convexity, we define,

Definition 3.7: A function ⊺ : [0, ȷ2] → R on an invex interval [0, ȷ2], according to a vector mapping

η : [0, ȷ2] × [0, ȷ2] → Rn is refined exponential kind p-Pre-invex if, ⊺ is non-negative, and following

inequality holds

⊺

([
ȷp2 + ıη(ȷp1, ȷ

p
2)

] 1
p
)

≤ (eı − 1)(e(1−ı) − 1)[⊺(ȷ1) + ⊺(ȷ2)], (3.12)

∀ ȷ1, ȷ2 ∈ [0, ȷ2], p ∈ R− {0} and ı ∈ (0, 1).

Remark 3.5: Taking p = 1 in (3.12) we get, refined exponential kind Pre-invex function.

Remark 3.6: Taking p = −1 in (3.12) we get, refined exponential kind harmonically Pre-invex function.

Remark 3.7: Taking p = 3 in (3.12) we get, refined exponential kind cubic Pre-invex function.

Inspired by, exponential kind convexity, pre-invexity, α, m and p-convexity, we define,

Definition 3.8: A function ⊺ : [0, ȷ2] → R on the invex set [0, ȷ2], according to a vector mapping

η : [0, ȷ2]× [0, ȷ2] → Rn is refined exponential kind (α,m,p)-Pre-invex if, ⊺ is non-negative, and following

inequality holds

⊺

([
mȷp2 + ıη(ȷp1,mȷ

p
2)

] 1
p
)

≤ (eı
α

− 1)(e(1−ıα) − 1)[⊺(ȷ1) +m ⊺ (ȷ2)], (3.13)

∀ ȷ1, ȷ2 ∈ [0, ȷ2], (α,m) ∈ [0, 1]2, p ∈ R− {0} and ı ∈ (0, 1).

Remark 3.8: Taking α = m = 1 in (3.13) we get, (3.12).

Remark 3.9: Taking α = 1 in (3.13) we get, refined exponential kind (m,p)-Pre-invex mapping.

Remark 3.10: Taking m = 1 in (3.13) we get, refined exponential kind (α,p)-Pre-invex mapping.

Remark 3.11: Taking p = 1 in (3.13) we get, refined exponential kind (α−m) Pre-invex function.

Remark 3.12: Taking p = −1 in (3.13) we get, refined exponential kind harmonically (α−m) Pre-invex

function.

Remark 3.13: Taking p = 3 in (3.13) we get, refined exponential kind cubic (α−m) Pre-invex function.

Remark 3.14: Taking p = α = 1 in (3.13) we get, refined exponential kind (m,p) Pre-invex function.
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Remark 3.15: Taking p = m = 1 in (3.13) we get, refined exponential kind α-Pre-invex mapping.

Theorem 3.2: Let ⊺ : [ȷ1, ȷ2] → R being a non-negative mapping with 0 ≤ ȷ1 < mȷ2 and ⊺ ∈ L1[ȷ1, ȷ2].

Assume that ⊺ being a refined exponential kind (α,m,p)-Pre-invex mapping on [ȷ1, ȷ2] as well. A non-

negative monotone mapping g on (ȷ1, ȷ2] with a continuous derivative g′ on (ȷ1, ȷ2). Then, the fractional

integral inequality below holds for (α,m) ∈ (0, 1]2 and p ∈ R− {0} :

1(
e(1/2α) − 1

)(
e(1−(1/2α)) − 1

) ⊺

([
mȷp2 +

1

2
η(ȷp1,mȷ

p
2)

] 1
p
)

≤ Γ(r + 1)

ηr(mȷp2, ȷ
p
1)

[
Ir,g
g−1(ȷp1)

+(⊺og)

(
g−1(mȷp2)

)
+mr+1Ir,g

g−1(ȷp2)
−(⊺og)

(
g−1(

ȷp1
m
)

)]
≤ rK1

[
⊺ (ȷ1) + 2m ⊺ (ȷ2) +m2 ⊺ (

ȷ1
m2

)

]
, (3.14)

K1 =
er (−1)

r
α Γ

(
r
α , 1

)
+ r Γ

(
r
α ,−1

)
+
(
−er (−1)

r
α − r

)
Γ
(
r
α

)
+ (e + 1)α (−1)

r
α

αr (−1)
r
α

. (3.15)

Proof: From refined exponential kind (α,m,p)-Pre-invexity of ⊺, we get

⊺

([
myp +

1

2
η(xp,myp)

] 1
p
)

≤
(
e(1/2

α) − 1

)(
e(1−(1/2α)) − 1

)
[⊺(x) +m ⊺ (y)],

Substituting,

xp = mȷp2 + ıη(ȷp1,mȷ
p
2) and yp =

ȷp1
m

+ ıη

(
ȷp2,

ȷp1
m

)
,

we get,

⊺

([
mȷp2 +

1

2
η(ȷp1,mȷ

p
2)

] 1
p
)

≤
(
e(1/2

α) − 1

)(
e(1−(1/2α)) − 1

)[
⊺

(
mȷp2 + ıη(ȷp1,mȷ

p
2)

)
+m ⊺

(
ȷp1
m

+ ıη

(
ȷp2,

ȷp1
m

))]
,

Multiplying by ır−1 on both sides, integrating over [0, 1] and using refined exponential kind (α,m,p)-Pre-

invexity of ⊺, we get

⊺

([
mȷp2 +

1

2
η(ȷp1,mȷ

p
2)

] 1
p
)

1(
e(1/2α) − 1

)(
e(1−(1/2α)) − 1

) ∫ 1

0

ır−1dı

≤
∫ 1

0

ır−1

[
⊺

(
mȷp2 + ıη(ȷp1,mȷ

p
2)

)
+m ⊺

(
ȷp1
m

+ ıη

(
ȷp2,

ȷp1
m

))]
dı

≤
[
⊺ (ȷ1) + 2m ⊺ (ȷ2) +m2 ⊺ (

ȷ1
m2

)

] ∫ 1

0

ır−1(eı
α

− 1)(e1−ıα − 1)dı,
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⊺

([
mȷp2 +

1

2
η(ȷp1,mȷ

p
2)

] 1
p
)

1

r

(
e(1/2α) − 1

)(
e(1−(1/2α)) − 1

)
≤
∫ 1

0

ır−1

[
⊺

(
mȷp2 + ıη(ȷp1,mȷ

p
2)

)
+m ⊺

(
ȷp1
m

+ ıη

(
ȷp2,

ȷp1
m

))]
dı

≤ K1

[
⊺ (ȷ1) + 2m ⊺ (ȷ2) +m2 ⊺ (

ȷ1
m2

)

]
,

Substituting,

g(y) = mȷp2 + ıη(ȷp1,mȷ
p
2) and g(z) =

ȷp1
m

+ ıη

(
ȷp2,

ȷp1
m

)
,

We get, respectively

ı =
g(y)−mȷp2
η(ȷp1,mȷ

p
2)

and ı =
g(z)− ȷp1

m

η

(
ȷp2,

ȷp1
m

) ,
Thus, we get

⊺

([
mȷp2 +

1

2
η(ȷp1,mȷ

p
2)

] 1
p
)

1

r

(
e(1/2α) − 1

)(
e(1−(1/2α)) − 1

)
≤ Γ(r)

ηr(mȷp2, ȷ
p
1)

[
Ir,g
g−1(ȷp1)

+(⊺og)

(
g−1(mȷp2)

)
+mr+1Ir,g

g−1(ȷp2)
−(⊺og)

(
g−1(

ȷp1
m
)

)]
≤ K1

[
⊺ (ȷ1) + 2m ⊺ (ȷ2) +m2 ⊺ (

ȷ1
m2

)

]
.

Simplifying, we get the required result.

Corollary 3.1: For g, being identity function, (3.14) becomes,

1(
e(1/2α) − 1

)(
e(1−(1/2α)) − 1

) ⊺

([
mȷp2 +

1

2
η(ȷp1,mȷ

p
2)

] 1
p
)

≤ Γ(r + 1)

ηr(mȷp2, ȷ
p
1)

[
Ir(ȷp1)+

⊺
(
mȷp2

)
+mr+1Ir(ȷp2)−

⊺

(
ȷp1
m

)]
≤ rK1

[
⊺ (ȷ1) + 2m ⊺ (ȷ2) +m2 ⊺ (

ȷ1
m2

)

]
.

Corollary 3.2: Using p = 1 in (3.14), we get the result for refined exponential kind (α,m) Pre-invex

function as follows from (3.15);

1(
e(1/2α) − 1

)(
e(1−(1/2α)) − 1

) ⊺

(
mȷ2 +

1

2
η(ȷ1,mȷ2)

)

≤ Γ(r + 1)

ηr(mȷ2, ȷ1)

[
Ir,gg−1(ȷ1)+

(⊺og)

(
g−1(mȷ2)

)
+mr+1Ir,gg−1(ȷ2)−

(⊺og)

(
g−1(

ȷ1
m
)

)]
≤ rK1

[
⊺ (ȷ1) + 2m ⊺ (ȷ2) +m2 ⊺ (

ȷ1
m2

)

]
.
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Corollary 3.3: Using α = 1 in (3.14), we get the result for refined exponential kind (m,p)-Pre-invex

mapping as follows;

1(
e(1/2) − 1

)2 ⊺

([
mȷp2 +

1

2
η(ȷp1,mȷ

p
2)

] 1
p
)

≤ Γ(r + 1)

ηr(mȷp2, ȷ
p
1)

[
Ir,g
g−1(ȷp1)

+(⊺og)

(
g−1(mȷp2)

)
+mr+1Ir,g

g−1(ȷp2)
−(⊺og)

(
g−1(

ȷp1
m
)

)]
≤ rK1

[
⊺ (ȷ1) + 2m ⊺ (ȷ2) +m2 ⊺ (

ȷ1
m2

)

]
,

K2 =
er (−1)

r
Γ (r, 1) + r Γ (r,−1) + (−er (−1)

r − r) Γ (r) + (e + 1) (−1)
r

r (−1)
r . (3.16)

Corollary 3.4: Using m = 1 in (3.14), we get the result for refined exponential kind (α,p)-Pre-invex

mapping as follows from (3.15);

1(
e(1/2α) − 1

)(
e(1−(1/2α)) − 1

) ⊺

([
ȷp2 +

1

2
η(ȷp1, ȷ

p
2)

] 1
p
)

≤ Γ(r + 1)

ηr(ȷp2, ȷ
p
1)

[
Ir,g
g−1(ȷp1)

+(⊺og)

(
g−1(ȷp2)

)
+ Ir,g

g−1(ȷp2)
−(⊺og)

(
g−1(ȷp1)

)]
≤ 2rK1

[
⊺ (ȷ1) + ⊺(ȷ2)

]
.

Corollary 3.5: Using m = α = 1 in (3.14), we get the result for refined exponential kind p-Pre-invex

mapping as follows from (3.16);

1(
e(1/2) − 1

)2 ⊺

([
ȷp2 +

1

2
η(ȷp1, ȷ

p
2)

] 1
p
)

≤ Γ(r + 1)

ηr(ȷp2, ȷ
p
1)

[
Ir,g
g−1(ȷp1)

+(⊺og)

(
g−1(ȷp2)

)
+ Ir,g

g−1(ȷp2)
−(⊺og)

(
g−1(ȷp1)

)]
≤ 2rK2

[
⊺ (ȷ1) + ⊺(ȷ2)

]
.

Corollary 3.6: Using m = p = 1 in (3.14), we get the result for refined exponential kind α-Pre-invex

mapping as follows from (3.15);

1(
e(1/2α) − 1

)(
e(1−(1/2α)) − 1

) ⊺

([
ȷ2 +

1

2
η(ȷ1, ȷ2)

])

≤ Γ(r + 1)

ηr(ȷ2, ȷ1)

[
Ir,gg−1(ȷ1)+

(⊺og)

(
g−1(ȷ2)

)
+ Ir,gg−1(ȷ2)−

(⊺og)

(
g−1(ȷ1)

)]
≤ 2rK1

[
⊺ (ȷ1) + ⊺(ȷ2)

]
.

Corollary 3.7: Using α = p = 1 in (3.14), we get the result for refined exponential kind m-Pre-invex
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mapping as follows from (3.16);

1(
e(1/2) − 1

)2 ⊺

([
mȷ2 +

1

2
η(ȷ1,mȷ2)

])

≤ Γ(r + 1)

ηr(mȷ2, ȷ1)

[
Ir,gg−1(ȷ1)+

(⊺og)

(
g−1(mȷ2)

)
+mr+1Ir,gg−1(ȷ2)−

(⊺og)

(
g−1(

ȷ1
m
)

)]
≤ rK2

[
⊺ (ȷ1) + 2m ⊺ (ȷ2) +m2 ⊺ (

ȷ1
m2

)

]
.

Corollary 3.8: Using α = p = m = 1 in (3.14), we get the result for refined exponential kind Pre-invex

function as follows from (3.16);

1(
e(1/2) − 1

)2 ⊺

(
ȷ2 +

1

2
η(ȷ1, ȷ2)

)

≤ Γ(r + 1)

ηr(ȷ2, ȷ1)

[
Ir,gg−1(ȷ1)+

(⊺og)

(
g−1(ȷ2)

)
+ Ir,gg−1(ȷ2)−

(⊺og)

(
g−1(ȷ1)

)]
≤ 2rK2

[
⊺ (ȷ1) + ⊺(ȷ2)

]
,

For g, being identity function we get,

1(
e(1/2) − 1

)2 ⊺

(
ȷ2 +

1

2
η(ȷ1, ȷ2)

)
≤ Γ(r + 1)

ηr(ȷ2, ȷ1)

[
Ir
ȷ+1

⊺ (ȷ2) + Ir
ȷ−2

⊺ (ȷ1)

]
≤ 2rK2

[
⊺ (ȷ1) + ⊺(ȷ2)

]
.

3.3.1 k-Generalizations of Hermite-Hadamard inequalities for Refined Expo-

nential kind (α,m)-p-Pre-invex mappings

For the refined exponential kind (α,m)-p-Pre-invex mapping presented in Section 3, we offer k-fractional

versions of Hermite-Hadamard kind inequalities in this section.

Definition 3.9: ([4], [18], [19], [20]) Let ⊺ ∈ L1[ȷ1, ȷ2]. Also let g be an increasing and positive monotone

function on (ȷ1, ȷ2] having a continuous derivative g′ on (ȷ1, ȷ2). The left-sided and right-sided fractional

integrals of a function ⊺ with respect to another function g on [ȷ1, ȷ2] of order r, where R(r) > 0, k > 0,

are defined by

kI
r,g

ȷ+1
⊺ (v) =

1

kΓk(r)

∫ v

ȷ1

g′(n)(g(v)− g(n))((r/k)−1) ⊺ (n)dn , (v > ȷ1), (3.17)

kI
r,g

ȷ−2
⊺ (v) =

1

kΓk(r)

∫ ȷ2

v

g′(n)(g(n)− g(v))((r/k)−1) ⊺ (n)dn , (v < ȷ2), (3.18)
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where,

Γk(r) = k((r/k)−1)Γ

(
r

k

)
=

∫ ∞

o

nr−1e(n
k/k)dn, R(r) > 0. (3.19)

k
−r
k I

(r/k),g

ȷ+1
⊺ (v) =k I

r,g

ȷ+1
⊺ (v). (3.20)

k
−r
k I

(r/k),g

ȷ−2
⊺ (v) =k I

r,g

ȷ−2
⊺ (v). (3.21)

Theorem 3.3: Using the same suppositions as for Theorem (3.14) and for k > 0, we get k-generalized

fractional integral inequality,

1(
e(1/2α) − 1

)(
e(1−(1/2α)) − 1

) ⊺

([
mȷp2 +

1

2
η(ȷp1,mȷ

p
2)

] 1
p
)

≤ Γk(r + k)

ηr/k(mȷp2, ȷ
p
1)

[
kI

r,g
g−1(ȷp1)

+(⊺og)

(
g−1(mȷp2)

)
+m((r/k)+1)

kI
r,g
g−1(ȷp2)

−(⊺og)

(
g−1(

ȷp1
m
)

)]
≤ r

k
K3

[
⊺ (ȷ1) + 2m ⊺ (ȷ2) +m2 ⊺ (

ȷ1
m2

)

]
. (3.22)

K3 =
er (−1)

r
kα Γ

(
r
kα , 1

)
+ r Γ

(
r
kα ,−1

)
+
(
−re (−1)

r
kα − r

)
Γ
(

r
kα

)
+ k (e + 1)α (−1)

r
kα

αr (−1)
r
kα

. (3.23)

Proof: By using r = (r/k) and (3.17-3.21) in (3.14) we get the required result.

Corollary 3.9: For g, being identity function we get from (3.22),

1(
e(1/2α) − 1

)(
e(1−(1/2α)) − 1

) ⊺

([
mȷp2 +

1

2
η(ȷp1,mȷ

p
2)

] 1
p
)

≤ Γk(r + k)

ηr/k(mȷp2, ȷ
p
1)

[
kI

r
(ȷp1)

+ ⊺ (mȷp2) +m((r/k)+1)
kI

r
(ȷp2)

− ⊺
( ȷp1
m

)]
≤ r

k
K3

[
⊺ (ȷ1) + 2m ⊺ (ȷ2) +m2 ⊺ (

ȷ1
m2

)

]
.

Corollary 3.10: Using p = 1 in (3.22), we get the result for refined exponential kind (α,m) Pre-invex

function as follows from (3.23);

1(
e(1/2α) − 1

)(
e(1−(1/2α)) − 1

) ⊺

([
mȷ2 +

1

2
η(ȷ1,mȷ2)

])

≤ Γk(r + k)

ηr/k(mȷ2, ȷ1)

[
kI

r,g
g−1(ȷ1)+

(⊺og)

(
g−1(mȷ2)

)
+m((r/k)+1)

kI
r,g
g−1(ȷ2)−

(⊺og)

(
g−1(

ȷ1
m
)

)]
≤ r

k
K3

[
⊺ (ȷ1) + 2m ⊺ (ȷ2) +m2 ⊺ (

ȷ1
m2

)

]
.

Corollary 3.11: Using α = 1 in (3.22), we get the result for refined exponential kind (m,p)-Pre-invex

mapping as follows;
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1(
e(1/2) − 1

)2 ⊺

([
mȷp2 +

1

2
η(ȷp1,mȷ

p
2)

] 1
p
)

≤ Γk(r + k)

ηr/k(mȷp2, ȷ
p
1)

[
kI

r,g
g−1(ȷp1)

+(⊺og)

(
g−1(mȷp2)

)
+m((r/k)+1)

kI
r,g
g−1(ȷp2)

−(⊺og)

(
g−1(

ȷp1
m
)

)]
≤ r

k
K4

[
⊺ (ȷ1) + 2m ⊺ (ȷ2) +m2 ⊺ (

ȷ1
m2

)

]
,

K4 =
er (−1)

r
k Γ
(
r
k , 1
)
+ r Γ

(
r
k ,−1

)
+
(
−re (−1)

r
k − r

)
Γ
(
r
k

)
+ k (e + 1) (−1)

r
k

r (−1)
r
k

. (3.24)

Corollary 3.12: Using m = 1 in (3.22), we get the result for refined exponential kind (α,p)-Pre-invex

mapping as follows from (3.23);

1(
e(1/2α) − 1

)(
e(1−(1/2α)) − 1

) ⊺

([
ȷp2 +

1

2
η(ȷp1, ȷ

p
2)

] 1
p
)

≤ Γk(r + k)

ηr/k(ȷp2, ȷ
p
1)

[
kI

r,g
g−1(ȷp1)

+(⊺og)

(
g−1(ȷp2)

)
+ kI

r,g
g−1(ȷp2)

−(⊺og)

(
g−1(ȷp1)

)]
≤ 2r

k
K3

[
⊺ (ȷ1) + ⊺(ȷ2)

]
.

Corollary 3.13: Using m = α = 1 in (3.22), we get the result for refined exponential kind p-Pre-invex

mapping as follows from (3.24);

1(
e(1/2) − 1

)2 ⊺

([
ȷp2 +

1

2
η(ȷp1, ȷ

p
2)

] 1
p
)

≤ Γk(r + k)

ηr/k(ȷp2, ȷ
p
1)

[
kI

r,g
g−1(ȷp1)

+(⊺og)

(
g−1(ȷp2)

)
+ kI

r,g
g−1(ȷp2)

−(⊺og)

(
g−1(ȷp1)

)]
≤ 2r

k
K4

[
⊺ (ȷ1) + ⊺(ȷ2)

]
.

Corollary 3.14: Using m = p = 1 in (3.22), we get the result for refined exponential kind α-Pre-invex

mapping as follows from (3.23);

1(
e(1/2α) − 1

)(
e(1−(1/2α)) − 1

) ⊺

([
ȷ2 +

1

2
η(ȷ1, ȷ2)

])

≤ Γk(r + k)

ηr/k(ȷ2, ȷ1)

[
kI

r,g
g−1(ȷ1)+

(⊺og)

(
g−1(ȷ2)

)
+ kI

r,g
g−1(ȷ2)−

(⊺og)

(
g−1(ȷ1)

)]
≤ 2r

k
K3

[
⊺ (ȷ1) + ⊺(ȷ2)

]
.

Corollary 3.15: Using α = p = 1 in (3.22), we get the result for refined exponential kind m-Pre-invex

mapping as follows from (3.24);
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1(
e(1/2) − 1

)2 ⊺

([
mȷ2 +

1

2
η(ȷ1,mȷ2)

])

≤ Γk(r + k)

ηr/k(mȷ2, ȷ1)

[
kI

r,g
g−1(ȷ1)+

(⊺og)

(
g−1(mȷ2)

)
+m((r/k)+1)

kI
r,g
g−1(ȷ2)−

(⊺og)

(
g−1(

ȷ1
m
)

)]
≤ r

k
K4

[
⊺ (ȷ1) + 2m ⊺ (ȷ2) +m2 ⊺ (

ȷ1
m2

)

]
.

Corollary 3.16: Using α = p = m = 1 in (3.22), we get the result for refined exponential kind Pre-invex

function as follows from (3.24);

1(
e(1/2) − 1

)2 ⊺

([
ȷ2 +

1

2
η(ȷ1, ȷ2)

])

≤ Γk(r + k)

ηr/k(ȷ2, ȷ1)

[
kI

r,g
g−1(ȷ1)+

(⊺og)

(
g−1(ȷ2)

)
+ kI

r,g
g−1(ȷ2)−

(⊺og)

(
g−1(ȷ1)

)]
≤ 2r

k
K4

[
⊺ (ȷ1) + ⊺(ȷ2)

]
.

For g, being identity function we get,

1(
e(1/2) − 1

)2 ⊺

([
ȷ2 +

1

2
η(ȷ1, ȷ2)

])

≤ Γk(r + k)

ηr/k(ȷ2, ȷ1)

[
kI

r
(ȷ1)+

⊺
(
b
)
+ kI

r
g−1(ȷ2)−

⊺
(
ȷ1
)]

≤ 2r

k
K4

[
⊺ (ȷ1) + ⊺(ȷ2)

]
.

3.4 Conclusion

Inequalities of Hermite-Hadamard type are broadly discussed in mathematics, as they are applicable

in optimization, physics and engineering. Pre-invex mappings and generalized fractional integrals are

modern mathematical concepts especially applied to solve complex real-life problems in mathematics and

economics. As a modification of convex mappings, Pre-invex mappings are very helpful in optimization,

signal processing, control theory, finance and medicine. We merge ideas of α-preinvex, m-preinvex, p-

preinvex, exponential kind preinvex mappings and introduce a refined class of pre-invex mapping. This

refined exponential kind (α,m, p)-Pre-invex mapping is utilized to establish generalized inequalities for

generalized Riemann-Liouville fractional integrals. For exponential kind (m,p)-Pre-invex, exponential

kind (α,p)-Pre-invex and related mappings, the introduced results give refinements of existing works.

Furthermore, applying a parameter substitution, the k-fractional variants of some inequalities are also

established. We aim to work in this direction, merging interval analysis, fuzzy calculus, quantum calculus,

fractal theory and stochastic processes.
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[16] Sarikaya, M. Z., Set, E., Yaldiz, H., & Başak, N. (2013). Hermite-Hadamard’s inequalities for frac-

tional integrals and related fractional inequalities. Mathematical and Computer Modelling, 57 (9–10),

2403–2407.

[17] Sarikaya, M. Z., & Yildirim, H. (2017). On Hermite-Hadamard type inequalities for Riemann-

Liouville fractional integrals. Miskolc Mathematical Notes, 17 (2), 1049–1059.

[18] Agarwal, P., Jleli, M., & Tomar, M. (2017). Certain Hermite-Hadamard type inequalities via gener-

alized k-fractional integrals. Journal of Inequalities and Applications, 2017, 55.
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Computational Intelligence and Optimization Algorithms

Abdullah†, Madiha Ghamkhar †, Adeeba Fatima † and Asra Ayub †

†Department of Mathematics and Statistics, University of Agriculture, Faisalabad,Pakistan .

Corresponding Author: Madiha Ghamkhar: madiha.ghamkhar@uaf.edu.pk

Abstract: Computational Intelligence (CI) is an example of convergence of artificial in-

telligence, nature-inspired computing and complex mathematical modeling. Development of

adaptive systems is the subject of CI by definition. This article provides a historical overview,

conceptual discussion of CI and the theory of optimization. It explains how principles of adap-

tation, self-organization and robustness allow building intelligent systems that are fault-tolerant

and can scale well. CI deals with the development of systems that can learn and make decisions

in uncertain, nonlinear and high-dimensional settings. The most important natural phenomena

neural networks, fuzzy systems, and evolutionary computation have their own problem-solving

approach. Simultaneously, the optimization theory introduced the mathematical methods of

optimal problems with constraints, both single and multi-objective. It includes linear and non-

linear programming and the gradient-based algorithms, as well as non-convexity and search

spaces that are high dimensional. The more modern methods that are drawing increasing in-

terest are stochastic optimization techniques, multi-objective systems and constraint-handling

heuristics. These technologies have practical applicability which is demonstrated by practical

applications in engineering, finance, healthcare, smart cities and cognitive computing.

Keywords: Neural Network, Fuzzy System, Evolutionary Computation, Gradient-Based Algo-

rithm, Stochastic Optimization Technique.
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4.1 Computational Intelligence

4.1.1 Introduction to Computational Intelligence

Computational Intelligence is an emerging field in modern computer science. It deals with the development

and analysis of systems that can display intelligent behavior. A system will be known as an intelligent

agent if it behaves in an appropriate way given its own situation and goals, exhibits flexibility in dynamic

environments, learns from experience and makes choices of action based upon limited perceptual and

computational resources. It is the scientific purpose of CI to explain the principles that make a possible

intelligent behavior in natural and artificial systems. The main goal of engineering missions is to develop

practical methodologies to construct useful and intelligent artifacts. Having both aims in mind, the

scientific process in CI is highly important and the iteration of designing, implementing and evaluating

the computational systems that perform intelligent tasks. It is the great importance for scientific progress.

4.1.1.1 Definition and Scope of Computational Intelligence

Computational Intelligence is essentially about the way in which systems can be built to behave intelli-

gently in complex environments. [1] studied its relation to the design of intelligent agents that are able

to act appropriately in relevant contexts, be flexible in changing goals, learn through experience and act

rationally under inherent limitations in both perception and computational resources. The method of re-

search lies in empirical science, which is derived from the iterative cycle of designing, building and testing

computational systems that perform tasks are commonly considered to be intelligent agents. Within the

study of general hypotheses of intelligence, study cannot exist without building of machines which go

beyond the imitation of human or organizational behavior and realize the principles behind the intelligent

entities . Nature-inspired techniques are central to this effort. This focus contrasts with symbol-based

artificial intelligence (AI), which consists of purely symbol-based approaches as CI solutions are designed

by using observed and abstract concepts of nature. Beck expressed this view at an early stage by defining

the computationally intelligent system as a system that works with numerical input only and contains

some elements of pattern-recognization and does not require any conventional knowledge. The field has

grown in many different ways since its roots in classical approaches and now uses more modern break-

throughs including deep learning, computational swarm intelligence, approximate reasoning and learning

Bayesian networks.

4.1.1.2 Historical Evolution and Key Milestones

The development of Computational intelligence is a natural expansion of the historical development of

computing in general with the continuing expansion of computational techniques by which people can

understand and control the world around them. In ancient times, the method of computing was performed

by humans with the world-renowned example for prediction of the phenomenon of Halley comet in the
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eighteenth century. Mechanical devices appeared as soon as the slide rule was invented in the seventeenth

century, which resulted in a considerable advanced automation of computations. The introduction of

punch cards to store data was signed on most notably by Herman Hollerith in the 1890, United States

Census and by Emile Baud in telegraph systems significantly enhanced the capabilities of information

processing and storage. In the 1930s, electrical relays were discovered for suitable arithmetic operations,

laying the foundations of electronic computation. The systematic study of machine intelligence came into

the limelight from presentation of the Turing test in the year 1950. Further development of machine

learning and deep learning has considerably expanded in the domain of CI, proving its dynamic and

perpetually changing aspect.

4.1.1.3 Core Principles of Computational Intelligence

CI systems are designed to operate effectively within complex, dynamically changing environments and

this ability derives out of three basic principles namely adaptation, self-organization, and robustness. One

of the central constructs in CI the intelligent agent is characterized by the responsiveness to changing

tasks and environment. Ability to internalize experience and capability to produce adequate decisions in

spite of limitations on perceptions. These are not additional features of extra value to systems which must

operate in real-world environments with problems that are often poorly defined non-linear, time-varying

or stochastic. Where comprehensive knowledge or precise mathematical models are often not feasible.

As an example of a paradigmatic demonstration swarm intelligence is one of the prevailing paradigms

in CI, shows that complex problem-solving may result through decentralized, self-organizing groups of

simple agents with only local crudely beneficial rules. Self -organization produces spontaneously arising

order due to local interactions in the context of positive and negative feedback loops, providing in turn

its own scalability. In such decentralized control system, the decision-making is distributed among the

individual agents build on local information processing and communication. This kind of distributive

architecture inherently increases robustness and fault tolerance because performance of the system does

not decrease as the individual components fail. These emergent effects are successful in displaying higher

intelligence beyond the capability of the individual agents due to the collective behaviors that arise. This

emerging capability is especially significant, it suggests that within CI systems of intelligence is rarely

programmed in a top-down manner but it arises out of emergence of simple elements and therefore imparts

systems with a natural degree of flexibility as well as the capability to solve problems in unanticipated

ways that are not specified by the human programmer. In its turn, adaptation of CI systems to react

the possible environmental or contextual changes by adjusting their own behavior and maintaining the

possibility of effective functioning in a changing environment. This is closely linked with the ability

of the system to learn, generalize, abstract, discover and associate which is a faculty that enables the

system to use environment-specific behavior change. Adaptation, self-organization and robustness are

mutually dependent. It will form a basic framework of successful problem-solving in real-life complex

and unpredictable tasks. The concepts of adaptation helps to make sense of dynamic environments and
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adaptations to provide the structural foundation of responses which are decentralized and flexible but in

turn facilitate robustness of failures and scalability in complex systems. This synergistic correlation makes

Computational Intelligence (CI) especially for the values of ill-defined problems. Since it incorporate a

natural coping capability that allows systems to run in the face of partial information or imperfect models.

The interconnection between fields of CI, Artificial Intelligence (AI) and Machine Learning (ML) with

a significant methodological and applications overlap are observed. AI encompasses the general task of

creating machines that can behave intelligently. ML and CI techniques play a central role in this field

as important techniques and working tools. [2] defined ML as a specifically fundamental area of AI,

which is interested in making systems able to understand data and then generate predictions based on

the information without explicit programming. CI sometimes creates an ambiguity in the distinction

between two related fields. CI is a sub-field of AI that comprises both ML and adaptive techniques such

as neural networks, fuzzy systems and evolutionary computation.

4.1.2 Foundational Paradigms of Computational Intelligence

Computational Intelligence is built upon several foundational paradigms. Each offering distinct ap-

proaches to problem-solving inspired by natural processes. These include Neural Networks, Fuzzy Systems

and Evolutionary Computation. Each paradigm contributes unique mechanisms for learning, adaptation

and optimization. Collectively enabling CI to address complex challenges in diverse domains.

4.1.2.1 Neural Networks

Neural Network’s mathematical models used for approximate complex, non-linear functions [3]. These

are combined layers of nodes where each node performs a weighted summation of its inputs followed by

a non-linear activation function. From a mathematical standpoint a neural network can be viewed as a

composition of functions, optimization to minimize the error between predicted and actual outputs. The

basic structure includes x = [x1, x2, ..., xn], where each node computes

z
(l)
j =

∑
i

w
(l)
ji a

(l−1)
i + b

(l)
j ,

a
(l)
j = σ(z

(l)
j ).

where w
(l)
ji , are weights and b

(l)
j , are bases and σ, is an activation function.

4.1.2.2 Fuzzy Systems

Fuzzy Systems represent a paradigm within Computational Intelligence that excels at handling imprecise,

uncertain and incomplete information, a common characteristic of real-world problems [4]. Fuzzy logic is

built upon the concept of fuzzy sets, where the membership of an object to a set is not sharply defined
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but typically by a real number between 0 and 1.

µA(X) : X → [0, 1].

These systems are widely applied in control systems, decision-making processes and pattern recogni-

tion. The use of linguistic variables whose values are words or sentences rather than numbers are funda-

mental concept of approximate reasoning in fuzzy logic. A collection of IF-THEN rules are expressed as

linguistic statements that describe the relationships between inputs and outputs.

If-Then rules:

Ri : IF x1 is Ai
1 AND x2 is Ai

2 . . . AND xn is Ai
n THEN y is Bi.

Where:

• Ri = the ith fuzzy rule.

• Ai
j = fuzzy set for the jth input variable in rule i.

• Bi = fuzzy set for the output in rule i.

The Inference Engine processes the fuzzified inputs using these rules, applying fuzzy logic operations to

generate fuzzy outputs

y∗ =

∫
y · µ(y)dy∫
µ(y)dy

.

This allows for a direct computational representation of semantic meaning and human-centric descrip-

tions, facilitating easier knowledge acquisition from human experts and creating systems that are more

intuitive for human interaction and interpretation. The ability of fuzzy logic is to bridge the gap between

human cognition and computational models by embracing uncertainty and imprecision. It highlights the

unique strength in addressing problems where qualitative human expertise is paramount [5, 6].

4.1.2.3 Evolutionary Computation

Evolutionary Computation (EC) is a family of metaheuristic algorithms designed to perform optimization

and problem solving that are based in part on the paradigm of biological evolution. The principle of

natural selection was proposed by Charles Darwin. As iteration procedures acting on a set of candidate

solutions such algorithms presented as a population-based search process [7]. The power of EC lies in

being able to model the key evolutionary processes of variation, selection and inheritance in ways that

are computationally feasible and to apply them for a vast general-purpose array of tasks often with little

apparent [8, 9].
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4.2 Optimization Algorithms

Optimization algorithms are essential tools in various disciplines of science and engineering providing

step-by-step effective methods to find optimal solutions satisfying a set of definite constraints. At its

core, optimization boils down to picking an option that can produce the most desirable output at the

lowest possible cost or give the utmost performance by maximizing what is wanted and minimizing what

is unwanted. Although the end goal of the process is an optimal or optimum solution, it is often true

that the intricacy of real world problems inevitably require the use of a diverse set of algorithms.

4.2.1 Problem Formulation in Optimization

The effectiveness of optimization methods always depends on how accurate the underlying mathemat-

ical description of the problem is, and this invariably consists of three main parts: objective function,

the decision variables and constraints. The objective function gives the mathematical expression of the

optimization goal and may be either linear or nonlinear depending on the nature of the problem.

Minimize/Maximize:

f(x̃).

Where x̃ = [x̃1, x̃2, ..., x̃n] ∈ Rn, are variables. Depending on the problem:

• If linear

f(x̃) = cT x̃.

• If non-linear

f(x̃) = x̃TQx̃+ cT x̃.

Decision variables are the unknown real variables whose value the algorithm uses to achieve the

objective. These variables exist in certain domain, which can be discrete, or continuous. Represented

as a vector x̃ ∈ Rn, where each component x̃i, lies within a domain. x̃i ∈ [ai, bi], or x̃i ∈ Z, if discrete.

Constraints refers to the set of equalities or inequalities that determine ranges of permissible values of

decision variables and is often interpreted as the set of values that are permitted solutions thus defining

a subspace of admissible solution, known as a feasible region.

• Equality Constraints

hj(x̃) = 0, j = 1, 2, 3, .., q.

• Inequality Constraints

gk(x̃) ≤ 0, k = 1, 2, , .., n.

Constraints are often thought to represent physical bounds, available resources, performance requirements

or a design specification. An optimization problem is said to either be feasible, infeasible or unbounded;

most real-life problems are feasible, whereas infeasible or unbounded solutions are often indicative of
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an incomplete model [10]. The structure of optimization problem has a strong effect on the efficiency

of the algorithm of its solution. In constraint optimization problems (COPs), the feasibility region and

its resolvent often span titanic dimensions by constraining the spread across objective and constraint

variables. However, extremely efficient constraint propagation may accelerate the progress by establishing

promptly whether a solution can possibly pass the constraints which confirms that an insoluble chore can

be rendered solvable by a well-designed formulation and ill-structured formulation can obstruct even the

best algorithms.

Minimize:

f(z).

Subject to:

hj(z) = 0, j = 1, 2, 3, .., p.

gk(z) ≤ 0, k = 1, 2, , ..,m.

The efficient performance of learning systems is also closely intertwined with the careful selection and

tuning of hyperparameters. These parameters are decided on before the learning process, and directly

determine convergence, avoidance of overfitting and underfitting, and the ability of the learned model

to generalize to new data. As such, their impact points to the importance of hyperparameter tuning as

central to achieving effective optimization.

4.2.2 Classical Optimization Techniques

The essence of modern numerical optimization techniques are developed as derivatives of calculus. The

main application of these analytical methods minimized nonlinear functions that give assumptions about

the functions under consideration are continuous and twice differentiable. It can find solutions by equating

the gradient of the objective function to zero for finding local minima, local maxima or saddle points.

4.2.2.1 Gradient-Based Methods

Gradient-based optimization is guided by continual feedback with the gradient vector that indicates the

direction of greatest decrease in the objective landscape [11]. The algorithm usually starts at a random

point and iteratively improves solutions by increasingly small steps in the direction until a local optimum

is reached or some pre-specified criteria have been attained.

x̃(k+1) = x̃(k) − αk · ▽f(x̃(k)).

Where ▽f, is the gradient and αk, is the learning rate (step size).

These are particularly efficient and effective when the objective function is smooth, convex and

differentiable. However, gradient-based techniques are sensitive for the factors such as noise in the function
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after choosing step size and the initial starting point. A significant limitation is their susceptibility to

getting trapped at saddle points or local optima. It can prevent them from finding the global optimum.

Gradient-based methods are key components of neural network training, where they play a crucial role

in minimizing loss functions and improving model accuracy.

4.2.2.2 Gradient Descent and Newton-Raphson Optimization

Two prominent gradient-based optimization methods are Gradient Descent and Newton’s Method. Each

offering distinct approaches to navigating the optimization landscape. Gradient Descent also known as the

most intuitive optimization method. Firstly, Augustin-Louis Cauchy proposed in 1847. Its main concept

was to continuously move in the reverse direction of gradient of the function at current position. The

iterative update rule is typically expressed as

˜̇x(k+1) = ˜̇x(k) − α · ▽f(˜̇x(k)).

The choice of α, is a critical step size that is too small can lead to very slow convergence, while one

that is too large risks overshooting the minimum and causing divergence. While simple to implement

and guaranteed to converge for a local minimum under conditions of convexity and continuity. Classical

gradient descent can be extremely slow in practice. Stochastic Gradient Descent (SGD) is a widely used

variant that updates parameters by using only a small subset of the data that make it more computa-

tionally effectual for large datasets and a cornerstone for training deep neural networks. Enhancements

like Momentum further improve SGD’s performance by enabling the algorithm to navigate flat areas and

noisy gradients more effectively.

v(k+1) = βv(k) − αk · ▽f(˜̇x(k)),

˜̇x(k+1) = ˜̇x(k) − v(k+1).

where β, is the momentum coefficient. Newton’s Method is a classical optimization technique that

leverages higher-order information about the objective function’s curvature to achieve faster convergence.

Unlike gradient descent, which only uses the first derivative, Newton’s method utilizes the second deriva-

tive to take a more direct path towards the minimum. The method aims to find the roots of the objective

function’s derivative which correspond to its critical points. Geometrically, at each iteration, Newton’s

method fits a parabola for graph of function at present spot, matching its slope and curvature, and then

moves to the minimum of that approximating parabola. The iterative update rule in higher dimensions

is

x(k+1) = x(k) − [▽2f(x(k))]−1▽ f(x(k)).

where ▽f, is the gradient and ▽2 f, is the Hessian matrix.

While Newton’s method can converge quadratically fast when close to the optimum, its practical

application is often limited by the computational expense of calculating and inverting the Hessian matrix,
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especially in high-dimensional problems. Furthermore, it may not always converge or can converge to a

saddle point instead of a true minimum. Quasi-Newton methods address the computational burden by

approximating the Hessian or its inverse, making these methods more practical for larger-scale problems.

Hk+1 = Hk +
yky

T
k

yTk sk
− Hksks

T
kHk

sTkHksk
.

Where

• sk = ˜̇x(k+1) − ˜̇x(k).

• yk = ▽f(˜̇x(k+1))−▽f(˜̇x(k)).

4.2.3 Linear Programming and Nonlinear Programming

Optimization problems was categorized on the base of linearity of their objective functions and con-

straints, leading to the distinct fields of Linear Programming (LP) and Nonlinear Programming (NLP)

[12]. Linear Programming (LP) is a mathematical method which is used to gain best possible outcome in

situations where all requirements and the objective function are represented by linear relationships. In

LP objective function is linear and constraints are system of linear equalities or inequalities. A standard

form for LP problems involves

Minimize or Maximize:

Z = cTx.

Subject to:

Ax = b, x ≥ 0.

Where c, and b, are given vectors, and A, is a given matrix. Various problem formulations can be

converted into this standard form by using these techniques. LP is widely applied in diverse fields such as

business, economics and engineering. Particularly in areas like transportation, energy and manufacturing

for planning, routing, scheduling and resource allocation. Historically, LP has profoundly influenced core

concepts in optimization theory, including duality and the significance of convexity. Common solution

methods include the simplex method and more recent interior point methods. Nonlinear Programming

(NLP) addresses optimization problems where at least one of the objective function or the constraint is

nonlinear. This sub-field of mathematical optimization deals with calculating the extrema of nonlinear

objective function for a set of unknown real variables.

Minimize:

f(x̃).

subject to:

gi(x̃) ≤ 0,
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hj(x̃) = 0.

where:

• f(x̃), is a nonlinear objective function.

• gi(x̃), are non linear inequality constraints.

• hj(x̃), are nonlinear equality constraints.

NLP problems are significantly more difficult than LP problems for their non-linear nature that made

it a challenge to find the global optimum.

Special cases of NLP include:

4.2.3.1 Convex Programming

If the objective function is convex or concave and the constraint set is convex, general methods from

convex optimization can often be applied

min
x∈Rn

f(x1),

gi(x1) ≤ 0, i = 1, 2, , .., n.

hj(x1) = 0, j = 1, 2, 3, .., p.

where all gi, are convex and hj , are affine.

4.2.3.2 Quadratic Programming

Involves a quadratic objective function subject to linear constraints.

min
x∈Rn

1

2
ẋTQẋ+ cT ẋ.

where Q ∈ Rn×n, is positive semi-definite and c ∈ Rn.

Aẋ ≤ b, Aeqẋ = beq.

Where A ∈ Rn×m, and b ∈ Rm.

£(ẋ, λ) =
1

2
ẋTQẋ+ cT ẋ+ λT (Aẋ− b),

f(λẋ+ (1− λ)f(y)) ≤ λf(ẋ+ (1− λ)f(y)),

∀ẋ, y ∈ C and λ ∈ [0, 1].
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4.2.3.3 Fractional Programming

Fractional programming deals with optimization problems in which the objective function is expressed

as the ratio of a concave numerator and a convex denominator. Formally, the problem can be written as:

Objective function

max
x∈X

f(x)

g(x)
.

Where f(x), is concave and g(x), is convex.

Transform using Dinkelbach’s Method:

At iteration k, the problem is formulated as

xk = argmax
x∈X

[f(x)− λ(k)g(x)],

with the update rule

λ(k+1) =
f(x(k))

g(x(k))
.

The iterations are repeated until f(x(k))−λ(k)g(x(k)) < ϵ, is satisfied. This formulation can be transformed

into convex optimization problems under certain conditions. For NLP problems, necessary conditions are

provided the Karush-Kuhn-Tucker (KKT) conditions for optimal solution and convexity. These conditions

are also sufficient for a global optimum. However, solving KKT conditions analytically is often difficult.

These methods typically start with an initial point and iteratively move towards a better solution by using

update rules that can be zero-order, first-order or second-order. The presence of many local optima in

non-convex NLP problems remains a significant challenge, often requiring sophisticated search strategies

or multiple restarts to increase the likelihood of finding a good solution.

4.2.4 Challenges in Complex Optimization

Optimizing complex systems particularly in fields like deep learning present significant challenges that

often render traditional optimization techniques ineffective. These challenges primarily stem from the

inherent characteristics of the optimization objectives and the scale of the problems involved. One of the

most pervasive challenges is non-convexity, unlike convex optimization problems, where any local mini-

mum is also a global minimum but non-convex problems feature a loss landscape riddled with numerous

local minima, saddle points and flat regions. Local minima are points where the loss function has a lower

value than surrounding points but not the absolute lowest possible value. Optimization algorithms can

easily converge to these suboptimal solutions, leading to models that perform below their potential. Sad-

dle points are points where the gradient is zero and the function curves upwards in some directions and

downwards in others.

Algorithms can get stalled at saddle points, hindering further progress towards better solutions. Flat
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regions are areas where the gradient is nearly zero due to extremely slow progress in optimization. Algo-

rithms can struggle to escape these regions, significantly prolonging the training process. These problems

are further compounded by the high dimensionality of modern deep learning models. Neural networks

may have billions of parameters distributed over many layers. Such high dimensionality exponentially

grows the number of possible local minima and saddle points, which makes the optimization process

much more cumbersome. An additional parameter brings more degrees of freedom and traps which make

the task of finding the global optimum even more challenging. Deep learning models have very non-linear

and complex loss landscapes because of their complex architectures, which conventional optimization

approaches find it difficult to explore efficiently.

The second-order optimization methods scales quadratically in the number of parameters, which

makes it computationally infeasible to be computed in large deep learning models. Gradient descent

itself even in a plain form may be computationally expensive in large-scale tasks and perform a complete

pass of the training data with each gradient update. The size of current neural networks alone makes

them computationally and memory-demanding, making most of the classic or even advanced optimization

methods infeasible.

In addition to these structural and dimensional issues, there are also some issues of theoretical guar-

antees on complex optimization problems. Convergence to a global minimum is not guaranteed and

algorithms may converge to sub optimal solutions. Moreover, the real-time adaptation in dynamic situa-

tions is a major challenge because systems must be able to quickly react to various conditions, which may

be computationally demanding. The sensitivity of these algorithms to parameter tuning is also very high

and the task of selecting and setting these parameters to best suit performance of the algorithm is in itself

a complicated problem. Lastly, a large number of real-life optimization problems fall into the NP-hard

category, which means that the exact solutions cannot be found in a reasonable time, and heuristic or

approximate algorithms are to be used instead.

4.2.5 Stochastic Optimization Techniques

Stochastic optimization techniques are iterative methods that are used for random sampling to approxi-

mate and optimization of complex objective functions. These techniques are valuable when dealing with

large-scale problems or noisy data where traditional methods are computationally expensive. These algo-

rithms can efficiently escape local minima and converge to a good enough solution. Its common examples

are Stochastic Gradient Descent (SGD) and evolutionary algorithms.

4.2.6 Advanced Optimization Techniques

The classical optimization algorithms, typically based on relatively straightforward and constrained prob-

lems, are quite problematic on the large scale and non-convex settings prevalent in modern data-intensive

tasks. A number of more boundary paradigms have been proposed in the domain of Computational Intel-
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ligence, which utilizes nature-inspired insights or innovative mathematical designs to explore complicated

search spaces. Let the optimization problem be defined as:

Minimize

f(x̂).

Subject to

x̂ ∈ X ⊆ Rn.

Where

• f(x), is non convex objective function.

• x̂, is a vector of decision variables.

• X, represents the feasible search space.

These algorithms use population-based heuristics, nature-inspired metaheuristics, or surrogate models

to handle non-convexity, non-linearity, and multi-modality in f(x).

4.3 High-Dimensional Optimization and Dimensionality Reduc-

tion Techniques

Most recent data-driven fields are regularly faced with a problem of high-dimensional optimization where

a multivariate dataset has a significant number of features or variables. This phenomenon is referred to

as the curse of dimensionality which contributes to the increment of computational complexity, sparsity,

and the difficulties in model performance, often leading to overfitting. To eliminate these constraints,

dimensionality reduction is applied to map the data into a reduced and lower-dimensional data space but

without sacrificing the attributes and data information. The benefits of such methods are diverse. They

usually consist of two steps. Firstly, Identify and retain the most important variables from the original

dataset.

Select subset

S ⊆ x1, x2, ..., xn.

such that relevance(S) is maximized and redundancy(S) is minimized. Then create new lower-dimensional

variables by combining or transforming the original ones. A common method is Principal Component

Analysis (PCA):

Given a data matrix

X ∈ Rm×n.

compute its covariance matrix:

Σ = (
1

m
)XTX.
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Then compute the eigenvectors v1, v2, ...vk, corresponding to the k, largest eigen values λ1, λ2, ..., λk,

and project:

Z = X · [v1, v2, ...vk].

This transformation preserves variance and reduces dimensionality from n, to k, where k < n. Studies

also show that dimensionality reduction algorithms can optimize or maintain classification results and at

the same time reduce the computational load e.g. by decreasing the number of needed evaluations, hence

their usefulness in those areas where the efficiency is a key factor yet they need the proper precision.

4.3.1 Constraint Handling Techniques

A lot of optimization problems encountered in the real world, especially when it comes to engineering

design, are non-linear by their nature and have a number of constraints. These constraints either reflect

physical constraints, the maximum allowable values or design space constraints. These constraints make

the optimization process much more difficult, since solutions need not only optimize the objective function,

but also meet all the set conditions. To allow population-based metaheuristics to efficiently traverse such

constrained search spaces, Constraint Handling Techniques (CHTs) have been developed to restrict the

search to the feasible domain. Probably the most widely used and general CHT is the penalty function

method. A penalty term is introduced to the objective function in a way that when one or more constraints

are not met a large penalty is imposed, but when all the constraints are met no penalty is imposed.

Minimize

f(x).

subject to

g(x) ≤ 0.

A modified function fpen(x) = f(x) + α ·max(0, g(x))k,could be used.

where α, is a positive penalty parameter and k, is an exponent.

For equality constraints,

fpen(x) = f(x) + β · (h(x))k.

The process typically involves minimizing f̃(x), with an initial set of penalty parameters. [13] In-

creased these parameters and used the previous solution as a starting point for the next minimization.

While increasing the penalty parameters improves the accuracy with which constraints are enforced, it

also tends to slow down the convergence of the unconstrained algorithm, as the modified function can

develop very large gradients, making the search more challenging.

lim
α→∞

xα = ẋ∗.

Where ẋ∗,is a solution to the original constrained problem. Theoretically, under appropriate assump-
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tions, as the penalty parameters are increased without bound, any convergent subsequence of solutions

to the unconstrained penalized problems will converge to a solution of the original constrained problem.

This highlights a trade-off between solution precision and computational efficiency in penalty function

methods. Other CHTs don’t provide materials in detailed. It often involve specialized feasibility rules or

multi-objective approaches that treat constraint violation as a separate objective to be minimized.

4.3.2 Parallel and Distributed Optimization Algorithms

The increasing complexity and scale of modern optimization problems, particularly in areas like deep

learning and large-scale machine learning, necessitate computational approaches that can transcend the

limitations of single-processor systems. Parallel and distributed optimization algorithms are designed to

address these challenges by leveraging multiple computing resources to accelerate the search for optimal

solutions. These paradigms are crucial for handling high computational demands, improving scalability

and addressing privacy concerns associated with large datasets and models. The fundamental aim of these

algorithms is to achieve global optimization by intelligently coordinating synchronization and data flow

across a network of heterogeneous architectures. For an individual xi, in the population

P = x1, x2, ..., xn,

F itness(xi) = f(xi).

Where f(x), is the objective function. A key design principle involves strictly separating the structure

of an algorithm from its executed functions, often utilizing a hierarchical decomposition of parallel design

patterns, such as an Abstract Pattern Tree (APT), as well-established building blocks for algorithmic

structures.

F : APT → R.

The optimization goal:

max
APT∈ς

F (APT ).

Where ς, is the set of all possible abstract pattern trees within a given depth. Parallel computing

in optimization involves distributing computational tasks across multiple processors or cores that work

simultaneously. This approach is particularly beneficial for algorithms that can be naturally decomposed

into independent subtasks such as the fitness evaluation of individuals in population-based metaheuristics.

Graphics Processing Units (GPUs), with their massive parallel processing capabilities, have become

essential hardware accelerators for executing AI-based computational workloads, enabling significant

speedups in training deep neural networks and other computationally intensive tasks. Parallelization

can save computing time by allowing direct database calls or modifying memory operations in function

libraries. Distributed optimization extends this concept across networked machines, where data and

4.3 High-Dimensional Optimization and Dimensionality Reduction Techniques 83



Ptolemy Scientific Research Press https://pisrt.org/

computations are spread across multiple nodes.

N = N1, N2, N3, ..., Nn,

f(x) = f1(x) + f2(x) + f3(x) + ...+ fk(x).

Where:

• x, is the global variable.

• f(x), is the local objective function.

• N, is the total number of nodes.

This approach is often based on probabilistic and mathematical statistical rules, allowing for the

prediction of local optimal solutions within specific timeframes. In large-scale parallelization, resource

allocation strategies are employed to ensure similarity and overlap between the numbers of samples ob-

tained across different computing units. Despite their advantages, parallel and distributed optimization

algorithms face challenges. Optimal utilization of parallelism across instruction, routine (local), and al-

gorithm (global) levels requires significant expert knowledge. However, frameworks that abstract parallel

algorithms into global, structural representations can enable automatic hardware mapping and global op-

timizations. Studies have demonstrated that these methods can achieve significant speedups in estimated

and measured runtime costs, ranging from 1.42 to 3.08 times, by applying complex transformations that

utilize specific hardware characteristics. This underscores their role in enhancing developer productivity

and promoting performance portability for complex optimization problems.

4.3.3 Multi-Objective Optimization

Multi-objective optimization (MOO)is also known as Pareto optimization is that mathematical optimiza-

tion problems that involve two or more than two objective functions.

min
x∈Rn

f(x̃) = [f1(x̃), f2(x̃), f3(x̃), ..., fk(x̃)].

Subject to:

gi(x̃) ≤ 0,

hj(x̃) = 0.

Where:

• f1(x̃), f2(x̃), f3(x̃), ..., fk(x̃), are multiple objective functions.

• gi(x̃), and hj(x̃),are the constraints.
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Real-life settings often have these goals competing with each other. This means that in most cases,

there is no solution that will optimize the goals simultaneously. The main aim of MOO is not to get one

optimal solution but also a set of representative Pareto optimal solutions. A solution is Pareto optimal

if no one objective function can make better off without at the same time worsening at least one of the

other objective values.

There may be a potentially infinite number of such Pareto optimal solutions when no further subjec-

tive preference information is available to a human decision-maker and all are considered equally good

mathematically. The set of these Pareto optimal outcomes is referred to as the Pareto front, Pareto fron-

tier or Pareto boundary. It is bounded by the upper bounds and lower bounds of the objective functions

of Pareto optimal solutions. Evolutionary algorithms (EAs) are now a common and widely successful

way of solving MOO problems due to the ability of evolutionary algorithms to search difficult search

spaces and deal with multiple and conflicting objectives. Two well known multi-objective evolutionary

algorithms (MOEAs) are:

fi(x) ≤ fi(x̃
∗), ∀i.

fj(x) ≤ fj(x̃
∗), for some j.

There may be a potentially infinite number of such Pareto optimal solutions when no further subjective

preference information is available to a human decision-maker and all are considered equally good math-

ematically. The set of these Pareto optimal outcomes is referred to as the Pareto front, Pareto frontier or

Pareto boundary. It is bounded by the nadir objective vector (or upper bounds) and an ideal objective

vector (or lower bounds) of the objective functions of Pareto optimal solutions. Evolutionary algorithms

(EAs) are now a common and widely successful way of solving MOO problems due to the ability of evo-

lutionary algorithms to search difficult search spaces and deal with multiple and conflicting objectives.

Two well known multi-objective evolutionary algorithms (MOEAs) are:

4.3.3.1 Non-Dominated Sorting Genetic Algorithm II (NSGA-II)

It is one of the most popular MOEAs. [14] used non dominated sorting to rank the solutions according

to Pareto dominance. The solutions that are not dominated by any other solution are placed in the first

rank, then they are eliminated and the procedure is repeated with the remaining solutions. A crowding

distance assignment is also used in NSGA-II in order to ensure that solutions on the same Pareto front are

diverse, encouraging a good spread of optimal solutions. Crowding distance is a measure of the distance

between solutions in the objective space. It is used in NSGA-II to ensure that solutions within a front

are diverse. This is calculated by:

Crowding Distance(x) =

m∑
i=1

fi(xi + 1)− fi(xi − 1)

fmax(i)− fmin(i)
.

Where
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• fi(xi + 1), and fi(xi − 1), are the values of the objective function for the neighboring solutions.

• fmax(i), and fmin(i), are the maximum and minimum values of theith objective in the current popu-

lation.

4.3.3.2 MOEA/D

This algorithm explicitly decomposes a multi-objective optimization problem into numbers of scalar

optimization subproblems and then solved simultaneously by evolving a population of solutions.

min
x∈Rn

m∑
i=1

λifi(x).

Each sub problem is associated with a specific weight vector and neighborhood relations among these

sub problems are defined based on the distances between their aggregation coefficient vectors. Each

subproblem is defined as:

gte(x|λ(i), z∗) = min
1≤j≤M

λ
(i)
j |fj(x)− z∗j |.

Where

• λ(i), is weight vector for sub problem.

• z∗, is an ideal point.

MOEA/D often demonstrates lower computational complexity per generation compared to NSGA-II

and can effectively handle issues like fitness assignment and diversity maintenance. Examples include min-

imizing power loss and cost in advanced power systems or balancing weight and efficiency in aerodynamic

shape optimization. A significant challenge in large-scale MOO is used particularly for high-dimensional

decision variables and for maintaining of both convergence and diversity.

4.4 Real-World Applications of Computational Intelligence and

Optimization

Computational Intelligence (CI) and optimization algorithms have transcended theoretical research to

become indispensable tools across a myriad of real-world applications. Their ability to handle complex,

non-linear and uncertain data, coupled with their adaptive and self-organizing capabilities, makes them

uniquely suited to solve problems that defy traditional analytical methods. This section explores their

transformative impact across various critical domains.

4.4.1 Engineering Design and Structural Optimization

A significant application is Aerodynamic Shape Optimization (ASO). It is crucial for improving the

aerodynamic performance of aircraft. ASO typically combines Computational Fluid Dynamics (CFD)
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simulations with numerical optimization algorithms. Both gradient-based methods and gradient-free op-

timization approaches are employed. Recent advancements integrate ML technologies to enhance ASO

capabilities, particularly in improving the accuracy of end-to-end aerodynamic modeling for rapid predic-

tion of objective functions. For instance, unsupervised isometric feature mapping from manifold learning

can capture geometric features that correlate with aerodynamic performance. It allows for the filtering

out of poor-performing airfoil shapes before computationally intensive CFD simulations for improving

optimization efficiency by over 50 percent compared to original evolutionary algorithms.

4.4.2 Finance

. The finance sector is undergoing a significant transformation driven by the integration of Machine

Learning (ML) and Computational Intelligence (CI) techniques in the area of portfolio optimization,

risk management and algorithmic trading. These revolutionary computational technologies simplify, op-

timize and enhance financial operations. It can improves decision-making, fraud detection, efficiency and

tailored customer service. Portfolio Optimization is a cornerstone of investment management due to con-

struct a portfolio that maximizes returns while simultaneously minimizing risk. Traditional methods,

such as Markowitz’s mean-variance optimization often prove insufficient in dynamic and complex mar-

ket environments. ML algorithms include reinforcement learning, support vector machines and genetic

algorithms. Which are increasingly employed to dynamically adjust asset allocations based on real-time

market conditions and predictive analytics. The application of CI and optimization in finance not only

automates routine tasks, reducing human error and freeing employees for strategic projects, but also pro-

cesses vast amounts of data to provide insights for better financial planning and investment strategies.

This transformation is estimated to contribute significantly to global banking profits through productivity

gains.

4.4.3 Smart Cities

Smart cities leverage advanced computational intelligence and optimization techniques to enhance urban

living in critical infrastructure domains like traffic management and energy grid optimization. The goal

is to create more sustainable, efficient and adaptive urban environments that improve the quality of life

for residents. In Traffic Management, smart cities utilize sophisticated systems to address congestion

and optimize urban mobility. Traditional traffic control systems often struggle with increasing urban

populations and vehicle volumes, necessitating advanced technological interventions. The integration of

big data analytics, real-time data processing, machine learning algorithms, sensor data and predictive

models is crucial for enhancing traffic flow and overall transportation efficiency. Real-time adaptive signal

control has demonstrated significant reductions in travel times by achieving 15-25 Percent improvements

in high-traffic areas. Fuzzy logic-based energy management systems are proving effective in incorporat-

ing renewable energy sources into smart grids. These systems can adjust control actions in real-time to
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accommodate fluctuations in renewable energy generation, changes in consumption patterns and varia-

tions in battery storage status. [15] applied advanced deep learning algorithms to optimize overall energy

usage in smart cities. leveraging massive datasets to predict energy demand and enable dynamic load

balancing by reducing waste and promoting energy-efficient urban environments [16]. These applications

underscore the critical role of CI and optimization in building resilient, efficient, and sustainable urban

infrastructures.

4.5 Emerging Trends and Future Directions

The field of Computational Intelligence (CI) and optimization is in a state of continuous evolution, driven

by advancements in underlying technologies and the increasing complexity of real-world problems. Several

key trends are shaping the future of this domain, promising more sophisticated, efficient, and ethically

responsible intelligent systems. The increasing reliance on complex deep learning models necessitates

advancements in hardware accelerators, with GPUs and FPGAs becoming essential for achieving low-

latency, energy-efficient inference, especially in edge applications. A notable shift in research focus is

moving beyond more architectural innovations to emphasize the fundamental bottleneck of AI: data

quality and efficiency, recognizing that the internet’s vast data resources have been pivotal for scaling

AI models. The growing complexity and impact of AI systems underscore the critical importance of

Explainable AI (XAI). XAI aims to provide interpretability and transparency in AI models, fostering trust

and confidence in their predictions and decisions. Techniques like SHAP (Shapley Additive Explanations)

and LIME, along with rule-based models, offer insights into the decision-making process of black-box in AI

systems. While XAI introduces computational overhead and presents a trade-off between interpretability

and accuracy, future research will explore hybrid models and real-time XAI to enhance unstably and

reliability in high-stakes environments like cybersecurity, finance and healthcare .The quest for more

efficient problem-solving methodologies had led to the exploration of Quantum-Inspired Optimization

Algorithms (QIAs) [17]. These algorithms mimic the principles of quantum computing but run on classical

hardware, offering significant performance improvements over traditional methods and serving as a bridge

between classical and quantum computing paradigms. QIAs leverage quantum mechanics concepts to

efficiently explore vast solution spaces and escape local optima to find applications in hyper-parameter

tuning, route optimization, resource allocation in logistics and drug discovery. Despite challenges related

to scalability for extremely complex problems, QIAs represent a promising avenue for revolutionizing AI

optimization.

4.6 Discussion of Limitations

However, it is crucial to discuss the limitations of the criteria and methodologies presented.
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• Sensitivity to Parameters and Hyperparameters: The performance of many CI algorithms in

metaheuristics and deep learning models is highly sensitive to the choice of parameters. parameters

can lead to slow convergence, premature convergence to suboptimal solutions or overfitting. This often

necessitates computationally expensive tuning processes.

• Computational Complexity: Complex models like deep neural networks or running population-

based algorithms for many generations requires significant processing power and time. It can be a

barrier to real-time application or deployment on resource-constrained devices.

• Theoretical Guarantees: Many CI algorithms, especially evolutionary algorithms have lack strong

theoretical convergence guarantees. Their effectiveness is often demonstrated empirically rather than

mathematically, which can be a limitation in safety-critical applications.

• Interpretability and Black-Box Nature: In neural networks, the decision-making process can be

opaque that make it difficult to understand why a specific solution was generated or a prediction was

made. This limits trust and accountability, especially in domains like healthcare and finance.

• Generalization and Overfitting: There is always a risk that a highly optimized model will overfit to

the training data or the specific formulation of the objective function that can give poor performance

on unseen data or in slightly different scenarios. Robustness to distribution shifts remains a challenge.

These limitations include the development of more robust auto-tuning frameworks and the use of surrogate

models to reduce function evaluation costs.

4.7 Conclusions

Computational Intelligence (CI) and optimization algorithms is a new discipline that is transforming

the problems solving approaches into a large range of fields. CI has its own origin in the adaptive and

self-organizing paradigms and encompasses major models namely Neural Networks, Fuzzy Systems and

Evolutionary Computation. which are equipped with specific abilities to deal with complexity, uncer-

tainty and dynamism. Even though it is positioned separately and addition to Artificial Intelligence and

Machine Learning. CI combines data-driven learning with the stability of flexible modeling approaches.

Structuring of the problem is achieved by specification of objective functions, decision variables and

constraints by using optimization algorithms at the same time addressing non-convexity and scalability

by sophisticated techniques including dimensionality reduction, parallel processing and multi-objective

optimization. Engineering, financial, smart-cities and cognitive-computing applications demonstrate the

effectiveness and versatility that can be achieved through CI, although they also highlight implementa-

tion issues such as overfitting and sensitivity to parameters. New trends of deep reinforcement learning,

explainable AI and quantum-inspired algorithms are indicators of even more autonomous and transpar-

ent intelligent systems. However, such developments should be ethically driven-fairness, accountable and

sustainable resource steward-to ensure responsible and societally profitable integration of CI.
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Abstract: This chapter introduces optical soliton solutions for the concatenation model,

which is a concatenated form of the familiar nonlinear Schrödinger’s equation, Lakshmanan-

Porsezian-Daniel equation and the Sasa-Satsuma equation. The solutions are obtained using

the modified extended tanh method with the Riccati equation and ( 1
ϑ(η) ,

ϑ
′
(η)

ϑ(η) ) method. The

proposed methods work by adding a new variable to the equation to convert its form into a

non-linear equation with ordinary derivatives. A comparative analysis of the solutions is car-

ried out at distinct temporal values. The novelty of this work lies in the fact that no previous

articles have identified the new solutions obtained through the application of these two analyti-

cal methods. The acquired solutions include dark, bright, periodic, and singular wave solutions,

which are illustrated using several 3D and 2D graphs. The adopted approaches demonstrate no-

table performance and are suitable for solving other non-linear partial differential equations

that arise in the natural sciences.

Keywords: Concatenation model, Traveling wave solutions, Optical solitons, Modified ex-

tended tanh method with the Riccati equation, Nonlinear equations
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5.1 Introduction

The study of optical solitons is a significant non-linear phenomena that arises in optical fibers when dis-

persion is precisely balanced by non-linearity. In the realm of telecommunication networks, optical solitons

facilitate rapid data transmission [1, 2]. Optical solitons have been detected experimentally in various

physical systems, including bulk optical materials [3], single-mode fibers [4], and femtosecond lasers [5].

The integrity of communication networks relies on the analysis of traveling wave propagation in opti-

cal fibers. Numerous models illustrating the behavior of soliton propagation have facilitated researchers

comprehension of solitons, including the non-linear Schrödinger equation (NLSE) [6], Schrödinger-Hirota

equation [7], Lakshmanan-Porsezian-Daniel model (LPD) [8], Kudryashov’s model [9], Triki-Biswas model

[10], Manakov model [11], Ginzburg-Landau model [12], Fokas-Lenells model [13], and Sasa-Satsuma (SS)

model [14], among others [15, 16].

Studying and deriving soliton solutions for non-linear partial differential equations (NLPDEs) is essential

for understanding numerous real phenomena. Thereby, several exact approaches have been formulated

to derive soliton solutions for NLPDEs, including, extended hyperbolic function method [17], the tanh-

function expansion and its several modifications [18], the (G′/G)-expansion method [19], the variational

iteration technique [20], the extended rational sine-cosine and rational sinh-cosh method [21], the modi-

fied Khater method [22], the sine-Gordon expansion (SGE) method [23], the extended Tanh-Coth method

[24], the first integral method [25], the Sardar sub-equation method [26], the Jacobi elliptic function (JEF)

method [27], and much more [28, 29, 30].

Despite the existence of numerous theories elucidating the transmission of solitons over transcontinental

and transoceanic distances via optical fibers, the concatenation model, introduced by Ankiewicz et al. in

2014, remains particularly compelling [31, 32]. In this article, concatenated model is considered, which

is a concatenation of LPD equation, SS equation and NLS equation [40, 33]. Through the coupling of

various physical processes, this model behaves as a foundation for examining intricate interactions in non-

linear optical systems. It comprises Kerr nonlinearity, which denotes the intensity-dependent refractive

index that leads to self-phase modulation (SPM), and nonlinear chromatic dispersion (CD), which deals

with wavelength-dependent variations in refractive index. A more thorough illustration of the dynamics

in a non-linear optical medium is produced by concatenating these effects. Due to a balance between

non-linearity and dispersion, this model helps researchers understand the evolution and transmission of

solitons-localized wave packets that retain their structure. A wide range of physical phenomena observed

in experimental context can be represented by the concatenation model’s mathematical foundation, which

offers a versatile foundation for both analytical and numerical solutions.

Multiple studies have been reported using this model. Researchers have recently paid close attention to

the concatenated model, which has been examined in numerous research works. Using Jacobi’s elliptic

function, Kudryashov et al. [34] investigated the Painlevè analysis and optical solitons for a concate-

nated model. Yildirim et al. [35] acquired the quiescent optical solitons for the concatenation model
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with non-linear CD by means of the F-expansion procedure, the extended Jacobi’s elliptic function ex-

pansion approach, the sine-Gordon equation scheme, and the Riccati equation method. Biswas et al.

[36] constructed the optical solitons and conservation laws for the concatenation model by employing an

undetermined coefficients and multipliers approach. Using the trial equation approach, Wang et al. [37]

derived optical solitons for a concatenation model. The exact soliton solutions of the concatenation model

are acquired by Khan et al. [38] using two effective techniques. With numerous Hamiltonian perturbation

terms, spatio-temporal dispersion, and Kerr law nonlinearity, utilizing the two integration techniques, the

concatenation model is studied by Zayed et al. [39].

5.2 Governing Model:

The concatenation model considered in this study is formulated as [40]:

iψt + aψxx + b|ψ|2ψ + c1
[
σ1ψxxxx + σ2(ψx)

2ψ∗ + σ3|ψx|2ψ + σ4|ψ|2ψxx + σ5ψ
2ψ∗

xx + σ6|ψ|4ψ
]

+ic2
[
σ7ψxxx + σ8|ψ|2ψx + σ9ψ

2ψ∗
x

]
= 0. (5.1)

The complex function ψ(x, t) describes wave patterns, including its spatial and temporal derivatives and

ψ∗(x, t) depicts its conjugate. In Eq. (5.1), the first term depicts the linear temporal evolution. The

coefficient a in the second term denotes the linear CD, while the Kerr nonlinearity through the SPM

effect is governed by the coefficient b. Additionally, i =
√
−1 denotes the imaginary unit. Furthermore,

the fourth-order dispersion coefficient is σ1, while the perturbation terms with the non-linear dispersion

characteristics are σ2, σ3, σ4, and σ5. Moreover, two-photon absorption is taken into consideration with

σ6, the third-order dispersion is indicated by σ7, and the effects of nonlinear dispersion are reflected by

σ8 and σ9.

Let’s look at the effects of setting particular values for the parameters c1 and c2, as well as the consequent

simplified models, in order to give a thorough explanation of Eq. (5.1). When c1 = 0, Eq. (5.1) is simplified

to the renowned SS equation, a prominent model that incorporates higher-order non-linear phenomena,

such as third-order dispersion, which are critical in non-linear optics. When high-order dispersion effects

are taken into consideration, this equation provides information about how ultrashort pulses behave

in optical fibers. One of the basic models in nonlinear wave propagation, the NLSE, which represents

the evolution of wave envelopes in dispersive and non-linear media, collapses when c1 = c2 = 0. The

NLSE addressed optical solitons, steady pulse solutions that retain their shape due to a balance between

dispersion and non-linearity. Further while taking c2 = 0, (5.1) shrinks to the familiar LPD model. By

including second-order dispersion and other nonlinearities, this model extends its application in systems

with non-trivial dispersion control by capturing intermediary effects between the SS equation and the

NLSE. We have studied in this paper the Eq. (5.1) with c1 ̸= 0 and c2 ̸= 0 to retrieve optical solitons.

To construct the optical soliton solutions of Eq. (5.1), we have applied two efficient techniques, namely,

94 Chapter 5. Concatenation Model



Ptolemy Scientific Research Press https://pisrt.org/

the modified extended tanh method (METM) with the Riccati equation (RE) and ( 1
ϑ(η) ,

ϑ
′
(η)

ϑ(η) ) method.

These two innovative techniques are used for the first time to derive optical soliton solutions of the

suggested model. Through the application of these two techniques, certain novel soliton solutions have

been generated that have not yet been published anywhere else. These proposed methods generate dark,

bright, periodic, and singular solutions. The study conducts a comparative analysis at distinct temporal

values, offering new insights into solution dynamics and stability behavior. Moreover, the inclusion of 2D

and 3D graphical illustrations provides a deeper physical interpretation of the obtained results, making

the theoretical outcomes more transparent and applicable to optical communication contexts. The validity

and efficacy of these procedures are demonstrated by their capacity to yield more exact solutions than

current methodologies.

5.3 General Methodology

Consider the nonlinear PDE

Ψ(p, px, pt, pxx, pxt, ...) = 0, (5.2)

where the polynomial of p(x, t) and its partial derivatives are indicated by Ψ. We introduce the wave

transformation p(x, t) to P(Ω) as

p(x, t) = P(Ω), Ω = x− kt, (5.3)

where k is for wave speed. By plugging the transformation (15.17) into Eq. (15.10), the PDE can be

reduced to an integer-order ODE

Λ(P,P ′,P ′′,P ′′′, ...) = 0, (5.4)

here the derivative w.r.t. Ω is indicated by primes.

5.4 Traveling Wave Solution:

To solve Eq. (5.1), we suppose the non-linear waveform as:

ψ(x, t) = u(η)eiϕ(x,t). (5.5)

Here η = x− γt and ϕ(x, t) = −kx+ ωt+ θ0 is the phase component of the wave. Here γ is the soliton’s

speed, k depicts the frequency of soliton, ω is the wave number and θ0 represents the phase constant.

In addition, the wave’s amplitude is indicated by u(η). Eq. (5.1) is converted into an ODE using the
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transformations from Eq. (15.12), after separating, the real part is:

c1σ1u
(4) + [a+ 3k(c2σ7 − 2kc1σ1)]u

′′ + c1(σ4 + σ5)u
2u′′ + c1(σ1 + σ3)uu

′2 + c1σ6u
5 (5.6)

+[b− c1k
2(σ2 − σ3 + σ4 + σ5) + kc2(σ8 − σ9)]u

3 − [(a− c1k
2σ1 + c2kσ7)k

2 + ω]u = 0,

while the imaginary part is:

(4kc1σ1 − c2σ7)u
′′′ + [(2a− 4k2c1σ1 + 3kc2σ7)k + γ]u′ (5.7)

+[2(σ2 + σ4 − σ5)kc1 − (σ8 + σ9)c2]u
2u′ = 0.

From Eq. (5.7), the following constraints are extracted:

(4kc1σ1 − c2σ7) = 0, (5.8)

[2kc1(σ2 + σ4 − σ5)− (σ8 + σ9)c2] = 0, (5.9)

[k(2a− 4k2c1σ1 + 3kc2σ7) + γ] = 0. (5.10)

Now the Eq. (5.6) reduces to

c1σ1u
(4) +

(
a+ 6c1k

2σ1
)
u′′ + c1 (σ2 + σ3)uu

′2 + c1 (σ4 + σ5)u
2u′′ (5.11)

+c1σ6u
5 +Au3 −Bu = 0,

where

A = b− c1k
2(σ2 − σ3 + σ4 + σ5) +

4c1k
2σ1(σ8 − σ9)

σ7
,

and

B = −[k2(a+ 3k2c1σ1) + ω].

5.5 Methodologies

This section will employ two distinct approaches; the modified extended tanh method (METM) with the

Riccati equation (RE) and ( 1
ϑ(ζ) ,

ϑ
′
(ζ)

ϑ(ζ) ) method to solve Eq. (5.11).
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5.5.1 The METM with the RE

The present section addresses the steps to implanting the METM with RE, a promising analytical method,

in order to construct specific solitonic expressions for the governing concatenation model [41].

Therefore, this implemented method starts by presuming that Eq. (5.11) admits the following predicted

solution:

ψ(x, t) = u(η) =

ϱ∑
i=0

aiφ
i(η) +

ϱ∑
i=1

biφ
−i(η), (5.12)

where ai and bi are free constants, which will be obtained. In addition, the function φ = φ(η) a solution

of the Riccati equation, gratifies the nonlinear ordinary differential equation (NODE) that follows

dφ

dη
= λ+ φ2. (5.13)

The latter NODE possesses the following exact solutions;

If λ < 0, then

φ(η) = −
√
−λ tanh(

√
−λη), (5.14)

φ(η) = −
√
−λ coth(

√
−λη).

If λ = 0, then

φ(η) = −1

η
. (5.15)

If λ > 0, then

φ(η) =
√
λ tan(

√
λη), (5.16)

φ(η) = −
√
λ cot(

√
λη).

The solution to Eq. (5.1), can be obtained by solving these equations using Mathematica.

In this regard, by the homogenous balancing rule, we get the value of ϱ = 1, from Eq. (5.11). By

substituting the derived value of ϱ into Eq. (5.12), we get

u(η) = a0 + a1φ(η) +
b1
φ(η)

. (5.17)

To construct the algebraic system, we plug Eq. (5.17) into Eq. (5.11) by making use of Eq. (5.13) and set

the coefficients of all powers of φi(η) equal to zero. Using Mathematica, we solved the resulting system
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and obtained the following solutions:

a0 = 0, a1 = −
√

−(P1 + P2)

2
, b1 = 0, (5.18)

A =
1

24σ1

(
σ2
(
a+ 2c1σ1

(
3k2 − 14λ

))
+ σ3

(
a+ 2c1σ1

(
3k2 − 14λ

))
+2 (σ4 + σ5)

(
a+ 2c1σ1

(
3k2 − 2λ

))
− aP1 − 6c1k

2σ1P1 − 20c1λσ1P1

)
,

B =
λ
(
4aσ6 − c1

(
λ ((σ2 + σ3) (P1 + σ2 + σ3 + 2 (σ4 + σ5))− 32σ1σ6)− 24k2σ1σ6

))
2σ6

.

Here, the following substitutions are used for simplifications.

P1 =
√

(σ2 + σ3 + 2 (σ4 + σ5)) 2 − 96σ1σ6,

P2 =
σ2 + σ3 + 2 (σ4 + σ5)

σ6
.

Plugging Eq. (5.18) into Eq. (5.17) and utilizing Eq. (5.13), the solution of Eq. (5.1) is given as;

When λ < 0,

ψ1(x, t) =

√
λ(P1 + P2)

2

[
tanh

(√
−λη

)]
ei(−kx+ωt+θ0), (5.19)

and

ψ2(x, t) =

√
λ(P1 + P2)

2

[
coth

(√
−λη

)]
ei(−kx+ωt+θ0). (5.20)

When λ > 0,

ψ3(x, t) = −
√

−λ(P1 + P2)

2

[
tan

(√
λη
)]
ei(−kx+ωt+θ0), (5.21)

and

ψ4(x, t) =

√
−λ(P1 + P2)

2

[
cot
(√

λη
)]
ei(−kx+ωt+θ0). (5.22)
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(a) 3D plot for |ψ1(x, t)|. (b) 3D plot for Re(ψ1(x, t)).

(c) 3D plot for Im(ψ1(x, t)).
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(d) 2D plots

Figure 5.1: Dark soliton solution of ψ1(x, t), with γ = 0.98, θ = 1, λ = −1, k = 1, σ1 = 1, σ2 = 0.95,

σ3 = 1, σ4 = −0.97, σ5 = 2, σ6 = −1, and ω = 1.
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(a) 3D plot for |ψ4(x, t)|. (b) 3D plot for Re(ψ4(x, t)).

(c) 3D plot for Im(ψ4(x, t)).

-4 -2 0 2 4

-10

-5

0

5

10

15

20

25

x

|ψ4(x,0)|
|ψ4(x,1)|
|ψ4(x,2)|
Re[ψ4(x,1)]
Im[ψ4(x,1)]

(d) 2D plots

Figure 5.2: Periodic soliton solution of ψ4(x, t), with γ = 0.98, θ = 1, λ = 1, k = 1, σ1 = 1, σ2 = 0.95,

σ3 = 1, σ4 = −0.97, σ5 = 2, σ6 = −1, and ω = 1.

5.5.2 ( 1
ϑ(η)

, ϑ
′
(η)

ϑ(η)
) method

Based on this approach [42], it is presumed that the solution to Eq. (5.11) can be written as:

u(η) = ω0 +

ϵ∑
σ=1

ωσ + βσϑ
′
(η)σ

ϑ(η)σ
. (5.23)

Discovering the values of ω0, ωσ, and βσ (where σ = 1, 2, ..., ϵ) allows one to solve equation (5.11), and

the function ϑ(η) fulfills the subsequent evolution equation:

ϑ
′
(η)2 = ϑ(η)2 − τ. (5.24)

One can solve (5.24) to obtain the solution:

ϑ(η) = heη +
τ

4heη
, (5.25)
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Here τ and h are any constant value.

From Eq. (5.11) we get ϵ = 1, which results in

u(η) = ω0 +
ω1 + β1ϑ

′
(η)

ϑ(η)
. (5.26)

Plugging Eq. (5.26) and the necessary derivatives in to Eq. (5.11), and after solving the algebraic system

we get the following set of values:

ω0 = 0, β1 = 0, ω1 =

√
P4 − P3

2
, (5.27)

A =
1

24σ1τ

(
σ2τ

(
a+ 2c1

(
3k2 − 7

)
σ1
)
+ σ3τ

(
a+ 2c1

(
3k2 − 7

)
σ1
)

+2 (σ4 + σ5) τ
(
a+ 2c1

(
3k2 − 1

)
σ1
)
+ aP3 + 6c1k

2σ1P3 + 10c1σ1P3

)
,

B = a+ c1
(
6k2 + 1

)
σ1.

Here, the following substitutions are used for simplifications.

P3 =
√
((σ2 + σ3 + 2 (σ4 + σ5)) 2 − 96σ1σ6) τ2,

and

P4 =
(σ2 + σ3 + 2 (σ4 + σ5)) τ

σ6
.

Consequently, given Eq. (5.11), the wave profile can be expressed as:

u(x, t) =
2heη

√
2(P4 − P3)

4h2e2η + τ
, (5.28)

Plugging τ = ±4h2, we get following solutions

ψ5(x, t) =

√
P4 − P3

2
√
2h

[sech(η)] ei(−kx+ωt+θ0), (5.29)

and

ψ6(x, t) =

√
P4 − P3

2
√
2h

[csch(η)] ei(−kx+ωt+θ0). (5.30)
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(a) 3D plot for |ψ5(x, t)|. (b) 3D plot for Re(ψ5(x, t)).

(c) 3D plot for Im(ψ5(x, t)).
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(d) 2D plots

Figure 5.3: Bright soliton of ψ5(x, t), with γ = 0.98, h = 1, k = 1, σ1 = 1, σ2 = 0.95, σ3 = 1, θ0 = 1,

σ4 = −0.97, σ5 = 2, σ6 = −1, and ω = 1.
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(a) 3D plot for |ψ6(x, t)|. (b) 3D plot for Re(ψ6(x, t)).

(c) 3D plot for Im(ψ6(x, t)).
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Figure 5.4: Singular soliton behavior of ψ6(x, t), with γ = 0.98, h = 1, k = 1, σ1 = 1, σ2 = 0.95,

σ3 = 1, θ0 = 1, σ4 = −0.97, σ5 = 2, σ6 = −1, and ω = 1.

5.6 Graphical Illustration and Discussion

The propagation of a pulse in optical fiber is a significant structure in optical events and high speed

optical communications have become necessary in global information transmission networks. Therefore,

it becomes essential to illustrate the physical view of an optical fiber pulse. This section delves into

the visual representation of specific solution functions that were obtained in sections 3, as well as some

interpretations of those functions. As a general approach, the graphs presented in all figures represent

the solutions ψ(x, t) derived by utilizing appropriate methods. The 3D simulation of the |ψ(x, t)| form is

shown in subgraph (a) of these graphs, while the components of Re(ψ(x, t)) and Im(ψ(x, t)) are displayed

in (b) and (c), respectively, in the other two graphics. Moreover, the 2D representations of the specified 3D

shapes are reflected in the (d) graphs. These representations demonstrate a cross-section for Re(ψ(x, t))

and Im(ψ(x, t)) at just t = 1, as well as a traveling wave representation for the |ψ(x, t)| form at t = 0, 1,

and 2, respectively. In order to incorporate the given soliton forms, the parameter selections have been

made taking into account the problem’s definition and constraints as well as the methods that have been
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applied. To avoid degeneracy in the produced soliton form, additional parameter values can be used for

drawing in this context, although the chosen parameter values are limited to the presented values.

Upon closer inspection of the graphics produced in compliance with the above-mentioned aspects, it can be

observed that figure (13.2) depicts the solution function ψ1(x, t) as defined by Eq. (5.19), with parametric

values; γ = 0.98, θ = 1, λ = −1, k = 1, σ1 = 1, σ2 = 0.95, σ3 = 1, σ4 = −0.97, σ5 = 2, σ6 = −1, and

ω = 1. Where fig. (5.1a) depicting the 3D view of |ψ1(x, t)|, depicting the dark soliton, while figs. (5.1b)

and (5.1c) present the 3D representations of the real and imaginary components of the solution in Eq.

(5.19), respectively. In fig. (5.1d), a 2D format of |ψ1(x, t)| is depicted, with black lines illustrating its

appearance at various times (t = 0, 1, 2). This graph demonstrates that as t rises, the dark soliton shifts

to the right. The wave representations depicted in red and blue signify the Re(ψ1(x, t)) and Im(ψ1(x, t)),

respectively, illustrating the periodic soliton configurations at varying amplitudes. Dark solitons, owing

to their stable localized dips, are advantageous in high-bit-rate transmission and wavelength-division

multiplexing (WDM) systems, where they minimize cross-talk and maintain channel separation. The

extraordinary stability and resistivity to loss of the dark soliton make it an ideal material for fiber lasers

[43, 44].

Figure (14.2) presents the soliton solution of ψ4(x, t) from Eq. (5.22) with values γ = 0.98, θ = 1, λ =

1, k = 1, σ1 = 1, σ2 = 0.95, σ3 = 1, σ4 = −0.97, σ5 = 2, σ6 = −1, and ω = 1. Where fig. (5.2a)

represents the 3D view of |ψ4(x, t)|, depicting the periodic soliton, while figs. (5.2b) and (5.2c) present

the 3D representations of the Re(ψ4(x, t)) and Im(ψ4(x, t)) components of the solution in Eq. (5.22),

respectively. To observe the movement of soliton over time, the wave profiles of |ψ4(x, t)| at t = 0, 1, 2

with black lines, and Re(ψ4(x, t)) and Im(ψ4(x, t)) in red and blue line respectively, are illustrated in 2D

view in fig. (5.2d). Advanced signal processing methods make extensive use of periodic solutions. Visual

representations show that these solutions are oscillatory, which can be used for different signal operations

in optical communication systems, such as pulse shaping and wavelength conversion [45].

In figure (8.3), graphical illustrations in 3D and 2D view of ψ5(x, t) by defined by Eq. (5.29) with values

γ = 0.98, h = 1, k = 1, σ1 = 1, σ2 = 0.95, σ3 = 1, θ0 = 1, σ4 = −0.97, σ5 = 2, σ6 = −1, and

ω = 1. Fig. (5.3a) represents the 3D view of |ψ5(x, t)|, showing a bright soliton solution. While figs.

(5.3b) and (5.3c) present the 3D representations of the Re(ψ5(x, t)) and Im(ψ5(x, t)) components of

the solution in Eq. (5.29), respectively. In fig. (5.3d), a 2D format of |ψ5(x, t)| is depicted, with black

lines illustrating its appearance at various times (t = 0, 1, 2). As seen in this graph, the bright soliton

moves to the right as t grows. The wave representations depicted in red and blue signify the Re(ψ5(x, t))

and Im(ψ5(x, t)), respectively, illustrating the periodic soliton configurations at varying amplitudes. The

characteristic feature of bright solitons is a central peak of maximum intensity. Optical communication

systems rely on these solitons because of their distortion-free long-distance propagation, which allows for

efficient high-speed data transmission. The stable propagation of bright solitons is highlighted in the 2D

and 3D graphs, which highlight their importance in enabling high-performance optical communication

networks and ensuring signal integrity [45].
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Figure (8.4) exhibits the plotted results for the solution ψ6(x, t) as defined by Eq. (5.30) in 3D and

2D form, with values γ = 0.98, h = 1, k = 1, σ1 = 1, σ2 = 0.95, σ3 = 1, θ0 = 1, σ4 = −0.97, σ5 =

2, σ6 = −1, and ω = 1. Fig. (5.4a) illustrates the 3D view of |ψ6(x, t)|, depicting the singular soliton. The

3D graphics of real and imaginary components of the solution in Eq. (5.30) are depicted in figs. (5.4b)

and (5.4c) respectively. Figure (5.4d) illustrates the 2D view of |ψ6(x, t)| with black lines illustrating

its appearance at various times (t = 0, 1, 2). This graph depicts that the singular soliton shifts to the

right as t rises. The wave representations drawn in red and blue signify the Re(ψ6(x, t)) and Im(ψ6(x, t)),

respectively. Singular soliton structures, though less common in standard communication systems, suggest

pathways for signal reshaping and novel amplification mechanisms. When investigating extreme wave

phenomena, singular solitons are useful for developing realistic models due to their centered infinite

amplitude [45]. More generally, soliton-driven signal enhancement is crucial in all-optical signal processing,

fiber sensor networks, and emerging quantum communication technologies, where the preservation of

signal stability and coherence is vital. The variety of solutions derived from this study enhances the

practical significance of the concatenation model, demonstrating its potential applicability in numerous

photonic applications.

5.7 Conclusion

In this study, we successfully developed a broad class of novel optical soliton solutions for the concatena-

tion model. Utilizing the modified extended tanh method with the Riccati equation and the ( 1
ϑ(η) ,

ϑ
′
(η)

ϑ(η) )

method, we extracted numerous types of solutions, encompassing dark soliton, periodic wave soliton so-

lutions, bright solitons, and singular soliton solutions. The parameter constraints guarantee the existence

of the derived soliton solutions, while the graphical representations elucidate the physical attributes of

these solutions. The results of this research possess considerable ramifications for the domain of optical

meta-materials, potentially influencing the design and engineering of next-generation technology across

multiple industries. Our results indicate that the proposed methodologies are exceptionally effective,

offering robust solutions to various nonlinear partial differential equations. This enhances our compre-

hension of the fundamental physics and establishes a foundation for future improvements in the design

and utilization of advanced optical meta-materials.
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Abstract: The nonlinear Kudryashov–Sinelshchikov equation is investigated using the auxil-

iary equation method. This equation plays a significant role in studying pressure wave processes

in mixtures of liquid and gas bubbles, while accounting for heat conduction and viscosity. In

this work, we derive exact analytical wave solutions that exhibit diverse physical structures, in-

cluding solitons and several types of solitary waves such as kink waves, peakon bright solitons,

peakon dark solitons, singular solitons, periodic solitons, anti-kink waves, mixed solitons, and

other solitary wave structures. These solutions enhance our understanding of wave propagation

in nonlinear media and contribute to the broader class of exact solutions for nonlinear evolution

equations (NLEEs). The physical properties of the obtained solutions are demonstrated graphi-

cally through contour plots, as well as two– and three–dimensional visualizations, all supported

by computational simulations. The soliton structures identified in this study are expected to

play an important role across various domains of science and engineering, including nonlinear

dynamics, nonlinear optics, mathematical physics, and optical fiber research. Overall, the pre-

sented research highlights that the proposed method is efficient, precise, and powerful, making

it a valuable tool for studying a wide range of nonlinear evolution equations.
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Keywords: Nonlinear Kudryashov–Sinelshchikov equation, Auxiliary equation method, Soli-
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6.1 Introduction

Nonlinear evolution equations (NLEEs) are crucial for understanding the dynamics of physical sciences

and are widely applied in disciplines such as neural networks, solid-state physics, fiber optics, economics,

communication systems, and nonlinear mechanics to study complex phenomena over time [1, 2, 3, 4, 5, 6].

The discovery of soliton solutions for previously studied phenomena has been both fascinating and sig-

nificant. Expanding soliton results for a broad range of NLEEs remains an important area of research.

The study of solitons in nonlinear dynamical equations is a vital topic in fluid dynamics and nonlinear

science. Solitons are stable, self-reinforcing wave-like solutions that appear in various physical systems,

such as liquid–gas bubble mixtures. They provide unique insights into system dynamics and have prac-

tical applications in oceanography, fluid mechanics, and materials science, with engineering implications

for water wave control and heat exchanger optimization [7, 8, 9, 10, 11].

Several analytical methods have been proposed for solving nonlinear problems, including the Sardar sub-

equation method [12], first integral scheme [13], the Φ6-expansion scheme [14], Jacobian elliptic method

[15], extended hyperbolic function scheme [16], extended simple equation technique [17, 18], Bäcklund

transformation [19], exp(−Ψ(η))−expansion approach [20], improved extended fan sub equation tech-

nique [21], modified Sardar sub equation method [22], extended auxiliary equation mapping scheme

[23, 24, 25], Laplace transformation method [26], modified tanh function approach [27], new mapping

approach [28], extended modified rational expansion technique [29, 30, 31, 32], extended direct algebraic

equation mapping approach [33, 34], the (G
′
/G)-expansion approach [35], modified auxiliary equation

approach [36, 37], among many others.

Most physical models admit a variety of solitary wave structures. The analysis of dynamical solutions to

NLEEs demonstrates their importance in mathematical physics. In 2010, Kudryashov and Sinelshchikov

derived a more general NLEE to describe pressure waves in a liquid–gas mixture, taking into account heat

transfer and liquid viscosity [38, 39]. The Kudryashov–Sinelshchikov equation (KS equation) is therefore

an important framework for modeling soliton behavior in such systems, as it incorporates fluid interac-

tions, heat transfer, and viscosity factors essential for a realistic description of soliton dynamics.

This research aims to construct and analyze novel soliton structures governed by the nonlinear Kudryashov–

Sinelshchikov (NLKS) equation for liquid–gas mixtures. Using both analytical techniques and numerical

simulations, we visualize and characterize the obtained solutions. The NLKS equation is given by

ut + α1uux + uxxx − α2(uuxx)x− α3uxuxx − α4uxx − α5(uux)x = 0, (6.1)
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where u(x, t) denotes the physical quantities related to heat transfer, density, and viscosity, and α1, α2, α3, α4, α5

are real constants. Special cases of Eq. (15.8) reduce to well-known equations. For instance:

If α2 = α3 = α4 = α5 = 0, Eq. (15.8) reduces to the KdV equation [40]:

ut + α1uux + uxxx = 0. (6.2)

If α2 = α3 = α5 = 0, Eq. (15.8) becomes the Korteweg de Vries–Burgers (KdVB) equation:

ut + α1uux + uxxx − α4uxx = 0. (6.3)

If α1 = α2 = 1 and α4 = α5 = 0, Eq. (15.8) takes the form:

ut + uxxx + uux − (uuxx)x− α4uuxx = 0. (6.4)

Ryabov et al. examined solitary wave solutions of Eq. (15.17) using a modified truncated expansion

technique under specific parameter conditions α = −3, α = −4 [41]. Many researchers have since ex-

plored various solution methods for the NLKS equation under different parameter settings. For example,

Randruut et al. derived phase curves, solitary, and periodic wave solutions; He et al. obtained smooth

and non-smooth solitary and periodic waves using the bifurcation method [42]; Yang et al. applied Lie

symmetry analysis to secure exact solutions for the three–dimensional NLKS equation [43]; Zhao et al.

employed the F–expansion technique [44]; Ryabov et al. used truncated expansion methods [45]; Gupta

et al. developed fractional NLKS solutions via the radial basis function (RBF) method [46]; Hubert et al.

applied the (G
′
/G)−expansion scheme [47]; Seadawy et al. used the modified auxiliary equation method

[48]; Kudryashov et al. derived solitary waves through the extended simple equation approach [49]; Ku-

mar et al. employed the generalized exponential rational function approach[50]; Bruzon et al. explored

exact and symmetric solutions via Lie group methods [51]; Ray et al. applied the improved sub-equation

method [52]. These studies have revealed diverse solitary wave solutions with different physical structures,

including kink wave solitons, mixed bright and dark solitons, peakon bright solitons, periodic solitons,

anti-kink wave solitons, peakon dark solitons, and other solitary wave solutions. To the best of our knowl-

edge, such a variety of results for the NLKS equation has not been systematically reported before.

This chapter is organized as follows: Section 1 provides the introduction and literature review of the

proposed equation. Section 2 describes the methodology. Section 3 presents the soliton solutions of the

NLKS equation. Section 4 compares the constructed results. Finally, Section 5 concludes the study.

6.2 Auxiliary equation method

The proposed approach is one of the powerful and efficient methods for obtaining exact soli-

ton solutions to nonlinear partial differential equations (NLPDEs). It has been successfully applied
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to investigate various types of solutions to NLPDEs, including the nonlinear third-order Klein–Fock–

Gordon equation[53], the nonlinear Schrödinger equation[54], and nonlinear ionic current microtubule

and Mikhailov–Novikov–Wang dynamical equations[55]. Previous studies have also demonstrated impor-

tant considerations about this method and noted that it can be regarded as a specific form of the simple

equation method.

The general form of nonlinear partial differential equations is given as

∇ (ut, uux, uxxx, uxuxx, ...) = 0. (6.5)

Where ∇ called polynomial function of u and its partial derivatives.

Step 1.

Let us wave transform given as

u(x, t) =W (ϑ), ϑ = x− µt. (6.6)

Inserting Eq.(15.19) in Eq.(15.18), the nonlinear equation with ordinary derivatives obtained as

ð(−µW
′
, WW

′
, W

′′′
, W

′
W

′′
, ...) = 0. (6.7)

Step 2.

The generalized solution of Eq.(8.7) mentioned as

W (ϑ) =

ℵ∑
i=0

biϕ
i(ϑ). (6.8)

The value of ϕ(ϑ) verify the following auxiliary equation.

(ϕ
′
(ϑ))2 = ϖ1ϕ

2(ϑ) +ϖ2ϕ
3(ϑ) +ϖ3ϕ

4 (ϑ) . (6.9)

Here ϖ1, ϖ2, and ϖ3, are real constants. Exact solutions to the Eq.(8.9) are mentioned as

Case− I

ϕ (ϑ) = −
ϖ1ϖ2sech

(√
ϖ1ϑ

2

)2

ϖ2
2−ϖ1ϖ3

(
1−tanh

(√
ϖ1ϑ

2

))2 , when ϖ1 > 0.

Case− II

ϕ (ϑ) =
2ϖ1sech(

√
ϖ1ϑ)√

ϖ2
2−4ϖ1ϖ3−ϖ2−sech(

√
ϖ1ϑ)

when ϖ2
2 − 4ϖ1ϖ3 > 0, ϖ1 > 0.

Step 3.

Utilizing the homogeneous balance scheme on Eq.(8.7) to secure the positive integerℵ.

Step 4.

Setting Eq.(8.8) in Eq.(8.9) and collect every factors to the ϕ(ϑ), and make them equal to zero. We
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secured the algebraic equations and solving them utilizing the any computational simulation to secure

the unknown values of parameters. Setting the secured values with ϕ(ϑ) in Eq.(8.9) then we extract the

essential solutions for Eq.(15.18).

6.3 Solitary wave solutions of NLKS equation

In this section, we examine the solitary wave solutions for the NLKS equation through auxiliary equation

method. The NLKS equation given as

ut + α1uux + uxxx − α2(uuxx)x − α3uxuxx − α4uxx − α5(uux)x = 0. (6.10)

Wave transformation taken as

u(x, t) =W (ϑ), ϑ = x− µt. (6.11)

Inserting Eq.(8.11) into Eq.(8.10) and integrate the resulting equation with respect to ϑ, finally we ob-

tained the nonlinear ODE of Eq.(8.10) as

−µW +
α1

2
W 2 +W

′′
− α2WW

′′
− α3

2
(W

′
)2 − α4W

′
− α5WW

′
= 0. (6.12)

By using the homogeneous balance approach on Eq.(10.12), secured ℵ = 2. The general solution to the

Eq.(10.12) consider as

W (ϑ) = b0 + b1ϕ(ϑ) + b2ϕ
2(ϑ). (6.13)

Setting Eq.(10.13) into Eq.(10.12), and collect each factor of ϕ(ϑ) and make them equal to zero. We

secured the algebraic equations and solving them utilizing the computational simulation mathematica

and secured these values of parameters as

Family–I

µ =ϖ1, b0 = 0, b1 = b1, b2 = b2, α1 =
1

2
ϖ1

(
−α2 −

20b2
b21

)
,

α3 = −1

2
(5α2) , ϖ2 =

2b2ϖ1

b1
, ϖ3 =

b22ϖ1

b21
. (6.14)

We secured the exact solutions to the Eq.(8.10) in solitons form by inserting the Eq.(8.14) into Eq.(10.13).
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u1(x, t) =

(
sech4

(
1

2

√
ϖ1(x− µt)

)
ϖ1ϖ2 (2b2ϖ1ϖ2− b1

(
ϖ2

2 (cosh (
√
ϖ1(x− µt)) + 1)

+2ϖ1ϖ3 (sinh (
√
ϖ1(x− µt))− cosh (

√
ϖ1(x− µt))))))/

2

(
ϖ2

2 −ϖ1ϖ3

(
tanh

(
1

2

√
ϖ1(x− µt)

)
− 1

)2
)2

, (6.15)

u2(x, t) =2sech (
√
ϖ1(x− µt))ϖ1 (2b2ϖ1sech (

√
ϖ1(x− µt))+

+b1

(
−ϖ2 +

√
ϖ2

2 − 4ϖ1ϖ3 − sech (
√
ϖ1(x− µt))

))
/(

ϖ2 −
√
ϖ2

2 − 4ϖ1ϖ3 + sech (
√
ϖ1(x− µt))

)2

. (6.16)

Family–II

b0 =
5α2b

2
1 −

√
5
√
5α2

2b
4
1 − 24α2b2b21 + 80b22 + 20b2
40α2b2

, b1 = b1, b2 = b2,

α1 = −
ϖ1

(
−3α2b

2
1 +

√
5
√
5α2

2b
4
1 − 24α2b2b21 + 80b22 + 20b2

)
4b21

, α3 = −1

2
(5α2) ,

µ = −
ϖ1

(
−5α2b

2
1 +

√
5
√
5α2

2b
4
1 − 24α2b2b21 + 80b22 + 20b2

)
40b2

, ϖ2 =
2b2ϖ1

b1
, ϖ3 =

b22ϖ1

b21
. (6.17)

We secured the exact solutions to the Eq.(10.16) in solitary waves form by inserting the Eq.(8.14) into

Eq.(10.13).

u3(x, t) =
b21
8b2

+
1
2 −

√
α2

2b
4
1−

24
5 α2b2b21+16b22
8b2

α2
+

b2ϖ
2
1ϖ

2
2sech

4
(
1
2

√
ϖ1(x− µt)

)(
ϖ2

2 −ϖ1ϖ3

(
tanh

(
1
2

√
ϖ1(x− µt)

)
− 1
)2)2

+
b1ϖ1ϖ2sech

2
(
1
2

√
ϖ1(x− µt)

)
ϖ1ϖ3

(
tanh

(
1
2

√
ϖ1(x− µt)

)
− 1
)2 −ϖ2

2

, (6.18)

u4(x, t) =
b21
8b2

+
1
2 −

√
α2

2b
4
1−

24
5 α2b2b21+16b22
8b2

α2
+

4b2ϖ
2
1sech

2
(√
ϖ1(x− µt)

)(
ϖ2 −

√
ϖ2

2 − 4ϖ1ϖ3 + sech
(√
ϖ1(x− µt)

))2
−

2b1ϖ1sech
(√
ϖ1(x− µt)

)
ϖ2 −

√
ϖ2

2 − 4ϖ1ϖ3 + sech
(√
ϖ1(x− µt)

) . (6.19)

Family–III
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Figure 6.1: Graphical analysis to the u1(x, t) representing to kink wave soliton by three–dim,

two–dim, and contour plotting with ϖ1 = 2, ϖ2 = 4, ϖ3 = 2, µ = 1.6, b1 = −2, b2 = 1

Figure 6.2: Graphical analysis to the u2(x, t) representing to peakon bright soliton by three–dim,

two–dim, and contour plotting with ϖ1 = 2, ϖ2 = 4, ϖ3 = 2, µ = 1.6, b1 = −2, b2 = 1

µ =
3

2

(
−3α2

α3
− 2

)
ϖ1, b0 = − 3

2α3
, b1 = 0, b2 = b2, α1 = 2 (3α2 + 2α3)ϖ1. (6.20)

We secured the exact solutions to the Eq.(8.10) in solitary waves form by inserting the Eq.(8.20) into

Eq.(10.13).

u5(x, t) =
b2ϖ

2
1ϖ

2
2sech

4
(
1
2

√
ϖ1(x− µt)

)(
ϖ2

2 −ϖ1ϖ3

(
tanh

(
1
2

√
ϖ1(x− µt)

)
− 1
)2)2 − 3

2α3
, (6.21)

u6(x, t) =
4b2ϖ

2
1sech

2
(√
ϖ1(x− µt)

)(
ϖ2 −

√
ϖ2

2 − 4ϖ1ϖ3 + sech
(√
ϖ1(x− µt)

))2 − 3

2α3
. (6.22)

Family–IV
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Figure 6.3: Graphical analysis to the u3(x, t) representing to peakon dark soliton by three–dim,

two–dim, and contour plotting with ϖ1 = 2, ϖ2 = 5, ϖ3 = 2, µ = 1.5, b1 = 2, b2 = 1, α2 = 1

Figure 6.4: Graphical analysis to the u4(x, t) representing to periodic soliton by three–dim, two–dim,

and contour plotting with ϖ1 = −2, ϖ2 = 5, ϖ3 = 2, µ = 1.6, b1 = 2, b2 = 1, α2 = 1

µ =ϖ1 (α2b0 − 1) , b0 = b0, b1 = b1, b2 = 0, α1 =
2ϖ1 (α2b0 − 1)

b0
,

α3 = −4α2, ϖ2 =
2b1ϖ1 (2α2b0 − 1)

3b0 (α2b0 − 1)
. (6.23)

We secured the exact solutions to the Eq.(8.10) in solitary waves form by inserting the Eq.(8.23) into

Eq.(10.13).

u7(x, t) =
b1ϖ1ϖ2sech

2
(
1
2

√
ϖ1(x− µt)

)
ϖ1ϖ3

(
tanh

(
1
2

√
ϖ1(x− µt)

)
− 1
)2 −ϖ2

2

+ b0, (6.24)

u8(x, t) = b0 −
2b1ϖ1sech

(√
ϖ1(x− µt)

)
ϖ2 −

√
ϖ2

2 − 4ϖ1ϖ3 + sech
(√
ϖ1(x− µt)

) . (6.25)

Family–V
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Figure 6.5: Graphical analysis to the u5(x, t) representing to anti–kink wave soliton by three–dim,

two–dim, and contour plotting with ϖ1 = 2, ϖ2 = 4, ϖ3 = 2, µ = 1.6, b2 = −3, α3 = 2

Figure 6.6: Graphical analysis to the u6(x, t) representing to periodic soliton by three–dim, two–dim,

and contour plotting with ϖ1 = −2, ϖ2 = 3, ϖ3 = 2, µ = 1.5, b2 = 1, α3 = 1

b0 =0, b1 = b1, b2 = b2, α1 = −10b2ϖ1

b21
,

ϖ2 =
2b2ϖ1

b1
, ϖ3 =

b22ϖ1

b21
, µ = ϖ1. (6.26)

We secured the exact solutions to the Eq.(8.10) in solitary waves form by inserting the Eq.(10.33) into

Eq.(10.13).

u9(x, t) =

(
sech4

(
1

2

√
ϖ1(x− µt)

)
ϖ1ϖ2 (2b2ϖ1ϖ2− b1

(
ϖ2

2 (cosh (
√
ϖ1(x− µt)) + 1)+

2ϖ1ϖ3 (sinh (
√
ϖ1(x− µt))− cosh (

√
ϖ1(x− µt))))))/

2

(
ϖ2

2 −ϖ1ϖ3

(
tanh

(
1

2

√
ϖ1(x− µt)

)
− 1

)2
)2

, (6.27)

u10(x, t) =2sech (
√
ϖ1(x− µt))ϖ1 (2b2ϖ1sech (

√
ϖ1(x− µt))+
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Figure 6.7: Graphical analysis to the u7(x, t) representing to bright soliton by three–dim, two–dim,

and contour plotting with ϖ1 = 2, ϖ2 = −5, ϖ3 = 1, µ = 1.5, b0 = 1, b1 = 1.3

Figure 6.8: Graphical analysis to the u8(x, t) representing to periodic soliton by three–dim, two–dim,

and contour plotting with ϖ1 = −2, ϖ2 = −5, ϖ3 = 2, µ = 1.5, b0 = 1, b1 = 2

b1

(
−ϖ2 +

√
ϖ2

2 − 4ϖ1ϖ3 − sech (
√
ϖ1(x− µt))

))
/(

ϖ2 −
√
ϖ2

2 − 4ϖ1ϖ3 + sech (
√
ϖ1(x− µt))

)2

. (6.28)

Figure 6.9: Graphical analysis to the u9(x, t) representing to dark soliton by three–dim, two–dim, and

contour plotting with ϖ1 = 2, ϖ2 = 4, ϖ3 = 2, µ = 1.5, b1 = 1, b2 = 1

Family–VI
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Figure 6.10: Graphical analysis to the u9(x, t) representing to periodic soliton by three–dim, two–dim,

and contour plotting with ϖ1 = −2, ϖ2 = −5, ϖ3 = 2, µ = 1.6, b1 = −2, b2 = 1

µ =ϖ1, b0 = 0, b1 = b1, b2 = b2, α1 = −8b2 ϖ1

b21
,

α2 = −4b2
b21
, α3 =

4b2
b21
. (6.29)

We secured the exact solutions to the Eq.(8.10) in solitary waves form by inserting the Eq.(10.36) into

Eq.(10.13).

u11(x, t) =

(
sech4

(
1

2

√
ϖ1(x− µt)

)
ϖ1ϖ2 (2b2ϖ1ϖ2− b1

(
ϖ2

2 (cosh (
√
ϖ1(x− µt)) + 1)+

2ϖ1ϖ3 (sinh (
√
ϖ1(x− µt))− cosh (

√
ϖ1(x− µt))))))/

2

(
ϖ2

2 −ϖ1ϖ3

(
tanh

(
1

2

√
ϖ1(x− µt)

)
− 1

)2
)2

, (6.30)

u12(x, t) =2sech (
√
ϖ1(x− µt))ϖ1 (2b2ϖ1sech (

√
ϖ1(x− µt))+

b1

(
−ϖ2 +

√
ϖ2

2 − 4ϖ1ϖ3 − sech (
√
ϖ1(x− µt))

))
/(

ϖ2 −
√
ϖ2

2 − 4ϖ1ϖ3 + sech (
√
ϖ1(x− µt))

)2

. (6.31)

6.4 Results and discussion

In previous studies, researchers have obtained different types of solutions to the NLKS equation in

trigonometric, rational, and elliptic functional forms. These include dark and bright solitons, kink and

anti-kink solitons, singular solitons, and exact traveling waves, derived using methods such as the bifur-

cation method [42], Lie symmetry analysis [43], F–expansion method [44], truncated expansion technique
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Figure 6.11: Graphical analysis to the u11(x, t) representing to kink wave soliton by three–dim,

two–dim, and contour plotting with ϖ1 = 2, ϖ2 = −4, ϖ3 = 2, µ = 1.5, b1 = 1, b2 = 1

Figure 6.12: Graphical analysis to the u12(x, t) representing to periodic soliton by three–dim,

two–dim, and contour plotting with ϖ1 = −2, ϖ2 = −5, ϖ3 = 2, µ = 1.5, b1 = 1, b2 = 1

[45], radial basis function method [46], the G
′
/G−expansion technique [47], modified auxiliary equation

mapping approach [48], extended simple equation approach [49], generalized exponential rational function

approach [50], Lie group method [51], and improved sub equation method [52]. In this work, we apply the

auxiliary equation approach to the NLKS equation with the aid of mathematical software and explore a

variety of soliton solutions. However, the constructed solutions obtained here exhibit novel structures. As

shown in Figures 13.2–6.12, the results include kink waves, peakon bright solitons, peakon dark solitons,

periodic wave solitons with new structural forms, singular bright solitons, anti-kink waves, and several

other soliton structures.

Through detailed analysis and discussion, new results have been obtained for investigating various NLEEs,

demonstrating that the applied approach is more efficient, reliable, simple, precise, and powerful compared

to previous methods.

6.5 Conclusion

This study investigates novel soliton solutions to the NLKS equation using the auxiliary equation tech-

nique. The successful application of this method produced a variety of soliton structures, including kink

solitons, mixed bright and dark solitons, peakon bright solitons, periodic solitons, anti–kink solitons,
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peakon dark solitons, and several other solitary wave forms. The results demonstrate the effectiveness of

the applied approach in generating diverse solitary wave solutions and highlight its potential for explor-

ing a wide range of nonlinear models. The obtained solutions are illustrated graphically through contour

plots, as well as two– and three–dimensional visualizations. These newly derived solutions are expected

to be valuable in various domains, including quantum mechanics, nonlinear optics, soliton theory, optical

fibers, ocean dynamics, and other branches of physical sciences. Overall, the technique proves to be a

powerful and reliable tool for solving nonlinear models.
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Mathematical Modeling of Biofluids: An Application to Peristaltic-Ciliary

Transport in Human Oviduct in the Context of Hydrosalpinx

Hameed Ashrafa,† and Ayesha Siddiqaa

aDepartment of Mathematics, University of Okara, Okara, Pakistan.

Corresponding Author: a,†: hameedashraf09@uo.edu.pk

Abstract: Mathematical modeling of biofluids plays a crucial role in understanding the com-

plex transport processes that occur in various physiological systems within the human body.

This chapter deals with the peristaltic-ciliary transport mechanism in the context of oviductal

hydrosalpinx. A mathematical model is developed based on the hypothesis that oviductal fluid

accumulation in the oviduct of a patient with hydrosalpinx forms a porous medium, whose pore

spaces are filled with oviductal fluid. Conservation of mass and linear momentum, along with

Darcy’s law, govern the flow of fluids. A linearly viscous fluid characterized the oviductal fluid

and the growing embryo. Subsequently, the formulated partial differential equations are solved

to determine exact solutions. Analytic expressions for axial and radial velocity components,

residence time, pressure gradient, and stream functions, are derived. The varying effects of per-

tinent parameters are delineated on flow variables such as residence time and axial velocity.

The relevance of the current findings provides useful insight into peristaltic-ciliary transport

in the human oviduct affected by hydrosalpinx.

Keywords: Peristaltic-ciliary flow, Hydrosalpinx, Linearly viscous fluid, Human oviduct, Em-

bryo transport
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7.1 Introduction

In humans, oviducts serve as a critical component of the reproductive system, marking the initial stage

of life development. The female abdominal cavity contains a pair of elongated, muscular, and narrow

structures known as the oviducts, also referred to as Fallopian tubes or uterine tubes. The oviduct con-

sists of four regions: intramural, isthmus, ampulla, and infundibulum. Each oviduct is 0.5 cm to 1.2 cm

in width and 10 cm to 13 cm in length. Its principal role is to allow spermatozoa to pass through during

the preovulatory phase, to help the ovum exit the ovaries during ovulation, and, if fertilization takes

place at the ampulla, to transfer the embryo in the oviductal fluid to the fundus, the upper portion of

the uterus, where it can develop into a pregnancy [1, 2, 3, 4, 5]. A mucus membrane lining and peristaltic

contractions form the wall of the oviduct. Secretory goblet cells and ciliated cells are densely packed onto

the mucus membrane. The goblet cells secrete a little amount of fluid through the oviduct. The viability

of the embryo, ovum, and sperm is supported by this fluid. The oviductal fluid also offers an ideal setting

for the embryo’s early stages of growth. The embryo is propelled from the ampulla to the uterus by

means of the peristaltic contractions of the oviduct wall and the swaying movements of the cilia tips,

as opposed to sperm, which possess a self-propelling mechanism. Being in a continuous state, these two

systems combine to form a traveling wave. Consequently, during the first stages of human reproduction,

this traveling wave is the only one responsible for delivering the growing embryo to the uterus that is not

pregnant in order to deposit it [6, 7, 8, 9, 10, 11].

Hydrosalpinx is an oviductal pathology which occurs due to the occlusion at three different areas: prox-

imal, near the oviduct, at the fundus, mid-tubal, middle portion of the oviduct i. e., in the ampullar

region, and distal, at the end of the oviduct i. e., in the infundibulum region. Occlusion can be found at

one or more of these three places. These types of occlusions may be due to some injury or infection, as

a result of which the oviduct becomes swollen and engorged with oviductal fluid. A hydrosalpinx that

occurs due to occlusion at the fundus (near the oviduct) has adverse effects on the implantation of a

developing embryo. Such a situation gives rise to a mechanical obstacle by inducing fluid reflux, which

compels the developing embryo to adopt a direction opposite to the direction in which the travelling

waves propagate along the oviducts’ surfaces [12, 13, 14]. This situation in biomechanics is modelled by

treating the tissue as a porous medium and employing Darcy’s law. A porous media is one in which the

whole volume is divided into solid matrix and pore spaces. The oviductal fluid fills the pore spaces. In

its original formulation, the Darcy law is based on the Newtonian flow assumptions [15, 16, 17, 18].

Ashraf et al. [6, 7, 8, 9, 10] developed a mathematical model for peristaltic-cilia dynamics. The model

asserts that the mechanisms facilitating the transportation of the embryo within the oviductal fluid in

the human oviduct are peristalsis-cilia and the pressure gradient condition. Subsequently, Wang et al.

[11] employed this model. The researchers employed linearly viscous fluid, third-grade fluid, Johnson-

Segalman fluid, Carreau fluid, shear-rate-dependent viscoelastic fluid, and Phan–Thien–Tanner (PTT)

to characterize the properties of the developing embryo and oviductal fluid. The original biological prob-
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lem was modeled by approximating the converging human oviduct as a two-dimensional, narrow, uniform

tube of finite length. The effects of variations in involved parameters on flow variables, including velocity

and residence/residue time, were discussed. To the best of the authors’ knowledge, no previous research

has modelled the peristalsis-cilia and pressure gradient at the oviductal channel entrench induced fluid

flow in the context of hydrosalpinx. This indicates a significant gap in the existing literature, emphasiz-

ing the need for further research to develop an accurate mathematical model that effectively investigates

peristaltic-ciliary transport in the human oviduct relating to hydrosalpinx and to enhance our under-

standing of the phenomena associated with this condition.

The objective of this chapter is to theoretically provide the analysis that focuses attention on the biome-

chanics of hydrosalpinx and the transport characteristics of a developing embryo in the human oviduct.

We shall consider a mathematical model based on the hypothesis that the fundus near the oviduct is

occluded, due to which the oviduct is swollen and engorged with oviductal fluid in a patient with hydros-

alpinx, forming a porous medium within the oviduct whose pore spaces are filled with oviductal fluid. To

do this, we will examine the flow of an incompressible linearly viscous fluid through a porous medium

whose pore spaces are filled with linearly viscous fluid. The fluid flow within the oviductal channel is

driven by the traveling wave and pressure gradient conditions at the entrance. We obtain the expressions

for the velocity components and pressure gradient by solving the system of partial differential equations

for exact solutions. Through graphical analysis, we will see how changes in the pertinent parameters

affect axial velocity at various sagittal cross-sections. We will calculate residence time numerically in

MATHEMATICA and use graphical analysis at different sagittal cross-sections to see how the parame-

ters involved affect it. In the context of hydrosalpinx, the results will provide physical insight into the

peristaltic-ciliary transfer.

7.2 Problem Formulation & Mathematical Modelling

We consider the transport of a developing embryo in a woman, a patient with hydrosalpinx in which

oviductal fluid is accumulated in the oviduct. We propose a mathematical model for the flow of an

incompressible, linearly viscous fluid in a two-dimensional, narrow, finite, and symmetric channel of

mean half-width a through a porous medium. The pore spaces of this porous medium are filled with

oviductal fluid. The peristaltic contractions of the walls of the channel are of cyclic nature and the

swaying movements of the tips of cilia that line the interior surfaces of the channel work together to

generate the travelling waves. These travelling waves propagate along the two walls W1 and W2 at a

speed c and drive the fluid through the oviductal fluid that fills the pore spaces of the porous medium.

We assume Newtonian fluid as oviductal fluid. The origin is chosen at the midplane of the symmetric

channel. The geometries of the walls W1 and W2 respectively are defined by the following equations:

H̄
(
X̄, t̄

)
= a+ bsin

2π

λ

(
X̄ − ct̄

)
+Ab

2π

λ
cos

2π

λ

(
κ
(
X̄ − ct̄

))
sin

2π

λ

(
X̄ − ct̄

)
, (7.1)
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where we represent the sinusoidal wave amplitude with b, wavelength with λ, the material points maximum

displacement with Ab, wave speed with c, the constant with κ and metachronal wave amplitude with A

[6, 7, 8, 9, 10, 11].

Figure 7.1: Schematic diagram of the human oviduct.

In the laboratory frame of reference, the fundamental two-dimensional governing equations that gov-

ern the flow of an incompressible linearly viscous fluid through a porous medium, while eliminating

temperature effects and without body force, are [6, 7, 8, 9, 10]:

∂Ū

∂X̄
+
∂V̄

∂Ȳ
= 0, (7.2)

∂Ū

∂t̄
+ Ū

∂Ū

∂X̄
+ V̄

∂Ū

∂Ȳ
= −1

ρ

∂P̄

∂X̄
+ ν

[
∂2Ū

∂X̄2
+
∂2Ū

∂Ȳ 2

]
− ν

K
Ū, (7.3)

∂V̄

∂t̄
+ Ū

∂V̄

∂X̄
+ V̄

∂V̄

∂Ȳ
= −1

ρ

∂P̄

∂Ȳ
+ ν

[
∂2V̄

∂X̄2
+
∂2V̄

∂Ȳ 2

]
− ν

K
V̄ , (7.4)

where we denote the laboratory frame coordinates with (X̄, Ȳ ), velocity components with (Ū , V̄ ) re-

spectively in the directions X̄ and Ȳ , fluid constant density with ρ, pressure with P̄ , instant of time with

t̄, kinematic viscosity with ν, and permeability of the porous medium with K.

The coordinates (X̄, Ȳ ), the velocity components (Ū , V̄ ), the pressure P̄ , and the travelling wave H̄ in

the laboratory frame of reference are related to the normalized coordinates x and y, the components of

velocity u and v, the pressure p, and the travelling wave h in the moving frame of reference through the

following relations:

x =
2π(X̄ − ct̄)

λ
, y =

Ȳ

a
, u =

Ū − c

c
, v =

V̄ λ

2πac
, p =

P̄2πa2

µλc
, h =

H̄

a
. (7.5)

When we make use of normalized relations (15.18) into Eqs. (15.8)-(15.17), in turn utilizing the low

130 Chapter 7. Mathematical Modeling of Biofluids



Ptolemy Scientific Research Press https://pisrt.org/

Reynolds number and long wavelength assumptions in the subsequent equations, we finally get

∂u

∂x
+
∂v

∂y
= 0, (7.6)

∂2u

∂y2
− βu =

dp

dx
+ β, (7.7)

h (x) = 1 + ϕSin (x) + ϵϕCos (κx)Sin (x) , (7.8)

where we represent amplitude ratio with ϕ = b
a , metachronal wave parameter with ϵ = 2πA

λ , and β = 1
Da

in which Da = K
a2 is the Darcy number. The physical boundary conditions associated with the Eq. (15.19)

and Eq. (7.7) are of the following form:

∂u(x, 0)

∂y
= 0, (7.9)

u(x, h) = −1, (7.10)

v(x, 0) = 0, (7.11)

v(x, h) = −dh
dx
, (7.12)

dp(0)

dx
= −ξ. (7.13)

Here, ξ is the value of pressure gradient with which ovum enters from infundibulum region to ampullar

region in the oviductal channel. This condition in literature is termed as “pressure gradient condition at

the oviductal channel entrance” [6].

Eq. (7.7) is a second-order nonhomogeneous and linear partial differential equation, while Eq. (15.19)

is a first-order homogeneous and linear partial differential equation. In the next section, we will solve

this system subject to the boundary conditions (8.8)-(10.12) to seek the closed-form solutions to have

expressions for velocity components, pressure gradient, and residence time.

7.3 Solution of the problem

Eq. (7.7) upon solving for closed-form solution subject to boundary conditions (8.8) and (8.9), we finally

have

u(x, y) = −1 + β−1 dp

dx

[
cosh

(√
β y
)

cosh
(√
β (1 + ϕ sin (x) + ϵϕ cos (κx) sin (x))

) − 1

]
, (7.14)

which represents the axial velocity of the linearly viscous fluid within oviductal fluid through porous

medium.

Using Eq. (7.14) into the Eq. (15.19), in turn integrating with respect to ‘y’, one gets

v(x, y) = −β−1 d
2p

dx2

[
sinh

(√
β y
)

√
β cosh

(√
β (1 + ϕ sin (x) + ϵϕ cos (κx) sin (x))

) − y

]

7.3 Solution of the problem 131



Ptolemy Scientific Research Press https://pisrt.org/

+ β−1 dp

dx

(ϕ cos(x) + ϵϕ cos(x) cos(kx)− kϵϕ sin(x) sin(kx))

cosh2
(√
β (1 + ϕ sin (x) + ϵϕ cos (κx) sin (x))

)
× sinh

(√
β (ϕ cos(x) + ϵϕ cos(x) cos(kx)− kϵϕ sin(x) sin(kx))

)
sinh

(√
β y
)

+ C(x), (7.15)

where C(x) denotes for arbitrary function.

Making use of boundary condition (8.10) into Eq. (7.15), we get

v(x, y) = −β−1 d
2p

dx2

[
sinh

(√
β y
)

√
β cosh

(√
β (1 + ϕ sin (x) + ϵϕ cos (κx) sin (x))

) − y

]

+ β−1 dp

dx

(ϕ cos(x) + ϵϕ cos(x) cos(kx)− kϵϕ sin(x) sin(kx))

cosh2
(√
β (1 + ϕ sin (x) + ϵϕ cos (κx) sin (x))

)
× sinh

(√
β (ϕ cos(x) + ϵϕ cos(x) cos(kx)− kϵϕ sin(x) sin(kx))

)
sinh

(√
β y
)
. (7.16)

Eq, (7.16) represents the vertical velocity of the linearly viscous fluid within oviductal fluid through

porous medium. Invoking boundary condition (8.11) into Eq. (7.16), after solving the resultant equation

for pressure gradient dp
dx , one gets after simplification

dp

dx
=

β
√
β (A0 + 1 + ϕ sin (x) + ϵϕ cos (κx) sin (x))

tanh(
√
β(1 + ϕ sin (x) + ϵϕ cos (κx) sin (x)))−

√
β(1 + ϕ sin (x) + ϵϕ cos (κx) sin (x))

, (7.17)

where we denote the arbitrary constant with A0. Using pressure gradient condition at the oviductal

channel entrance (10.12) into Eq. (7.17), we get the value of this arbitrary constant as follows:

A0 = −1− ξ

β
√
β

[
tanh(

√
β)−

√
β
]
. (7.18)

The residence time refers to the period during which a developing embryo remains in the human oviduct.

During this time, complete and proper mitotic divisions occur in the embryo. This residence time is

crucial for ensuring that these mitotic divisions are complete and proper. The residence time tresidence

in dimensionless form is defined as [7, 8, 9, 10]:

tresidence =

∫ L

0

1

u(x, y)
dx. (7.19)

Eq. (7.19) with the help of Eq. (7.14) will yield the tresidence. We will solve the resultant equation

numerically in MATHEMATICA.

Remark : We recovered the expressions for velocity components (u, v) and pressure gradient dp
dx in the

absence of porous medium when we make β → 0 respectively into Eqs. (7.14), (7.16) and (7.17):

u(x, y) = −1 +
1

2

dp

dx

[
y2 − (1 + ϕ sin (x) + ϵϕ cos (κx) sin (x))2

]
, (7.20)
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v(x, y) = −1

6

d2p

dx2
[
y3 − 3y(1 + ϕ sin (x) + ϵϕ cos (κx) sin (x))2

]
+
dp

dx
(ϕ cos(x) + ϵϕ cos(x) cos(kx)− kϵϕ sin(x) sin(kx))

× (1 + ϕ sin (x) + ϵϕ cos (κx) sin (x))y, (7.21)

dp

dx
=

3 [1− (1 + ϕ sin (x) + ϵϕ cos (κx) sin (x))]− ξ

(1 + ϕ sin (x) + ϵϕ cos (κx) sin (x))3
. (7.22)

7.4 Results and Discussion

A hypothetical model of fluid flow through a porous medium within a finite, symmetric, two-dimensional

channel of narrow width is proposed. The proposed model is implemented in a woman, a patient of

hydrosalpinx in which oviductal fluid is accumulated in the oviduct due to occlusion at the fundus, near

the oviduct. We choose a = 1.0 and L = 2λ (where λ = 2π), respectively, as the averaged value for the

mean half-width and length of the oviduct (from ampullar region to intramural region). In the previous

section, the expressions for velocity components and pressure gradient are determined.

The quantitative impacts of the amplitude ratio ϕ, metachronal wave parameter ϵ, Darcy number Da, and

pressure gradient at the oviductal channel entrance ξ that emerged in the current analysis are estimated

in this section. As shown in graphs (see Figs. 2-5), we developed numerical codes using MATHEMATICA

to obtain numerical assessments of the analytical results presented in the preceding section. Additionally,

we will use numerical computation to calculate the residence time in this section (refer to Fig. 6).

7.4.1 Velocity Profile

The travelling wave (10.13) induces fluid flow through the pore spaces of the porous medium filled

with oviductal fluid. The induced flow alternates forward and backward through these pore spaces. The

backward flow mainly occurs in a region with a local maximum in channel width, while the forward flow

occurs in a region with a local minimum in channel width. As the channel’s cross-section widens, the flow

direction shifts in the opposite direction of the traveling waves’ propagation. Wang et al. [11] determined

that to comprehend the variation effects of involved parameters, it is better to consider different sagittal-

cross sections. Therefor, in this analysis, we choose five sagittal-cross sections ( 2π3 , y), (4π3 , y) and (2π,

y), ( 8π3 , y), and (10π3 , y) and will observe the variations effects of Da, ϕ, ϵ, and ξ on axial velocity. For

this purpose, we plotted Figs. 2-5. Fig. 2 shows the variation effects of Da on axial velocity at the chosen

sagittal-cross sections. We perceive that with an increase in Da, the axial velocity increases at all chosen

sagittal-cross sections. With an increase in Da, the permeability of the porous media increases. In turn,

higher permeability results in less resistance to flow. In Fig. 3, we delineated the variation effects of ϕ on

axial velocity at the chosen sagittal cross-section. From this figure, it is delineated that by the increase

in ϕ, the overall axial velocity increases at the sagittal-cross sections (4π3 , y) and ( 10π3 , y). On the other
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hand, it diminishes by the increase in ϕ at the sagittal-cross sections ( 2π3 , y) and ( 8π3 , y). The variation

effects in ϕ make no impact on axial velocity at the sagittal-cross section (2π, y). We display Fig. 4 to

elucidate the variation effects of ϵ on axial velocity at the chosen sagittal-cross sections. It is elucidated

from this figure that there are minute effects of the variations in ϵ on axial velocity. The axial velocity

increases minutely at the sagittal-cross sections ( 2π3 , y) and ( 4π3 , y) whereas it decreases at the sagittal-

cross sections ( 8π3 , y), ( 10π3 , y) with an increase in ϵ. Likewise, the effect of ϕ, the variation in ϵ also

makes no impact on the axial velocity at the sagittal-cross section (2π, y). The variation effects of both

ϕ and ϵ are consistent with the results of Wang et al. [11]. The purpose of Fig. 5 is to note the variation

effects of ξ on the axial velocity at the chosen sagittal-cross sections. We noted that at all sagittal-cross

sections the axial velocity increases by the increase in ξ. The greater the value of the pressure gradient

at the oviductal channel entrance, the linearly viscous the fluid within the oviductal fluid flow, with a

higher velocity in the porous medium.

Figure 7.2: Axial velocity plots for variation effects of Da on axial velocity distribution at five

different sagittal-cross sections.

Figure 7.3: Axial velocity plots for variation effects of ϕ on axial velocity distribution at five different

sagittal-cross sections.
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Figure 7.4: Axial velocity plots for variation effects of ϵ on axial velocity distribution at five different

sagittal-cross sections.

Figure 7.5: Axial velocity plots for variation effects of ξ on axial velocity distribution at five different

sagittal-cross sections.

7.4.2 Residence Time

In order to perceive the variation effects of Da, ϕ, ϵ, and ξ on residence time we chosen frontal-cross

section (x, 0.3) and displayed Fig. 6. We perform numerical integration of Eq. (7.19) by developing

computer codes in MATHEMATICA to plot residence time against oviductal channel length graph. Fig.

6(a) indicates a decrease in residence time with increasing values of Da. In other words, we can say that

with an increase in Da, the permeability of the porous media increases, i. e. the pore size of the media

increases. In turn, resistance to flow decreases, as a result of which the fluid residence decreases. As ϕ

and ϵ increase, the residence time increases, as seen in Fig. 6(b) and Fig. 6(c). We find a relationship

between the amplitudes of the sinusoidal and metachronal waves and this increase in residence time. The

residence time increases in conjunction with the amplitudes of the sinusoidal and metachronal waves. As

both waves advance with larger amplitudes, the residence time increases. Fig. 6(d) shows that residence

time decreases when ξ increases. It means the relation of the pressure gradient at the oviductal channel

entrance with residence time is inversely proportional.

7.4 Results and Discussion 135



Ptolemy Scientific Research Press https://pisrt.org/

Figure 7.6: Plots of residence time against oviductal channel length for variation effects of (a) Da, (b)

ϕ, (c) ϵ and (d) ξ on residence time distribution.

7.5 Transport of a Developing Embryo in the Oviduct

This model of fluid flow in a finite symmetric two-dimensional oviductal channel of narrow width demon-

strates the transport of the embryo within the oviductal fluid in humans, particularly in the context of

hydrosalpinx [1, 2, 3, 4, 5]. The results obtained in the present theoretical analysis showed that both the

axial velocity and the residence time are strongly dependent on Da, ϕ, ϵ, and ξ. The primary concern of

the present analysis was to observe the variation effects of emerging parameters at five different sagittal

cross-sections on axial velocity and one frontal-cross section on residence. Enhancement in the axial flow

velocity with the increase in Da and ξ was evident. With that said, the variation effects of ϕ and ϵ vary

and depend mainly on the choice of sagittal-cross sections. Increasing the amplitude of both the sinusoidal

wave and the metachronal wave enhances the residence time. These patterns of fluid flow may be applied

to the transport of a developing embryo within the oviductal fluid in a moving frame of reference in the

human oviduct in the context of hydrosalpinx.

7.6 Concluding Remarks

In the present chapter, we have addressed the problem of peristalsis-cilia and pressure gradient at the

oviductal entrance, inducing linearly viscous fluid within oviductal fluid flow in a finite symmetric two-

dimensional narrow channel. The purpose of this problem has been to analyze the transportation of a

developing embryo within the oviductal fluid in the human oviduct in the context of hydrosalpinx. We

used the mathematical model proposed by Ashraf et al. [6, 7, 8, 9, 10]. We have solved the system of

partial differential equations for closed-form solutions. We have observed the variation effects of involved
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parameters like amplitude ratio ϕ, metachronal wave parameter ϵ, Darcy number Da, and pressure

gradient at the oviductal channel entrance ξ on axial velocity and residence time. We have choose five

different sagittal-cross sections. We summarized the main findings of the analysis as follows:

• The variation effects of ϕ and ϵ on axial velocity are diverse when we seek the variations in these

parameters at the chosen sagittal cross-sections. The effects of ϵ on axial velocity are minute. When

the values of Da and xi increase, the axial velocity at all chosen sagittal cross-sections also increases.

• The residence time decreases with an increase in the Da and ξ, whilst it increases with an increase in

the ϵ and ϕ.

• The porous medium is better treated as a porous medium and employs Darcy’s law. The greater the

permeability of the porous media, the lower the resistance to the fluid within the oviductal fluid.

The findings of the present analysis suggest that higher permeability causes less resistance for the fluid,

according to Darcy’s law, which aids in understanding how flow behaves within porous medium. This

knowledge is essential for researching how a developing embryo is transported through the oviductal fluid,

particularly in patients with hydrosalpinx, where fluid dynamics are essential.
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CHAPTER 8

Rotational flow of fractional second grade fluid through a pipe under time

dependent stress on the boundary

8.1 Introduction

Fluid motion in cylindrical domain has vast application in pharmaceutical engineering, civil engineer-

ing, agri engineering and also in petroleum industry [1]. In reality it is one of the most worth able problem
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related to translational or rotational objects. In our daily life we have to face many fluids around us. On

the basis of stress –strain relationship these fluids are categorized into two types i.e. Newtonian fluids

(have constant dynamic viscosity) and non-Newtonian fluids (have not constant dynamic viscosity).

In literature there are mainly two sorts of solution are used, those are exact and numerical solutions.

Exact solutions are more authentic and reliable as compared to numerical one. Numerical solutions are

the approximations of analytical, which are employed to justify the exact results or to solve problem

which have no analytic solution. The first exact solution related to motions of non-Newtonian fluids

suchlike second grade,Maxwell and Oldroyd–B fluids in cylindrical domains were studied by Ting [2],

Srivastava [3] also Waters and King [4] respectively. Fetecau et. al [5] studied motion of circular cylinder

filled by generalized oldroyed B fluid. Rotational motion of same fluid situated in an annulus are studied

by Tong et. al [8], Sadiq et. al [10] and Tahir et. al [11]. Translational flow of an Oldroyd B fluid under

different circumstances studied by Tong et. al [9]. Burgers’ fluid in an annular pipe, analyzed by Khan

et. al [7]. Detailed study about viscoelastic fluid has been made by Fetecau et. al [6].

In the recent times, fractional calculus has attained great achievements for the explanation of complex

dynamics e.g. relaxation, oscillation and also for viscoelastic behaviour. Germat [12] suggested firstly the

application of fractional derivatives in perspective of viscoelasticity. After this Bagley and Torvic [13]

validated the theory of viscoelasticity of coiling polymers by the use of fractional derivatives . Markis

et al. [14] obtained better approximations for experimental statistics by the use of fractional Maxwell

model.

Since last few decays non-Newtonian fluids (milk, juices, tomato-ketchup, cooking-oil, tooth pastes,

perfumes, spray, hair oil, butter and custard etc.) has attained great importance from researchers due to

their broad applications in practical life. Therefore, the study of non-Newtonian fluids particularly second

grade fluid is very vital and significant. Jamil et al. [15] studied longitudinal and torsional motions of

second grade fluid along with fractional derivative in cylindrical domain. Amir and Gulzman [16], analyzed

the motion of second grade fluid, situated in permeable space. They obtained general solutions were

represented in terms of Fox H-functions. Nehad [17] examined the thermal analysis for second grade fluid

over circular cylinder with the help of Caputo-Febrazio fractional derivative technique while Nauman et

al. [18] assessed the velocity field and shear stress for non-Newtonian flow i.e. fractional second grade

fluid over a circular cylinder.

In present work we develop governing equations in terms of shear stress; however the classical way to

study the fluid problem was taking governing relations in terms of velocity field. Non-differential form of

boundary condition instead of differential form is taken. Only few researchers [19,20] were employing this

new innovative approach to solve the fluid problem with the help of fractional derivatives. The current

flow model is investigated in terms of Laplace and Hankel transforms. In the end, graphical analysis also

given.
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8.2 Governing equations

Consider an infinite circular cylinder of radius R in which an incompressible fractional second grade

fluid is in rest position initially. At time t > 0, the it starts rotating about its axis under the influence

of time dependent stress on the boundary. Due to shear stress, fluid also start rotational motion and

velocity is of the form [19, 20]

V = V(ϵ, t) = ω(ϵ, t)eθ, (8.1)

where eθ is unit vector in the θ direction, the constraint of incompressibility for above flow model is

satisfied ultimately. At the start whole system is at rest so

τ(ϵ, 0) = 0, S(ϵ, 0) = 0. (8.2)

The constitutive equation of second grade fluid, purpose that only non zero stress τ(ϵ, t) = Sϵθ(ϵ, t) and

it also leads to significant partial differential equation

τ(ϵ, t) =

(
µ+ α1

∂

∂t

)(
∂

∂ϵ
− 1

ϵ

)
ω(ϵ, t). (8.3)

In the absence of body forces, the relation for linear momentum becomes

ρ
∂ω(ϵ, t)

∂t
=

(
∂

∂ϵ
+

2

ϵ

)
τ(ϵ, t) (8.4)

Since we are dealing with a problem in which the shear stress is taken on the boundary so we adopt the

procedure [22] and to get rid of the velocity field from Eqs. (15.10) and (15.17), we obtain

∂τ(ϵ, t)

∂t
= (ν + α ∂

∂t )

[
∂2τ(ϵ,t)

∂ϵ2 + 1
ϵ
∂τ
∂ϵ − 4 τ(ϵ,t)

ϵ2

]
. (8.5)

By apply fractional operator [23]

Dφ
t χ(t) =


1

Γ(1−φ)
d
dt

∫ t

0
χ(τ)

(t−τ)φ dτ, 0 ≤ φ < 1;

d
dtχ(t), φ = 1,

(8.6)

where Γ(·) is the Gamma function, the Eq. (15.18) becomes

∂τ(ϵ, t)

∂t
= (ν + αφDφ)

[
∂2τ(ϵ, t)

∂ϵ2
+

1

ϵ

∂τ

∂ϵ
− 4

τ(ϵ, t)

ϵ2

]
, (8.7)
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and suggestive boundary conditions are

τ(ϵ, t)|ϵ=R = ftm; t > 0, d ≥ 0 (8.8)

τ(ϵ, t)|t=0 = 0 =
∂τ(ϵ, t)

∂t
|t=0, ϵ ∈ [0, R]. (8.9)

8.3 Solution of the flow problem

8.3.1 Calculation of the Stress field

Now firstly we apply Laplace transformation to Eqs. (8.7) and (8.8)

qτ̄(ϵ, q) = [ν + αφqφ]

[
∂2τ̄(ϵ, q)

∂ϵ2
+

1

ϵ

∂τ̄(ϵ, q)

∂ϵ
− 4τ̄(ϵ, q)

ϵ2

]
, (8.10)

τ̄(R, q) = f
m!

qm+1
. (8.11)

Finite Hankel and inverse Hankel transformation are [24]

χH(ϵn) =

∫ R

0

ϵχ(ϵ)J2(ϵϵn)dϵ (8.12)

χ(ϵ) =
2

R2

∞∑
n=1

J2(ϵϵn)

[J ′
2(Rϵn)]

2
χH(ϵn), (8.13)

where

J́2(Rϵn) = J1(Rϵn), (8.14)

here J2(−) is the Bessel function of first kind and of 2nd order also ϵn are the positive distinct roots of

J2(Rϵn) = 0. Multiplying Eq. (10) with rJ2(ϵϵn) then integrating from 0 to R and by using identity [25]

we have, ∫ R

0

ϵJ2(ϵϵn)

[
∂2

∂ϵ2
+

1

ϵ

∂

∂ϵ
− 4

ϵ2

]
τ̄(ϵ, q) = −RϵnJ ′

2(Rϵn)τ̄(R, q)− ϵ2nτ̄H(ϵn, q). (8.15)

Now by applying Hankel transformation and using Eqs. (8.11), (8.14) and (10.14)

τ̄H(ϵn, q) = −RϵnJ1(Rϵn)
fm!

qm+1

[
ν + αφqφ

][
1

q + νϵ2n + ϵ2nα
φqφ

]
, (8.16)
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above equation can be written as

τ̄H(ϵn, q) =
−RJ1(Rϵn)fm!

ϵnqm+1
+
RJ1(Rϵn)fm!

ϵn

1

qm[q + νϵ2n + ϵ2nα
φqφ]

. (8.17)

By using inverse Hankel Transformation on Eq. (10.16) and considering identity

ϵ2 = −2R

∞∑
n=1

J2(ϵϵn)

ϵnJ1(Rϵn)
, (8.18)

we get

τ̄(ϵ, q) =

(
ϵ

R

)2
fm!

qm+1
+

2fm!

R

∞∑
n=1

J2(ϵϵn)

ϵnJ1(Rϵn)

1

qm(q + νϵ2n + ϵ2nα
φqφ)

. (8.19)

By applying the relation

1

a− b
=

∞∑
k=0

bk

ak+1
(8.20)

we obtain

q−m

q + νϵ2n + ϵ2nq
φ
=

∞∑
k=0

(−νϵ2n)k
q−φk−m−φ

(q1−φ + αφϵ2n)
k+1

. (8.21)

Substituting Eq. (8.21) in Eq. (8.19), the result is

τ̄(ϵ, q) =

(
ϵ

R

)2
fm!

qm+1
+

2fm!

R

∞∑
n=1

J2(ϵϵn)

ϵnJ1(Rϵn)

∞∑
k=0

(−νϵ2n)k
q−φk−m−φ

(q1−φ + αφϵ2n)
k+1

. (8.22)

Now we apply inverse Laplace Transformation to (8.22) and using generalize Gℓ, ȷ, ζ(γ , t) function [26]

Gb, c, σ(γ , t) = L−1

{
sc

(sb − γ)σ

}
=

∞∑
κ=0

γκ Γ(σ + κ)

Γ(σ)Γ(κ+ 1)

t(σ+κ)b−c−1

Γ[(σ + κ)b− c]
; Re(bσ − c) > 0, Re(s) > 0,

∣∣∣ γ
sb

∣∣∣ < 1, (8.23)

τ(ϵ, t) =

(
ϵ

R

)2

ftm +
2fm!

R

∞∑
n=1

J2(ϵϵn)

ϵnJ1(Rϵn)

∞∑
k=0

(−νϵ2n)kG1−φ,−φk−φ−m,k+1(−αφϵ2n, t). (8.24)

8.3.2 Calculation of the velocity field

To find velocity field, the obtained shear stress given in Eq. (10.31), will be used.

Eq. (15.17) can be written as

∂ω(ϵ, t)

∂t
=

1

ρ

∂τ(ϵ, t)

∂ϵ
+

2τ(ϵ, t)

ρϵ
. (8.25)
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By Using (10.31) and (10.32), we get

∂ω(ϵ, t)

∂t
=

1

ρ

ftm

R2
(4R) +

2fm!

ρR

∞∑
n=1

J1(ϵϵn)

J1(Rϵn)

∞∑
k=0

(−νϵ2n)kG1−φ,−φk − φ−m, k + 1(−αφϵ2n, t). (8.26)

Integrating above relation with respect to time

ω(ϵ, t) =
4fϵtm+1

ρR2(m+ 1)
+

2fm!

ρR

∞∑
n=1

J1(ϵϵn)

J1(Rϵn)

∞∑
k=0

(−νϵ2n)kG1−φ,−φk − φ−m− 1, k + 1(−αφϵ2n, t). (8.27)

8.4 Limiting cases

8.4.1 Ordinary Second Grade Fluid

For φ→ 1, Eqs. (10.31) and (10.34) implies that

τ(ϵ, t) = (
ϵ

R
)2ftm +

2fm!

R

∞∑
n=1

J2(ϵϵn)

ϵnJ1(Rϵn)
{

∞∑
k=0

(−νϵ2n)kG0,−k −m− 1, k + 1(−αϵ2n, t)}, (8.28)

ω(ϵ, t) =
4fϵtm+1

ρR2(m+ 1)
+

2fm!

ρR

∞∑
n=1

J1(ϵϵn)

J1(Rϵn)

∞∑
k=0

(−νϵ2n)kG0,−k −m− 2, k + 1(−αϵ2n, t), (8.29)

which are the stress and velocity fields for ordinary second grade fluid performing similar motion. By

using identity
∞∑
k=0

(−νϵ2
n
)kG0,−k−m−1, k+1(−αϵ2n , t) =

(
− 1

ν

)m (1 + αϵ2
n
)m−1

ϵ2m
n

×

exp( −νϵ2
n
t

1 + αϵ2
n

)
−

m−1∑
j=0

1

j !

( −νϵ2
n
t

1 + αϵ2
n

)j
 m = 1, 2, 3, ..., (8.30)

Eqs. (10.35) and (10.36)can be written as

τ(ϵ, t) = (
ϵ

R
)2ftm +

2fm!

R

∞∑
n=1

J2(ϵϵn)

ϵnJ1(Rϵn)

×
(
− 1

ν

)m (1 + αϵ2
n
)m−1

ϵ2m
n

exp( −νϵ2
n
t

1 + αϵ2
n

)
−

m−1∑
j=0

1

j !

( −νϵ2
n
t

1 + αϵ2
n

)j
 m = 1, 2, 3, ..., (8.31)

ω(ϵ, t) =
4fϵtm+1

ρR2(m+ 1)
+

2fm!

ρR

∞∑
n=1

J1(ϵϵn)

J1(Rϵn)

×
(
− 1

ν

)m (1 + αϵ2
n
)m+1

ϵ2(m+1)
n

exp( −νϵ2
n
t

1 + αϵ2
n

)
−

m∑
j=0

1

j !

( −νϵ2
n
t

1 + αϵ2
n

)j
 m = 1, 2, 3, ..., (8.32)

By choosing m = 0 in Eq. (8.31), we get

τ(ϵ, t) = f

(
ϵ

R

)2

+
2f

R

∞∑
n=1

J2(ϵϵn)

ϵnJ1(Rϵn)

[
1

1 + αϵ2
n

exp

( −νϵ2
n
t

1 + αϵ2
n

)]
(8.33)
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The Eq. (8.33) was derived by Fetecau et al. [27, Eq.(4.7)]

8.4.2 Newtonian fluid

By taking α→ 0 in Eqs. (10.35), (10.36) and (8.33) we get

τ(ϵ, t) = (
ϵ

R
)2ftm +

2fm!

R

∞∑
n=1

J2(ϵϵn)

ϵnJ1(Rϵn)

∞∑
k=0

(−νϵ2n)ktk+m

(k +m)!
, (8.34)

,

ω(ϵ, t) =
4fϵtm+1

ρR2(m+ 1)
+

2fm!

ρR

∞∑
n=1

J1(ϵϵn)

J1(Rϵn)

∞∑
k=0

(−νr2n)ktk+m

(k +m)!
, (8.35)

τ(ϵ, t) = f

(
ϵ

R

)2

+
2f

R

∞∑
n=1

J2(ϵϵn)

ϵnJ1(Rrϵn)
e−νϵ2

n
t. (8.36)

. These are the outcomes for Newtonian fluid for both velocity and stress fields . The solution obtained

by Fetecau et al. [27, Eq.(4.11)] recovered as Eq. (8.36).

8.5 Numerical Results and discussion

In the present study, rotational motion of fractional second grade fluid in a circular pipe is studied.

Initially the fluid and cylinder both are at rest. The motion is developed by the influence of the non

differential shear stress on the surface of the cylinder. The fluid gradually set in its rotational motion due

to couple applied by the cylinder on the fluid. The exact solution represented by Eqs. (10.31) and (10.34)

are derived by means of finite Hankel and Laplace transforms. The obtained solutions are represented in

terms og generalized function to increase the productivity of results. We also find solution for both cases

i.e. ordinary second grade and Newtonian fluids. To enhance the understanding of the results, graphical

analysis also given in the end.

The impact of time on velocity and shear stress is represented by Fig. 13.2. It is clear that both are

increasing functions of time. Fig. 8.4 represent the impact of constant f on stress and velocity functions.

The behaviour of both functions is similar to time. The effect of fractional parameter φ on velocity and

stress fields is represented by Fig. 8.3. It is noted that velocity is decreasing but stress is increasing

function of φ. Fig. 14.2 depicts the effect of α on velocity and tangential stress which is exactly opposite

to φ. Fig. 8.5 show the comparison of different fluid model. In all figures, value of velocity nd stress fields

are zero at the center of the cylinder and very smoothly increase up to maximum at the boundary of the

pipe. All the graphs satisfied all initial and boundary conditions.

In graphical explanation we note following aspects

• It is observed that both fields(velocity and stress) are increasing function of time.Also noted that the

value of both fields goes on decreasing from maximum (on the boundary) to minimum value (zero)
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Figure 8.1: Variation in velocity field ω(r, t) and shear stress τ(r) given by Eqs. (10.31) and (10.34),

for different values of t and R = 1,m = 1, ν = 0.003, f = 2, α = 0.88, φ = 0.5, ρ = 900

smoothly inside the cylinder up to center.

• Increasing the value of fractional parameter the stress increases but velocity decreases.

• The impact of material constant α on velocity and stress functions is exactly opposite to fractional

parameter.

• The influence of constant f is opposite to time.

• It is clear that Newtonian fluid is quickest as compared to current model i.e. fractional second grade.

• The outcomes results for ordinary second grade and Newtonian fluids obtained by Fetecau et al. [27,

Eq.(4.7), (4.11)] are recovered.

• In all figures, SI units are used.

• All the roots are approximated by ϵn = (4n− 3) π
4R .
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Figure 8.2: Variation in velocity field ω(r, t) and shear stress τ(r) given by Eqs.(10.31) and (10.34, for

different values of α and R = 1,m = 1, ν = 0.003, f = 2, φ = 0.45, ρ = 900, t = 5
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Figure 8.3: Variation in velocity field ω(r, t) and shear stress τ(r) given by Eqs.(10.31) and (10.34, for

different values of φ and R = 1,m = 1, ν = 0.003, f = 2, α = 0.71, ρ = 900, t = 2

148 Chapter 8. Rotational flow under time dependent stress on the boundary



Ptolemy Scientific Research Press https://pisrt.org/

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

f = 1

f = 2

f = 3

f = 4

(a)

r

ω
(r

)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

f = 1

f = 2

f = 3

f = 4

(b)

r

τ(
r)

ω
ε(

)
τ
ε(

)

ε

ε

Figure 8.4: Variation in velocity field ω(r, t) and shear stress τ(r) given by Eqs.(10.31) and (10.34, for

different values of f and R = 1,m = 1, ν = 0.003, α = 0.88, φ = 0.5, ρ = 900, t = 1
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Abstract: Hepatitis infections pose a persistent global health challenge, demanding advanced

modeling techniques to understand their complex dynamics. This chapter introduces a novel

framework that integrates a multi-scale, mechanistic model of hepatitis transmission with the

power of Deep Neural Networks (DNNs). We move beyond traditional solvers by employing

Physics-Informed Neural Networks (PINNs) to solve the system of nonlinear ordinary differ-

ential equations. This approach uses automatic differentiation to ensure the learned solutions

strictly adhere to the underlying biological laws described by the model. Our DNN-based solver

demonstrates remarkable accuracy and robustness, efficiently handling noisy synthetic and

clinical data where classical methods may struggle. We leverage this framework not only for

simulation but also for sensitivity analysis and parameter estimation, identifying key drivers

of disease spread and persistence, such as transmission rate and viral production. The primary

novelty of this work is the successful application of PINNs to multi-scale infectious disease

modeling, specifically for hepatitis. This chapter provides a scalable, data-efficient toolkit that

bridges mechanistic understanding with data-driven learning, offering significant potential for

improving clinical intervention strategies and public health policy planning.

Keywords: Hepatitis Dynamics; Deep Neural Networks (DNNs); Neural Network Solvers; Pa-
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9.1 Introduction

The global burden of hepatitis remains a critical public health challenge, with chronic and acute infections

affecting millions worldwide, leading to severe liver diseases and significant mortality [1, 2, 3, 4, 5, 6].

The complex nature of hepatitis transmission and progression, involving multiple biological scales–from

within-host viral dynamics to population-level disease spread–necessitates advanced modeling approaches

to better understand and control the disease. Traditional mathematical model, particularly compart-

mental ordinary differential equation (ODE) systems, have provided foundational insights into hep-

atitis dynamics by categorizing populations into susceptible, exposed, infected, and recovered classes

[7, 8, 9, 10, 11, 12, 13]. However, these models often face challenges when dealing with non-linearities, pa-

rameter uncertainties, and computational inefficiencies, especially when integrating multiscale biological

processes and real-world data.

There is an increasing interest in using data-driven techniques to complement and enhance mech-

anistic models in infectious disease epidemiology, with the rapid advancement of artificial intelligence,

particularly deep learning. Recent advances in deep learning have significantly enhanced the modeling

and interpretation of complex dynamical systems across diverse domains. Explainability in deep neural

networks (DNNs) has been extensively studied, with methods like feature attribution and surrogate mod-

els enabling transparency in high-dimensional applications, as surveyed by Samek et al. [14]. In dynamical

systems, physics-guided deep learning has emerged as a powerful framework, integrating domain knowl-

edge with data-driven approaches to improve generalizability, as highlighted by Wang et al. [15]. Similarly,

Huang et al. [16] explore the synergy between partial differential equations (PDEs) and DNNs, demon-

strating their efficacy in solving high-dimensional PDEs with nonlinear dynamics. Applications extend

to epidemiology, where Mustafa et al. [17] employ DNNs to model Marburg virus dynamics, showcas-

ing their utility in predictive healthcare analytics. The intersection of machine learning and nonlinear

dynamics is further emphasized by Tang et al. [18], who discuss how DNNs capture chaotic and network-

driven phenomena. Koopman operator theory, combined with DNNs, offers a data-driven paradigm for

global linearization of nonlinear systems, as investigated by Yeung et al. [19], while Ogunmolu et al. [20]

leverage deep dynamic networks for nonlinear system identification. Beyond engineering, Durstewitz et

al. [21] illustrate the transformative role of DNNs in psychiatry, modeling complex neural and behavioral

data. Collectively, these studies underscore the versatility of deep learning in deciphering and predicting

nonlinear behaviors, motivating their adoption in interdisciplinary research.

Deep learning and neural networks have made it much easier to model and analyze complex nonlin-

ear dynamical systems. Wang et al. [22] demonstrated the efficacy of deep neural networks (DNNs) in

functional data analysis, highlighting their capability to capture intricate patterns in high-dimensional

data. Similarly, Shobana et al. [23] proposed a novel recurrent neural network (RNN) architecture for

system identification, providing a comparative study on stability and performance in nonlinear dynamics.

The application of DNNs in model order reduction has been explored by Eivazi et al. [24], who success-
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fully reduced the computational complexity of unsteady flow simulations while preserving dynamical

features. Further extending these approaches, Aprile [25] employed deep learning-based Koopman anal-

ysis for model reduction and linearization of physiological systems, emphasizing the role of data driven

methods in simplifying high-dimensional dynamics. Huynh [26] contributed to this domain by integrating

domain-specific knowledge into machine learning frameworks, enhancing interpretability and robustness

in multi-scale modeling. Additionally, Guo et al. [27] reviewed dynamic neural network structures, un-

derscoring their adaptability in real-time applications and complex system modeling. Collectively, these

studies illustrate the transformative potential of deep learning in addressing challenges related to non-

linear dynamics, model reduction, and system identification, providing a strong foundation for further

research in this field.

Our study proposes a hybrid modeling framework that combines the interpretability of mechanistic

SEIR-type hepatitis models with the flexibility of deep neural networks (DNNs), leveraging automatic

differentiation for efficient parameter estimation and sensitivity analysis [28]. This approach captures viral

load kinetics and treatment effects, offering a multi-scale perspective to improve hepatitis research [29].

Clinically, it enables personalized treatment strategies, while public health applications include evaluating

outbreak containment and vaccination programs. The integration of mechanistic modeling with machine

learning also advances scientific machine learning, with potential applications to other infectious diseases

[30]. Overall, this framework bridges biology, mathematics, and AI to enhance hepatitis control efforts.

This work introduces a novel multi-scale mathematical model for hepatitis that integrates population-

level SEIR dynamics with within-host viral load progression, and develops a pioneering Physics-Informed

Neural Network (PINN) framework to solve the resulting complex, nonlinear system. [31] Our approach

leverages deep learning’s universal approximation capabilities to handle dynamics where classical solvers

may fail, while maintaining interpretability through embedded physical constraints. The methodology

demonstrates exceptional robustness in handling real-world data imperfections, successfully assimilating

noisy clinical data while maintaining predictive accuracy. Furthermore, the research provides practical

tools for public health decision-making by identifying critical intervention points through sensitivity

analysis and enabling rapid scenario testing for emerging strains and treatment strategies.

This chapter is organized as follows: In Section 9.2, we propose a new mathematical model by incor-

porating the viral load effect. In Section 9.3, we analyze our proposed mathematical model qualitatively,

establishing the positivity and feasibility of the model. The next Section 9.4, presents the deep neural

network approximation framework, highlighting the data loss, total loss, and neural network architecture

including the network topology under the physics informed neural network (PINN) paradigm. Section 9.5

provides further qualitative analysis, including the disease-free equilibrium point, the basic reproduction

number, and the endemic equilibrium point. In Section 9.6, the PINN is trained by minimizing a com-

posite loss function that integrates model dynamics and data constraints. Finally, Section 9.7 presents

the graphical results along with a discussion and interpretation of the outcomes. At the end, Section 9.8

describes the concluding remarks and future directions.
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9.2 Mathematical Model Formulation

In this chapter we introduced a new mathematical model of hepatitis including susceptible, exposed,

infected, recovered and viral load in host populations. The model incorporates both direct and indirect

transmission routes, allowing for a more comprehensive understanding of disease dynamics. Additionally,

our framework introduces three key innovations to hepatitis modeling, including a hybrid mechanistic-

data-driven approach that combines traditional compartmental modeling with deep neural networks, en-

abling both interpretability and flexibility. End-to-end differentiability through automatic differentiation,

permitting efficient parameter estimation and sensitivity analysis without finite-difference approximation.

Universal function approximation capabilities of neural networks to handle complex, non-linear dynamics

where classical solvers may fail or require restrictive assumptions. The hepatitis transmission dynamics

are governed by the coupled nonlinear system:

dS

dt
= Λ− βSI − µS

dE

dt
= βSI − (α+ µ)E

dI

dt
= αE − (γ + µ+ δ)I − pI

dR

dt
= γI + pI − µR

dV

dt
= kI − cV


(9.1)

With initial conditions, S (0) = So, E (0) = Eo, I (0) = Io, R (0) = Ro, and V (0) = Vo. Where

(S (0) = So, E (0) , I (0) , R (0) , V (0)) ∈ R6
+. Here, it is assumed that the functions (B (t) , Y (t) , N (t) ,

I (t) , R (t) , D (t)) and their derivatives are continuous for t ≥ 0.

9.2.1 Parameter Analysis and Dynamical Flow

The parameters in the proposed hepatitis model play a crucial role in governing the dynamic flow of the

population across different compartments. The transmission rate (β) determines the steepness of infec-

tion waves, directly influencing how quickly susceptible individuals (S) transition to the exposed class

(E). The average latency period (α) regulates the delay before exposed individuals become infectious

(I), while the recovery rate (γ) dictates the duration of infectiousness before transitioning to the recov-

ered compartment (R). Treatment interventions, represented by the parameter (p), accelerate recovery,

effectively reducing the infectious pool and altering the natural progression of the disease. Additionally,

the viral load dynamics (V ) are governed by the production rate (k) and clearance rate (c), where the

ratio k/c determines the equilibrium viral concentration in infected hosts. These parameters collectively

shape the disease trajectory, influencing peak infection times, endemic stability, and the effectiveness of

control measures. The interplay between population-level transmission and within-host viral dynamics

highlights the multi-scale nature of hepatitis progression, with each parameter contributing to the overall
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epidemiological behavior. Sensitivity analysis of these parameters can reveal critical intervention points

for mitigating disease spread and optimizing treatment strategies. The model parameters (Table 9.1)

exhibit distinct roles in the disease progression:

Symbol Name Description Units

State Variables

S(t) Susceptible Individuals capable of contracting hepatitis Individuals
E(t) Exposed Infected but not yet infectious individuals Individuals
I(t) Infectious Infected and capable of transmitting hepatitis Individuals
R(t) Recovered Individuals who have recovered with immunity Individuals
V (t) Viral Load Concentration of virus within host population Viral particles/mL
N(t) Total Population Sum of all compartments: S + E + I +R Individuals

Model Parameters

Λ Recruitment Rate Rate of new susceptible individuals individuals·time−1

β Transmission Rate Disease transmission rate (individuals·time)−1

µ Natural Mortality Rate Background mortality rate time−1

α Progression Rate Transition from exposed to infectious time−1

γ Natural Recovery Rate Recovery rate without treatment time−1

δ Disease-Induced Death Rate Mortality rate due to infection time−1

p Treatment Rate Recovery rate due to treatment time−1

k Viral Production Rate Viral production per infected individual particles·ind−1·time−1

c Viral Clearance Rate Rate of viral clearance from host time−1

Table 9.1: Core Epidemiological Model Parameters and State Variables.

9.2.2 Biological Interpretations

The model captures three biological scales:

• Population-level (S,E, I,R): Traditional SEIR structure modified for hepatitis B/C characteristics

• Within-host (V ): Viral load dynamics coupled to infectious population

• Intervention effects: Treatment term pI directly reduces infectious pool while antiviral effects are

implicitly modeled through k reduction

9.3 Qualitative Analysis

The given hepatitis ODE model ensures that all state variables remain non-negative for all t ≥ 0 time

provided that the initial conditions are non-negative. It is easily seen that if any compartment approaches

zero, its derivative becomes non-negative, preventing negative solutions. For instance, when S → 0, then

dS
dt = Λ, ensuring S(t) ≥ 0. Similarly, the other compartments E, I,R, and V remain non-negative due to

their respective governing equations. Furthermore, the total population N = S +E + I +R is bounded,

is shown by the inequality dN
dt ≤ Λ− µN , which converges to N ≤ Λ

µ . The viral load V is also bounded,
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since dV
dt = kI − cV implies that V ≤ kΛ

cµ . Thus, the biologically feasible region

Ω =

{
(S,E,R, I, V ) ∈ R+

5

∣∣∣∣ 0 ≤ N(t) ≤ Λ

µ
and 0 ≤ V (t) ≤ kΛ

cµ

}
, (9.2)

is positively invariant. This confirms that the model is well-posed and epidemiologically meaningful for

analysis.

9.4 Deep Neural Network Approximation

Here, we defines the physics-informed loss function, Lphysics, which is the cornerstone of the Physics-

Informed Neural Network (PINN) methodology. This term ensures that the neural network’s solution,

NN θ(t) = [Ŝ(t), Ê(t), Î(t), R̂(t), V̂ (t)], does not merely fit data but also strictly adheres to the underlying

biological laws described by the system (9.1). The physics loss enforces that the DNN satisfies the ODE

dynamics:

Lphysics =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

dŜ

dt
− (Λ− βŜÎ − µŜ)

dÊ

dt
− (βŜÎ − (α+ µ)Ê)

dÎ

dt
− (αÊ − (γ + µ+ δ)Î − pÎ)

dR̂

dt
− (γÎ + pÎ − µR̂)

dV̂

dt
− (kÎ − cV̂ )

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

(9.3)

Where all derivatives are computed via automatic differentiation of NN θ(t). The loss is computed as

the squared L2-norm of the residuals of each governing equation. In essence, for each state variable, we

calculate the difference between its time derivative (computed via automatic differentiation of the DNN)

and the right-hand side of the corresponding ODE. By minimizing Lphysics, we train the DNN to become

a continuous, differentiable function that inherently satisfies the dynamics of the hepatitis transmission

model. This approach encodes the “physics” or “biology” of the system directly into the learning pro-

cess, guaranteeing that the neural network’s predictions are physically plausible and consistent with the

mechanistic model, even in regions where data is sparse or absent.

9.4.1 Data Loss (if measurements available)

For any observed data points (ti, [Si, Ei, Ii, Ri, Vi]):

Ldata = wS |Ŝ(ti)− Si|2 + wE |Ê(ti)− Ei|2 + wI |Î(ti)− Ii|2 + wR|R̂(ti)−Ri|2 + wV |V̂ (ti)− Vi|2 (9.4)

Where w∗ are optional weighting factors. Equation (9.4) defines the data fidelity loss, Ldata, which

anchors the neural network’s predictions to empirical observations. This component of the total loss
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function is critical for calibrating the model to real-world scenarios. It measures the mean squared error

between the DNN’s output and available measurement data at specific time points ti. These data points

(Si, Ei, Ii, Ri, Vi) could originate from clinical reports, historical outbreak records, or synthetic data

generated for validation.

The inclusion of optional weighting factors wS , wE , . . . , wV allows the model to account for variables

with different scales (e.g., population size vs. viral concentration) or to express greater confidence in cer-

tain measurements over others. In the proposed hybrid framework, Ldata ensures that the solution is not

only physically consistent but also empirically accurate, effectively bridging the gap between theoretical

modeling and observed phenomena.

9.4.1.1 Total Loss

Ltotal = Lphysics + λLdata (9.5)

With λ controlling the data fidelity term (set λ = 0 for purely physics-informed learning).

9.4.2 Neural Network Architecture

The proposed Physics-Informed Neural Network (PINN) architecture for approximating solutions to the

hepatitis model (Eq. 9.1) consists of the following components:

Figure 9.1: Physics-Informed Neural Network (PINN) architecture with six hidden layers and skip

connections for solving the hepatitis ODE system.
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9.4.2.1 Network Topology

Input Layer: Single input node: t ∈ [0, Tmax], normalized to [0, 1] range for numerical stability

Hidden Layers: 6 fully-connected layers with Swish activation (β = 1):

ϕ(z) = z · σ(z), σ(z) =
1

1 + e−z
(9.6)

Layer widths: [64, 64, 64, 64, 64, 64]

• Skip connections every 2 layers as h(ℓ+2) = h(ℓ) + 0.1 · F(h(ℓ+1)), where F represents the layer trans-

formation

Output Layer: Linear transformation to 5 output units:

[
Ŝ(t) Ê(t) Î(t) R̂(t) V̂ (t)

]
=W (out)h(6) + b(out) (9.7)

9.5 Equilibria, Basic Reproduction Number

To find the equilibria the proposed hepatitis model is written as:

Λ− βSI − µS = 0,

βSI − (α+ µ)E = 0,

αE − (γ + µ+ δ)I − pI = 0,

γI + pI − µR = 0,

kI − cV = 0,


(9.8)

Equation (9.8) represents the steady-state formulation of the dynamic hepatitis model (Eq. 9.1),

obtained by setting all time derivatives to zero (dSdt = dE
dt = · · · = 0). This system of algebraic equations

is solved to find the equilibrium points of the model—the constant solutions where the state variables no

longer change over time.

Analyzing these equilibria is fundamental to understanding the long-term behavior of the disease.

The solutions to this system yield two critical states: the Disease-Free Equilibrium (DFE), where the

infection is entirely absent from the population, and the Endemic Equilibrium (EE), where the infection

persists at a constant level. The stability of these points, determined by the basic reproduction number

R0 derived from this system, predicts whether the disease will die out or become an ongoing public health

concern, providing vital insights for planning intervention strategies.
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9.5.1 Disease-Free Equilibrium (DFE)

The DFE occurs when E = I = V = 0. Setting the derivatives to zero dS
dt = Λ − µS = 0 implies that

S = Λ
µ . Thus, the DFE is:

DFE =
(
S0, E0, I0, R0, V 0

)
=

(
Λ

µ
, 0, 0, 0, 0

)
. (9.9)

9.5.2 Basic Reproduction Number

The basic reproduction number is computed using the next-generation matrix method. We consider the

infected compartments E, I, V .Then, the new infections matrix F and transitions matrix V are given as:

F =


βSI

0

0

 , V =


(α+ µ)E

−αE + (γ + µ+ δ + p)I

−kI + cV

 . (9.10)

At the DFE (S0, 0, 0, 0, 0), the Jacobians are:

F =


0 βS0 0

0 0 0

0 0 0

 , V =


α+ µ 0 0

−α γ + µ+ δ + p 0

0 −k c

 . (9.11)

The inverse of V is:

V −1 =


1

α+µ 0 0

α
(α+µ)(γ+µ+δ+p)

1
γ+µ+δ+p 0

αk
c(α+µ)(γ+µ+δ+p)

k
c(γ+µ+δ+p)

1
c

 . (9.12)

FV −1 =


αβS0

(α+µ)(γ+µ+δ+p)
βS0

γ+µ+δ+p 0

0 0 0

0 0 0

 . (9.13)

The basic reproduction number R0 is the spectral radius (Dominant Eigenvalue) of FV −1:

R0 =
αβS0

(α+ µ)(γ + µ+ δ + p)
. (9.14)

Substituting S0 = Λ
µ :

R0 =
αβΛ

µ(α+ µ)(γ + µ+ δ + p)
. (9.15)

9.5.3 Endemic Equilibrium (EE)

The EE occurs when I ̸= 0. Solving the steady-state system (9.8) we obtained the unique endemic

equilibrium points which is given as:
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(a) (b)

(c)

Figure 9.2: Sensitivity analysis of the basic reproduction number R0 showing its dependence on (a)

transmission rate (β) and latency rate (α); (b) virus reproduction rate (k) and latency rate (α); and

(c) virus reproduction rate (k) and transmission rate (β).

9.6 Loss Function Construction

The PINN is trained by minimizing a composite loss function:

L(θ) = λ1LODE + λ2LIC + λ3LData + λ4LReg (9.16)

with the following components:

ODE Residual Loss:

LODE =
1

N

N∑
i=1


∣∣∣∣∣dŜdt − (Λ− βŜÎ − µŜ)

∣∣∣∣∣
2

+

∣∣∣∣∣dÊdt − (βŜÎ − (α+ µ)Ê)

∣∣∣∣∣
2

+

∣∣∣∣∣dÎdt − (αÊ

−(γ + µ+ δ)Î − pÎ)
∣∣∣2 + ∣∣∣∣∣dR̂dt − (γÎ + pÎ − µR̂)

∣∣∣∣∣
2

+

∣∣∣∣∣dV̂dt − (kÎ − cV̂ )

∣∣∣∣∣
2
 (9.17)

Initial Condition Loss:

LIC = |Ŝ(0)− S0|2 + |Ê(0)− E0|2 + |Î(0)− I0|2 + |R̂(0)−R0|2 + |V̂ (0)− V0|2 (9.18)
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Data Fidelity Loss (when observational data is available):

LData =
1

M

M∑
j=1

{
wS |Ŝ(tj)− Sobs(tj)|2 + wI |Î(tj)− Iobs(tj)|2 + wV |V̂ (tj)− Vobs(tj)|2

}
(9.19)

Regularization Terms:

LReg = 22λθ |θ|+ λW

L∑
l=1

|Wl|2F (9.20)

where λi are weighting hyperparameters, and wS , wI , wV adjust for variable scales in observational data.

Figure 9.3: Viral load dynamics predicted by the PINN under varying levels of stochastic noise.

Table 9.2: Echo Loss with Viral Load Dynamics with Noise Bounds.

Epoch Loss Viral Load MSE Epoch Loss Viral Load MSE

0 5.2174 0.8421 1000 0.3518 0.0573

2000 0.1082 0.0186 3000 0.0427 0.0073

4000 0.0183 0.0031 5000 0.0089 0.0014

6000 0.0047 0.0007 7000 0.0028 0.0004

8000 0.0018 0.0002 9000 0.0013 0.0001

9.6.1 Training Protocol

The optimization procedure follows a structured four-stage approach to ensure robust convergence and

physical consistency. Initially, pre-training is conducted by solving the nominal ODE system (Eq. 9.1)

with a Runge-Kutta integrator to generate synthetic training data, thereby providing the network with

preliminary dynamical patterns. During main training, adaptive weighting of loss components is imple-

mented via homotopy continuation, where the coefficients λi are dynamically scheduled to prioritize ODE

fidelity early in optimization before gradually incorporating data constraints. Minimization employs the

Adam optimizer with exponential learning rate decay (initial rate: 10−3; decay factor: 0.98 per 1k iter-

ations) to balance convergence speed and stability, while mini-batching focuses computational resources

on temporal regions with high residual errors. Finally, validation against independent RK45 solutions
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at unseen time points quantifies extrapolation capability, with relative L2-errors monitored to prevent

overfitting and guide early stopping. This protocol ensures simultaneous adherence to epidemiological

constraints and observational evidence while maintaining numerical stability throughout the parameter

space.

Figure 9.4: Training convergence profile showing the decay of the composite loss function across

epochs.

9.7 Results and Discussion

This chapter introduces a novel mathematical model for hepatitis transmission that integrates population-

level dynamics with within-host viral load progression, rigorously establishing its biological feasibility

through positivity and boundedness analysis. To overcome limitations of traditional solvers, we imple-

mented a Deep Neural Network (DNN) framework featuring six fully connected layers (topology in Fig-

ure 9.1) as a Physics-Informed Neural Network (PINN). The PINN was trained to minimize a composite

loss function encompassing ODE residual loss (governing equation fidelity), initial condition loss, data

fidelity loss (incorporating clinical/synthetic data), and regularization terms. Training convergence was

validated via Figure 9.4, which depicts the consistent reduction in total loss across epochs. Crucially, our

DNN approach demonstrated exceptional capability in capturing viral load dynamics under stochastic

noise conditions (Figure 9.3), maintaining predictive accuracy even with significant data uncertainty, as

quantified in Table 9.2. Moreover, our model’s robustness was further confirmed through cross-validation

experiments, which showed consistent performance across different data splits. Overall, the comprehensive
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loss function and regularization techniques utilized in our DNN architecture enabled accurate predictions

of viral load dynamics in challenging scenarios.

Sensitivity analysis of the basic reproduction number (R0) revealed critical disease drivers: Figure 9.2a

established how transmission rate (β) and latency (α) jointly modulate outbreak potential; Figure 9.2b

highlighted the interplay between viral reproduction rate (k) and immune response timing (α); while

Figure 9.2c demonstrated the compounded impact of viral shedding (k) and infectious contact (β). The

DNN’s ability to assimilate noisy data and still approximate the exact solution underscores its robust-

ness for real-world epidemiological applications where data imperfections are inherent. Furthermore, the

DNN’s capability to generalize well to unseen data makes it a promising tool for predicting disease dy-

namics in complex and evolving environments. This study showcases the potential of using deep learning

models to enhance our understanding of infectious disease outbreaks.

Our hybrid DNN-mechanistic framework offers transformative applications for hepatitis control. The

Figure 9.5 shows the solution of the proposed model and compares it to the noisy data and a DNN-based

neural network. The results demonstrate the superior performance of our hybrid framework in accurately

predicting hepatitis outcomes. This innovative approach combines the strengths of both DNN and mech-

anistic models to provide more reliable and precise predictions. The viral load part lets you directly

measure how well antiviral treatments work by changing things like viral production (k) or clearance (c).

This integrated approach not only enhances the accuracy of hepatitis outcome predictions but also offers

a deeper understanding of the underlying mechanisms involved in the disease progression. By leveraging

both data-driven and mechanistic modeling techniques, our hybrid framework opens up new possibilities

for personalized treatment strategies and improved patient outcomes in hepatitis control. By identifying

R0’s sensitivity to β (transmission) and k (viral shedding), public health strategies can prioritize inter-

ventions—such as contact-reduction measures or early antiviral therapy—to disrupt transmission chains

most effectively. The DNN’s computational efficiency facilitates rapid scenario testing for emerging strains

or evolving treatment protocols. Furthermore, the model’s inherent noise tolerance (Figure 9.3) allows

reliable calibration to sparse or imperfect clinical datasets, bridging theoretical models and real-world

surveillance. This work establishes a scalable template for applying scientific machine learning to complex,

multi-scale infectious disease systems.

The core validation of our PINN framework’s efficacy is presented in Figure 9.5, which comprehen-

sively illustrates the network’s ability to solve the complex, coupled hepatitis system under conditions

of significant observational noise. This figure juxtaposes the PINN’s predicted trajectories (solid lines)

against the true, noiseless dynamics (dashed lines) and the synthetic noisy data points (scatter points)

used for training, providing a clear visual assessment of its performance and robustness. The Figure 9.5a

PINN accurately captures the gradual decline of the susceptible population as individuals become ex-

posed to the virus. Despite the high variance in the noisy data, the model successfully infers the correct

smooth, decreasing trend, demonstrating its ability to reject outliers and learn the underlying temporal

dynamic. Figure 9.5b shows the PINN’s proficiency in reconstructing the dynamics of the exposed pop-
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(a) (b)

(c) (d)

(e)

Figure 9.5: PINN successfully reconstructs the hepatitis model dynamics, faithfully capturing all five

compartment trajectories despite significant observational noise, demonstrating its robustness for

real-world epidemiological applications (a) susceptible; (b) exposed; (c) infected; (d) recovered and

(e) viral load compartments.

ulation, which first increases as individuals become infected and then decreases as they progress to the

infectious stage. The model correctly identifies the peak timing and magnitude, a task complicated by

the sparse and noisy data in this compartment. The Figure 9.5c infected population curve is critical, and

its accurate reconstruction is paramount. The PINN not only faithfully captures the characteristic rise

and fall of the outbreak wave but also precisely estimates the inflection points. This is a strong indication

that the model has correctly learned the force of infection and recovery processes encoded in the govern-

ing equations. The Figure 9.5d represents a cumulative increase over time for recovered compartment.
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The PINN’s solution aligns perfectly with the true asymptotic behavior, indicating that the conservation

properties and long-term dynamics of the system are well-preserved by the neural network solver. In the

Figure 9.5e viral load dynamics are directly coupled to the infected compartment (V ∝ I). The accurate

reconstruction here is a direct consequence of the model’s success in Figure 9.5c, showcasing the PINN’s

ability to maintain mathematical consistency across all coupled variables. It successfully filters the noise

to reveal the true viral kinetics.

The novelty and significance of this result are multifaceted. Firstly, it highlights the PINN’s data

efficiency and robustness; unlike traditional curve-fitting methods that would overfit the noisy data, our

framework leverages physics to achieve accurate predictions with highly imperfect datasets. Secondly, the

PINN infers a mathematically consistent solution across all compartments simultaneously. For instance,

the relationship dV/dt = kI − cV is intrinsically satisfied, ensuring the solution is not just statistically

plausible but also biologically feasible. Finally, this robustness suggests that the trained PINN can be a

reliable tool for forecasting future trends and testing intervention scenarios (e.g., changing the treatment

rate p) even when initial conditions are uncertain, providing a powerful and valuable tool for public health

decision-making.

9.8 Conclusion

This chapter has established a pioneering hybrid framework for modeling hepatitis dynamics by fusing

a biologically-grounded compartmental model with the universal function approximation capabilities of

deep learning. The principal novelty of our research lies in the application of Physics-Informed Neural

Networks (PINNs) to a multi-scale hepatitis model, integrating population-level SEIR dynamics with

within-host viral load kinetics. This approach effectively tackles the limitations of traditional numerical

solvers, particularly their inability to seamlessly assimilate noisy, real-world data and their computational

inefficiency when dealing with complex parameter estimation problems. By encoding the model’s differ-

ential equations directly into the loss function of a neural network, we have developed a solver that is

inherently consistent with the biological physics of the system while remaining exceptionally flexible to

data.

A key finding of our work is the demonstrated robustness and noise tolerance of the DNN-based

solver. As illustrated in Figure 9.3 (Viral Load Dynamics) and Figure 9.5 (Compartment Trajectories),

the PINN successfully reconstructed the true dynamics of all five state variables (S,E, I,R, V ) even

when trained on significantly corrupted observational data. This capability is crucial for epidemiological

applications, where data is often sparse, incomplete, and noisy. The network acts as a powerful filter,

inferring a smooth, biologically plausible solution that honors the governing equations without overfitting

to the erroneous data points. This finding confirms that our framework is not merely a theoretical exercise

but a practical tool for working with imperfect clinical datasets.

Furthermore, our research highlights the computational advantages of the DNN approach for tasks
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beyond simulation. Once trained, the neural network serves as a differentiable surrogate for the entire

dynamical system. This allows for efficient and accurate sensitivity analysis, as seen in Figure 9.2, where

we seamlessly computed the gradients of the basic reproduction number (R0) with respect to various pa-

rameters (e.g., β, α, k). This identified the transmission rate and viral production rate as the most critical

levers for controlling outbreaks. Similarly, parameter estimation becomes a more tractable problem, as

the model’s parameters can be tuned by minimizing the loss function against observed data, leveraging

automatic differentiation for precise gradient calculations.

The third major finding pertains to the translational impact of this multi-scale modeling approach.

By explicitly including viral load (V ) coupled to the infected population (I), our model creates a direct

bridge between within-host biology and population-level epidemiology. This enables the in-silico testing

of clinical interventions; for example, the effect of an antiviral drug that reduces the viral production

rate (k) can be simulated and its impact on overall outbreak trajectories can be immediately observed.

This provides a powerful tool for policymakers and health researchers to prioritize intervention strategies,

optimize resource allocation, and forecast the outcomes of public health measures like contact reduction

or treatment campaigns.

In conclusion, this research contributes a robust, efficient, and novel methodology to the field of com-

putational epidemiology. We have shown that deep learning, particularly the PINN paradigm, can move

beyond black-box prediction and become a potent tool for enhancing mechanistic, interpretable mod-

els. The findings related to robustness, computational efficiency, and practical applicability underscore

the potential of this framework to become a standard approach for studying complex infectious disease

systems. Future work will involve extending this model to include spatial heterogeneity, multi-strain in-

teractions, and immune response dynamics, further solidifying the role of scientific machine learning in

shaping the future of public health decision-making.
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Abstract:

The beginnings of the universe serve as a natural laboratory for high-energy physics, dictating

the development of the universe’s structure and timeline. Gaining insight into how elements

like deuterium, lithium, and helium were created in the early universe, and why matter domi-

nates over antimatter, is essential for a deeper understanding of cosmological evolution. This

chapter explores the cosmological evolution of the early universe in the context of Einstein-

Æther gravity, focusing on two critical epochs: Big Bang nucleosynthesis, and gravitational

baryogenesis in Einstein-Æther gravity. Our analysis opens with a study of big bang nucle-

osynthesis in Einstein-Æther gravity, stressing the dependence of light element abundances on

expansion dynamics and the resulting implications for parameter constraints. Lastly, we turn

to gravitational baryogenesis, examining how the coupling of curvature with baryon currents

can account for the matter-antimatter imbalance in the universe. We provide explicit theoret-

ical models and analytic outcomes throughout the chapter to show how Einstein-Æther gravity

modifies early universe cosmological behavior and yields predictions that can be tested. Our uni-

fied treatment reveals that Einstein-Æther gravity offers solutions to these major cosmological

puzzles while maintaining compatibility with modern observational constraints.

Keywords:Gravitational Baryogenesis, Big Bang Nucleosynthesis, Eistein-Æther gravity, Early

Universe, Matter-antimatter asymmetry, Production of light elements
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10.1 Introduction

The Einstein’s theory of general relativity (GR) is one of the greatest scientific achievements presented

by human mind. This theory lead scientists to develop a bulk of knowledge in the field of physics known

as cosmology. The understanding about the launching, evolution, current status and fate of the universe

lie under the umbrella of cosmology. It is believed that there was nothing but in a trice, space and time

come into exist due to big bang explosion. In the beginning, the content of cosmos was in exotic form

with enormous densities not compatible with the terrestrial matter of today. To probe the universe with

its entire content, the knowledge from various subjects especially Physics and Mathematics was required

which leads to the field of cosmology. It is worth mentioning that science has made a remarkable progress

to develop understanding about the universe, but cosmologist are still pondering about some basic queries

about the evolution of the universe.

The growth of the universe started with its birth known as initial singularity and then expanded

rapidly. As its density exceeded from critical density, a separation between fundamental forces took place

followed by a very rapid expansion called inflation. After that the electro-weak force decomposed into the

electromagnetic and weak nuclear forces. Simultaneously, a decrease in the energy density of the universe

come into exist which allowed matter to exist in the form of quarks. These quarks combined together to

form protons and neutrons called nucleons. These nucleons attracted electrons to develop atoms which

combined and formed molecules. The atoms and molecules pulled together by gravitational force and

formed clouds. An asymmetry in the distribution of matter within clouds occurred due to gravity, thus

stars and galaxies were born of different sizes. Some of them were so small which not even deserve the

name star because their internal temperature and pressure were insufficient to ignite any substantial

fusion. Rest of the stars were massive, diminishing their sources of energy and even became unable to

sustain against their own enormous gravity and hence collapsed to BH regions.

Galileo Galilei for the first time introduced inclined planes and pendulums in order to probe the

terrestrial gravity. It looks that gravity is the main source of motivation behind the Galileo’s ideas

and experiments which had a great effect on modern scientific thinking. Later on, Newton presented his

reputed inverse-square gravitational force law in which celestial gravity was united with terrestrial gravity

in a single theory. This theory made correct prediction for various physical phenomena at different scale

including both planetary motion and terrestrial experiments. Many physicists worked after Newton to

evaluate the characteristics and origin of three fundamental forces of nature known as the electromagnetic,

the strong nuclear force and the weak nuclear force. They considered gravity as fourth fundamental force

of nature.

Albert Einstein presented theory of GR in 1915 which became main pillar of the today cosmology

and widely accepted theory of gravitation. In this theory, he assumed gravity as distortions in the fabric

of spacetime produced by energy and mass. He presented his famous principles regarding relativity

stated as (i) laws of physics are identical in non-accelerating frame of references (ii) the speed of light in
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vacuum is constant and not depend upon the motion of the observer. Alexender Friedmann developed a

mathematical model of the accelerating universe having origin in big bang theory. The discovery of cosmic

microwave background radiation (CMBR) in 1965 motivated researchers to obtain the true picture of

the evolution of the universe in present state as CMBR was a major evidence justifying hot big bang

theory. Edwin Hubble was the first who worked on nebulae redshift which became foundation stone for

the present day observational cosmology. The Hubble law states that “galaxies are observed to be receding

from our own, and their speed of recession increases in direct proportion to their distance from us”.

The conventional GR framework cannot explain the universe’s accelerated expansion, researchers

introduced modifications to its Lagrangian. To resolve this, modified gravity theories have gained impor-

tance, as they can explain both late-time cosmic acceleration and early inflation. Most of these models

extend the Einstein–Hilbert action, while another class modifies the torsion-based equivalent formulation

of GR. Einstein extended the Teleparallel Equivalent of General Relativity (TEGR) [1] by employing the

curvature-free Weitzenböck connection instead of the Levi-Civita connection. The Lagrangian, defined as

the torsion scalar T , is obtained from contractions of the torsion (Cartan) tensor, similar to how the Ricci

scalar R is derived from the Riemann tensor. Following the f(R) extension [2], the f(T ) gravity model is

formed by replacing T with a general function f(T ) [3]. While TEGR reproduces the GR field equations,

f(T ) differs fundamentally from f(R) in its modification approach. However, one can construct more

advanced modifications of gravity by incorporating higher-order curvature corrections. Examples include

modified Hořava–Lifshitz gravity [4], f(T, TG) theory (where TG represents the teleparallel equivalent of

the Gauss–Bonnet term) [5], cubic gravity [6], f(P) gravity (where P is a specific invariant formed from

cubic contractions of the Riemann tensor) [7], Einstein-Æther gravity [8], f(T,B) theory (in which B

denotes the boundary term) [9], f(R,A) gravity, where A stands for the anti-curvature scalar [10] and

etc.

10.2 Literature Work

Modified gravity theories provide effective frameworks to study the accelerating universe and early-

universe phenomena such as matter–antimatter asymmetry, known as gravitational baryogenesis (GB).

Researchers have explored GB in various gravitational models, such as Atazadeh [11] explored GB in

Dvali-Gabadadze-Porrati (DGP) universe and found consistent results with the latest observational data

of GB. Baffou et al [12] investigated GB in f(R, T ) cosmology to find compatible results with the lat-

est observations. Azhar et al [13] examined GB in f(T,B) and f(T, TG) cosmologies (where B means

boundary term and TG is teleparallel equivalent to Gauss-Bonnet term). The same authors [14] calcu-

lated compatible GB constraints on f(G, T ) and f(R,G) gravities (where G is the Gauss-Bonnet term).

Agrawal et al [15] utilized anisotropic fluid in f(R) cosmology to examine the GB and found the results

showing good agreement with observations. Usman et al [16] investigated GB in context of f(Q,C) grav-

ity (where Q is the non-metricity and C is the boundary term) and found compatible results. Sultan et
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al [17] investigated this phenomenon in f(T, ϕ) gravity (where ϕ is a canonical scalar field) resulting a

consist results with the latest observational of GB.

Another important early-universe phenomenon is the formation of light elements after the Big Bang.

Theoretical developments by Lemâıtre, Gamow, and Bethe laid its foundation. Recent research has used

Big Bang Nucleosynthesis (BBN) data to test various cosmological models. BBN constraints have been

applied to different modified theories to probe their consistency with the recent observational data of

BBN. Barrow et al. [18] found consistent constraints w.r.t the latest BBN data on the entropy exponent

∆ associated with the Barrow entropy. Using two models of f(Q) gravity influenced by the DGP frame-

work, Anagnostopoulos et al. [19] utilized observational data to examine BBN constraints in the realm

of f(Q) gravity. Sultan et al. [20] examines BBN within the framework of extended teleparallel gravity

f(T,B, TG , BG) showing the consistency of the theory. Sultan et al. [21] examined BBN in the frame-

work of f(T,B) gravity, depicting a consistent evolution with observational bounds. Sultan et al. [22]

investigated early- and late-time cosmological constraints in a torsion-scalar modified gravity framework

using BBN, cosmic chronometers (CC), BAO, and Markov Chain Monte Carlo (MCMC) analyses. Many

other physicists have dive into this topic and found consistent results with the latest observational data

[23, 24].

10.3 General Relativity and its Extended Forms

The Einstein’s proposed theory of GR is a geometry based theory of gravitation and spacetime that

depends upon the Einstein-Hilbert action. It is given as

S =

∫
dNx

√
−g
(
R

2κ
+ Lm

)
, (10.1)

where dNx represents an N-dimensional topological manifold, g is the determinant of the metric tensor

gab which is used to determine the distance between two points along a geodesic, κ = 8πG is a coupling

constant with G being gravitational constant and Lm = Lm(gab,Ψm) is the matter Lagrangian density

with matter field Ψm. An action actually defines the equations of motion and the dynamical attribute of a

physical system. To define GR, Einstein utilized some advanced techniques of differential geometry due to

which this theory is complicated in understanding. GR passed many experimental tests and hence justified

by various cosmological phenomena such black hole, gravitational waves and accelerated expansion of the

universe which are reliable evidences for the validity of this theory.

In GR, gravity is defined as distortion in the fabric of spacetime due to massive objects. Einstein gave

a relationship between matter and energy distribution with the curvature of spacetime through famous

equations called Einstein field equations (EFEs). Mathematically, these equations are given as

Rab + Λgab −
Rgab
2

=
8πG

c4
Tab, (10.2)
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where Rab is Ricci tensor which represents that how volume in a curved space differs from a volume in

Euclidean space, R describes Ricci scalar used to measure the curvature, Tab is called energy momentum

tensor (EMT) and Λ is called cosmological constant. The empirical coefficient 8πG
c4 was incorporated to

homogenize right hand side of the equations as cosmological constant was a source to counter balance the

force of gravity due to having anti-gravitational nature. Edwin Hubble presented his famous law about

accelerated universe in 1929 as he noted that nearby galaxies are moving away from each other [25]. But

after the Hubble expansion law, Einstein neglected cosmological constant that reduces Eq. (10.2) to the

following form

Rab −
Rgab
2

=
8πG

c4
Tab. (10.3)

Besides all this success, GR was unable to describe the concept of gravity precisely. This theory

faced issues of two types, first one was the fine tuning problem related to the inconsistency of the

cosmological constant comparing with the observations [26] while the second one was coincidence problem

corresponding to the energy densities of dark energy (DE) and dark matter (DM) [27]. To avoid these

issues, modified theories of gravity play a vital role and hence became a subject of great interest in modern

cosmology. There are many ways to modify Einstein GR action such as by incorporating scalar field,

quadratic Lagrangian, higher order term of curvature and non-Christoffel connections in its gravitational

part. A modification in GR is considered successful when it does not deviate much from the predicted

measurements of solar system test. To study the phenomenon of accelerated expansion (early as well

as late times) and cosmic observations properly, we require various such theories which are different in

nature due to their distinct modifications. Some of these modified theories are given below.

10.3.1 Einstein-Æther Gravity

Physicists once believed in the existence of a uniform medium, called Aether, filling the universe and

enabling light to travel even in vacuum, providing a fixed frame for Newtonian mechanics. Einstein

rejected this concept through optical experiments in his theory of relativity. With the discovery of the

cosmic microwave background (CMB), some scientists regarded it a modern form of Aether. Gasperini

[28] revived interest in the Einstein-Æther theory, a covariant modification of GR [29], whose action is

given in [8].

S =

∫
d4x

(
R

4πG
+ LEA + Lm

)√
−g, (10.4)

where LEA is the Lagrangian density for the vector field which can be given by

LEA =
1

2κ

(
M2F (K) + λ∗(A

pA+1)

)
. (10.5)
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Here M denotes the coupling constant, κ = 8πG, and λ∗ represents the Lagrange multiplier. The

vector Ap is a unit (rank-one) tensor with a time-like orientation, satisfying the condition ApAp = −1.

On top of that, F (K) is a generic function that appears in the theory, where K is its conflict, defined as:

K =
Kpq

rs∇pA
r∇qA

sC

M2
, (10.6)

Kpq
rs = c1g

pqgrs + c2g
p
rg

q
s + c3g

p
sg

q
r , p, q = 0, 1, 2, 3, (10.7)

where c1, c2, c3 are dimensionless constants. The EFEs for this theory can be derived out of Eq.(10.4)

as follows

Gpq = TEA
pq + 8πGTm

pq , (10.8)

∇p

(
F ′Jp

q

)
= 2λ∗Aq. (10.9)

Here Jp
q = −2Kps

qr∇sA
r and TEA

pq denotes EMT for vector field represented by

TEA
pq = λ∗ApAq +

gpqM
2F

2
− Y(pq)F

′ +
1

2
∇s

[(
− Js(pAq)

+ J(p
sAq)− JpqA

s

)
F ′
]
. (10.10)

The indices (pq) indicate symmetry and Y(pq) is expressed as

Y(pq) = −c1[(∇sAp)(∇sAq)− (∇pAs)(∇qA
s)]. (10.11)

Here, the the subscript in parenthesis (pq) describes that the tensor is symmetric w. r.t the indices

involved. For Einstein-Æther gravity, the Friedmann equations become

λ

(
1

2K
F − F ′

)
H2 +

(
k

a2
+H2

)
=

8πG

3
ρ, (10.12)

λ

(
ḢF ′ +H

dF ′

dt

)
+

(
2k

a2
− 2Ḣ

)
= 8πG

(
ρ+ P

)
, (10.13)

where the overhead dot means the differentiation w. r. t the cosmic time ‘t’, the constant parameter =

c1 + 3c2 + c3, and the argument K = 3λH2

M2 with H = ȧ
a is the Hubble parameter. In Einstein-Æther

gravity, if we denote the effective pressure with pEA and the effective energy density with ρEA, then Eqs.

(10.12) and (10.13) become as

(
k

a2
+H2

)
=

8πG

3
ρ+

1

3
ρEA, (10.14)
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2k

a2
− 2Ḣ

)
= 8πG

(
ρ+ P

)
+

(
ρEA + PEA

)
, (10.15)

where

ρEA = 3λH2

(
F ′ − 1

2K
F

)
, (10.16)

PEA = −λ
(
ḢF ′ +H

dF ′

dt

)
− 3λH2

(
F ′ − 1

2K
F

)
, (10.17)

The cosmological principle states that “at sufficiently large scales, cosmos are spatially homogeneous

and isotropic”. Isotropic means that the universe for all observers from its distinct parts appears same in

different directions. Cosmological principle is a good justification of cosmic time and claims that all char-

acteristics of the universe are identical everywhere at the same cosmic time. Moreover, the homogeneity

of the universe states that it remains uniform with respect to the position. Since cosmological principle

gives information about the observable as well as non-observable sector of the universe. Therefore, it

can be considered as modified form of Copernican principle which provides information only about the

observable universe. These arguments are strongly justified by observational data such as CMBR which

also provide the isotropy at temperature 2.7260± 0.0013 K̄ and temperature irregularities measured by

a given factor 10−5 [30]. In 1922, Alexander Friedmann followed by Howard Percy Robertson and Arthur

Geoffrey Walker in 1934 presented FRW metric also known as standard model of modern cosmology with

the help of moving coordinates (t, r, θ, ϕ) which strongly observe the cosmological principle. It is given

by [31]

ds2 = −c2dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]
, (10.18)

where c stands for speed of light and a(t) is dimensionless positive function called scale factor of the

universe which used to measure the scale of universe expansion and depends upon cosmic time t. It is

used to measure the size of universe and distance between galaxies using cosmological redshift. Whereas,

k is the spatial curvature which defines the three different modes for the geometry of the universe which

are: k = −1 defines open model (hyperbolic geometry), k = 0 corresponds to flat universe (Euclidean

geometry) and k = 1 for the closed model (spherical geometry).

From the big bang explosion till now, it have been observed that the universe faced different transition

phases which can be differentiated through various forms of matter existing in the universe. The presence

of matter in the universe can be given through EMT Tab some times called stress energy tensor which is a

second order symmetric tensor representing density and flux of energy and momentum in the spacetime.

Mathematically it can be given as

Tab = ρUaUb +Θijδ
i
aδ

j
b , (10.19)
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Figure 10.1: Geometry of the universe in three different cases. Photo credit: NASA/GSFC.

where Ua = dxa

dt is called four-velocity which is rate of change of four positions with respect to the cosmic

time along the geodesic, ρ is the density of matter and Θij describes stress density given as

Θab =
dFa

dSb
, (a, b = 1, 2, 3), (10.20)

where dFa means force exerting on the area dSb. The various components of this tensor represents the

followings:

• T00 means energy density of the matter,

• Ta0 describe momentum density,

• T0b represent energy flux,

• Taa are the pressure components,

• T12, T13 and T23 express shear stress,

• T21, T31 and T32 give momentum flux.

A perfect fluid is one which can be completely characterized by its isotropic pressure and rest frame

mass density. Perfect fluids are ideal models having no heat conduction, shear stresses and viscosity. The

nearest known substance to a perfect fluid is quark-gluon plasma. In perfect fluid case, EMT contains

only diagonal components. In GR, perfect fluids are used to construct idealized distribution of matter

in the universe, e.g. interior of a star or an isotropic cosmos. In the latter case, the equation of state

(EoS) of the perfect fluid may be used in FRW equation to discuss the evolution of the universe. The

mathematical formalism for EMT is

Tab = Pgab + (ρ+ P )UaUb. (10.21)
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For dust fluid case (P = 0), EMT becomes

Tab = ρUaUb. (10.22)

In case of perfect fluid, the Friedmann equations can be obtained as

H2 +
k

a2
=

8πG

3
ρ, (10.23)

2
ä

a
+H2 +

k

a2
= −8πG

3
P. (10.24)

In terms of pressure and energy density, the acceleration of expanding universe can be given as

ä

a
=

4πG

3
(ρ+ 3P ). (10.25)

10.4 Baryogenesis

In particle physics and cosmology, baryogenesis (or baryosynthesis) refers to an early-universe process

that generated the observed baryonic asymmetry, an excess of matter over antimatter. But everything

around us which we can see is made up of matter that contributes about 31.7% of the total budget of the

universe (both visible and invisible). First suggested by Paul Dirac in 1928 through his work combining

quantum mechanics and special relativity, this asymmetry remains a central puzzle in modern physics.

10.4.1 Sakharov Criteria

In 1967, a Russian physicist Sakharov [32] listed for the first time three essential requirements for the

development of a baryon asymmetry. He proposed these matter-asymmetry conditions, drawing inspira-

tion from CMB detection and the evidence of charge Parity (CP ) violation in the neutral kaon system.

Such requirements are

1 Braking of net baryon/ lepton quantity,

2 Braking of charge and CP transformation uniformity,

3 interactions that deviate from thermal equilibrium conditions.

The conditions listed by Sakharov can be more easily recognized by considering a hypothetical particle

decay process.

10.4.2 Gravitational Baryogenesis

Davoudiasl et al. [33] proposed a supergravity-based mechanism that achieves the necessary baryon

asymmetry using only the first two Sakharov conditions. This approach, involving violation of CP , arises

from the interaction between the derivative of the curvature scalar R and the baryon current J i, expressed
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as:

1

M2
∗

∫
(∂iR)J

id4x
√
g, (10.26)

whereM∗ represents the cutoff scale of the effective theory [34]. In GR with the FRW metric, the baryon-

to-entropy ratio ηB

S depends on dR
dt and vanishes in the radiation-dominated era (ω = 1

3 ). Although theory

predicts balanced matter–antimatter creation, observations [35] and minimal annihilation signatures [36]

point to a matter excess. With ηβ and ηβ̄ as baryon and anti-baryon densities, ηB = ηβ − ηβ̄ . The GB

framework relates by the ratio of net baryon number to entropy S

η =
η
B

S
=
η
β
− η

β̄

S
. (10.27)

Various observational schemes reported this asymmetry of the universe such as BBN [37] reported this

value as
η
B

S = (5.80 − 6.50) × 10−10. According to CMB [35], this asymmetry has value
η
B

S = (6.04 −

6.20)× 10−10. According to recent data presented by Ade et al. [38] reported value of this asymmetry as

η
B

S
≃ 9.42× 10−11. (10.28)

When the temperature of universe dropped below the critical value T D, representing the point where

baryon asymmetry interactions become significant (written as T |TD), the asymmetry present in the

universe can be estimated as [33].

η
B

S
≃ −15g

b

g∗s

Ṙ

M2
∗T

∣∣∣∣
TD

, (10.29)

here g
b
represents the number of intrinsic degrees of freedom of baryons, while g∗s corresponds to those

of massless particles.Assuming the system remains in thermal equilibrium, the energy density at any

cosmic state with temperature T is given by

ρ(T ) =
π2

30
g∗sT 4. (10.30)

10.5 Gravitational Baryogenesis in Einstein-Æther Gravity

By studying baryogenesis within Einstein-Æther gravity, one can assess how the Æther field influences

matter formation and the fundamental structure of the universe, providing fresh insight into gravitational

effects and the origins of the cosmos. This study explores GB in Einstein-Æther gravity through four

models linear, nonlinear, radical, and logarithmic to understand how the Æther field influences matter,

antimatter asymmetry and early universe dynamics. We examined the Hubble parameter H for each

model using recent observational data (cosmic chronometers and Pantheon+SH0ES), expanding earlier
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studies. This work broadens GB research and deepens insight into how various gravity models influence

baryon asymmetry. The models are outlined below.

10.5.1 Model 1

First, we consider a linear model to investigate GB in the context of Einstein-Æther gravity. The math-

ematical formalism for the assumed model can be given as [39]

F (K) = αK + β, (10.31)

where α and β are real constants. In this model, we derive the BER in terms of the decoupling temper-

ature, τD. Using the cosmic decoupling time tD the energy density ρ has been calculated. Initially, we

develop the relevant expressions for F, F ′, which can be calculated as:

K =
3λH2

M2
. (10.32)

Considering the power lawa scale factor model which can be given as

a = aot
p, (10.33)

H =
p

t
. (10.34)

Substituting the values of argument K and Hubble parameter H from Eqs. (10.32) and (10.34), into Eq.

(10.31), we get

F = β +
3αλp2

M2t2
. (10.35)

Differentiating Eq. (10.31) and substituting the values of K and H from Eq. (10.32), (10.34) in it, we

obtain

F ′ = α. (10.36)

Inserting the values of K, H, F, F ′ from Eqs. (10.32), (10.34), (10.35), (10.36), into Eq.(10.16), we get

ρEA =
3αλp2

2t2
− βM2

2
(10.37)

Comparing Eq. (10.30) and Eq. (10.37), we obtain tD as a function of τD which can be given as

tD = − 3
√
5
√
α
√
λp√

π2g∗T 4
D + 15βM2

. (10.38)
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The net BER for the underlying model can be obtained by simplifying the Eqs. (10.29) and (10.38), as

ηB
s

=
gb
(
π2g∗T

4
D + 15βM2

)2
90π2α2g∗λM2M2

∗p
2
. (10.39)
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Figure 10.2: Variation of ηB

s against TD considering three different values of parameter λ.

FIG. 1.2 represents BER ηB

s in three different curves against TD for three different values of param-

eter λ as mentioned in the panel. Following the outcomes of Davoudiasl et al [5] we choose M∗ = 1012,

MI means upper bound restriction on fluctuation of tensor mode on the inflationary scale which has been

obtained in the form of gravitational waves by LIGO. We choose g
b
∼ O(1), g∗ = 106 and by setting other

parameters such as m = 0.971,M = 1.5, α = 0.3 and β = 0.7. We obtained a BER which is compatible

and consistent with recent observational data.

10.5.2 Model 2

We consider a non-linear model in the second choice to explore the gravitational baryogenesis in the

context of Einstein-Æther gravity, the second model of our choice is [40]

F (K) = αK + βK2, (10.40)

where α, β are real constants. We derive the BER w. r. t the decoupling temperature τD and hence

calculate the energy density ρ by utilizing the cosmic time of decoupling tD. Initially, we derive the

corresponding expressions for F, F ′. By inserting the value of K and H from Eq. (10.32), (10.34), into

(10.40), we get

F =
3λp2

(
αM2t2 + 3βλp2

)
M4t4

. (10.41)
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Differentiating Eq. (10.40) and substituting the required values of H and K from Eq. (10.32), (10.34),

we get

F ′ = α+
6βλp2

M2t2
. (10.42)

Inserting the values of K, H, F, F ′ from Eqs. (10.32), (10.34), (10.41), (10.42) into (10.16) and we get

ρEA =
3λp2

(
αM2t2 + 9βλp2

)
2M2t4

. (10.43)

Equating (10.30) and (10.43), we obtained tD as a function of τD, which can be given as

tD = −3

√
5αλM2p2 −

√
5
√
λ2M2p4 (4π2βgT 4

D + 5α2M2)

2gπ2M2T 4
D

. (10.44)

The net BER for the underlying model can be obtained by simplifying the Eqs. (10.29) and (10.44) which

is

ηB
s

=
10π2g∗gbλM

2p2T 8
D

9
(√

5M∗
√
λ2M2p4 (4π2βg∗T 4

D + 5α2M2)− 5αλM2M∗p2
)2 , (10.45)

λ 0.30

λ 0.35

λ 0.40

10 20 30 40 50
0

2. × 10
-11

4. × 10
-11

6. × 10
-11

8. × 10
-11

1. × 10
-10

β

ηB

s

Figure 10.3: Plot of ηB

s versus model parameter β for Model 2 considering different values of λ;

additional parameters are g
b
= 1, τD = 2× 1016,M∗ = 1012, g∗ = 106.

FIG. 1.3 represents the BER for assumed model 2 against the model parameter β, for the various

values of λ = 0.3 (pink), λ = 0.35 (black), λ = 0.4 (blue). The dotted line represents the value of the

observational constraint.
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10.6 Big Bang Nucleosynthesis

In cosmology, BBN also known as primordial nucleosynthesis refers to the formation of atomic nuclei,

dense cores containing protons and neutrons, leading to the creation of early universe light isotopes.

Following GB, it occurred around ten to twenty seconds after the big bang and ended in approximately

20 minutes. The cooling of the universe at that time allowed the creation of isotopes such as Hydrogen

1H and Helium 4He, accounting for the significant Helium content we observe today.

The Primordial 4He was produced when the universe had a temperature of about T ∼ 100 MeV.

During this period, fast moving subatomic particles like electrons, protons, neutrinos and photons deter-

mined the energy and number densities, with protons and neutrons contributing negligibly. The particles

remained in thermal equilibrium via collisions, and protons and neutrons continued to interact with

leptons.

νe + n∗ ↔ p+ e−, (10.46)

e+ + n∗ ↔ p+ ν̄e, (10.47)

n∗ ↔ p+ e− + ν̄e. (10.48)

These interactions keep the particles in thermal equilibrium, where e denotes electrons, p protons, n∗

neutrons, and νe neutrinos. During cosmic acceleration, neutron abundance is determined from the pro-

ton–neutron conversion rate. The BBN era is significant because it produced almost all primordial hy-

drogen and helium via fusion, leaving only a small percentage of matter for large-scale structures.

10.6.1 Big Bang Nucleosynthesis Constraints: Basic Scenario

Since BBN is being noticed in radiation era [36], the first Friedmann equation can be simplified to the

form below

H2 ≈ ρr
3M2

p

= H2
GR, (10.49)

whereMp = 1√
8πG

is reduced Planck mass, ρr is energy density of a relativistic particle filling the universe

and is written as

ρ ≃ ρr =
π2g∗T 4

30
. (10.50)
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Here g∗ = g(T ) is the effective number of the degree of freedom usually approximated as g∗ ∼ 10.

Substituting the values of ρr and Mp in Eq.(10.49), we obtained

H(T ) =

(
4π3g∗
45

) 1
2 T 2

Mpℓ
, (10.51)

The Planck mass is defined as Mpℓ =
√
8π,MP . For a radiation-dominated universe, the scale factor

follows a(t) ∼
√
t, and the Hubble parameter is H = 1

2t . This leads to the time-temperature relation

1

t
=

(
16π3g∗
45

) 1
2 T 2

Mpℓ
(orT (t) ≃ (t/sec)−1/2MeV ).

or equivalently T (t) ≃ (t/sec)−1/2,MeV. During BBN, neutrons are produced from the conversion of

some protons at a specific proton–neutron rate [41], given as:

Λpn(T ) = Λ(n+νe→p+e−) + Λ(n+e+→p+ν̄e) + Λ(n→p+e−+ν̄e), (10.52)

and its inverse Λnp(T ) determines that the total rate can take the form Λtot(T ) = Λpn(T ) + Λnp(T ),

which can be calculated as

Λtot(T ) = 8(12T 2 + 6Q∗T +Q2
∗)Ā T 3, (10.53)

where Q∗ is the mass difference between neutron and proton given as Q∗ = mn −mp = 1.29× 10−3GeV

and Ā = 1.02× 10−11 GeV−4.

The helium mass fraction, Yp = λ̄
2x(Tf )
1+x(Tf )

, where λ̄ = e(Tf−Tn)/τ .λ̄(Tf ). Here Tf denotes the freeze-

out time of weak interactions and Tn corresponds to the freeze-out of nucleosynthesis. The quantity

x(Tf ) = e
− Q∗

τ(Tf ) represents the neutron-to-proton equilibrium ratio, while τ = 8803 ± 1.1s is the mean

lifetime of a neutron [42]. The function measures the fraction of neutrons that decay into protons during

the interval [Tf , Tn]. We compare the universe expansion rate H−1 with the function Λtot(T ) from (10.53)

to determine the freeze-out temperature Tf . A system remains in thermal equilibrium when the interaction

time exceeds the expansion time, H−1 ≪ Λtot(T ) [36], whereas particle decoupling occurs when the

expansion time exceeds the interaction time, H−1 ≫ Λtot(T ). The temperature at which decoupling

occurs, known as the freeze-out temperature Tf , corresponds to

H(Tf ) = ∆(Tf ) ≃ cqT 5
f ,

where cq ≡ 96Ā ≃ 9.8 × 10−10 GeV−4 [18]. This expression is applied to determine the change in the

Hubble parameter at the freeze-out temperature, giving ∆HTf
= 5cqT

4
f ∆Tf which shows a direct link
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between the variations in HTf
and ∆Tf as

∆HTf
HTf

= 5
∆Tf
Tf

.

Using Eqs.(10.51) and (10.53), above requirement leads to the relation

Tf =

(
4π3g∗

45c2qM
2
pℓ

)1/6

. (10.54)

In modified cosmology, the Hubble parameter H will deviate from HGR, leading to a corresponding shift

in the freeze-out temperature ∆Tf from (10.49).This change results in a deviation in the fractional mass,

expressed as Yp

∆Yp = Yp

[(
1− Yp

2λ̄

)
ln

(
2λ̄

Yp
− 1

)
− 2Tf

τ

]
∆Tf
Tf

, (10.55)

where ∆T (Tn) = 0 as Tn is fixed by deuterium binding energy [43]. During BBN era, the observational

estimation of mass fraction is [44]

Yp = 0.2476, |∆Yp| < 10−4. (10.56)

In modified gravity theories, an additional term can appear in the Friedmann equations, which must

remain much smaller than the radiation component of standard cosmology during the BBN era to preserve

consistency with observational evidence. Thus, from the general modified Friedmann equation, 3M2
pH

2 =

ρm + ρr + ρDE , we can obtain

H = HGR

(
1 +

ρDE

ρr

)1/2

= ∆H +HGR. (10.57)

In this case, ρr ≫ ρm indicates how dark energy modifies the expansion rate H compared to standard

general relativity, where HGR = Mp

√
ρr

2 is the rate at which universe expands in standard cosmology.

Thus, we get

∆H = HGR

(√
1 +

ρDE

ρr
− 1

)
. (10.58)

This variation from standard cosmology results in a change in the freeze-out temperature, denoted by

∆Tf . Since HGR = Λtot ≈ cqT 5
f , this relation along with (10.54) leads to the relation

HGR

(√
1 +

ρDE

ρr
− 1

)
= 5cqT

4
f∆Tf . (10.59)
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In this phase ρDE ≪ ρr, as a result, it is obtained as

∆Tf
Tf

≃ ρDE

ρr

HGR

10cqT 5
f

. (10.60)

The relation derived above theoretically should be contrasted with the corresponding observational con-

straint.

∣∣∣∣∆Tf
Tf

∣∣∣∣ < 4.7× 10−4, (10.61)

which is found by using observational estimation of the baryon mass fraction converted into 4He [44]

which is given in Eq.(10.56).

10.6.2 BBN in Einstein-Aether Gravity

The Friedmann equations for Einstein-Aether gravity take the form

γ

(
1

2
FK−1 − F ′

)
H2 +

(
k

a2
+H2

)
=

8πG

3
ρ, (10.62)

γ

(
ḢF ′ +H

dF ′

dt

)
+

(
2k

a2
− 2Ḣ

)
= 8πG(ρ+ P ), (10.63)

where the constant parameter γ = c1+3c2+ c3 and the argument K = 3γH2

M2 . Taking ρEA as the effective

energy density and PEA as the effective pressure in Einstein–Aether gravity, equations (10.62) and (10.63)

can be expressed as follows.

(
k

a2
+H2

)
=

8πG

3
ρ+

1

3
ρEA, (10.64)(

2k

a2
− 2Ḣ

)
= 8πG(ρ+ P ) + (ρEA + PEA), (10.65)

where

ρEA = 3γH2

(
F ′ − 1

2
FK−1

)
, (10.66)

PEA = −γ
(
ḢF ′ +H

dF ′

dt

)
− 3γH2

(
F ′ − F

2K

)
. (10.67)

In the following subsections, the framework from Section 2.5 is used to determine the BBN constraints

within Einstein–Aether gravity. Using the DE relation (10.66), valid in this context, we evaluate both

the BBN constraints and the Hubble parameter H for a flat FRW universe, considering three distinct

models.
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10.6.3 Model 3: F (K) = αKn + β
√
K

Our initial focus for examining BBN constraints within the framework of Einstein–Aether gravity is on

the first proposed model.

F (K) = αKn + β
√
K, (10.68)

here α, β ̸= 0 are real constants and n is free parameter. By inserting Eq. (10.68) in Eq. (10.66), the

mathematical expression for α is obtained.

α =

2× 3 1−nH02M2
p

(
H02γ
M2

)−n

ΩDEO

M2
(
− 1 + 2n

) (10.69)

By inserting Eqs. (10.68) and (10.69) in Eq. (10.66), we determine the value of ρEA, which leads to Eq.

(10.60).

∣∣∣∣∆Tf
Tf

∣∣∣∣ = H2
0

(
H2

0γ
M2

)−n(
T 4
f γ ξ2

M2

)n

ΩDEO

10 cq 7 T 4
f ξ

(10.70)
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Figure 10.4: Plot of BBN constraint
∣∣∣∆Tf

Tf

∣∣∣ against model parameter n for Model IV in

Einstein-Aether gravity.

In Figure 1.4, we present the plot of
∣∣∣∆Tf

Tf

∣∣∣ against n, using the upper bound from Eq. (10.61) and

fixing the constants as H0 = 70, ΩDEO = 0.7, γ = 0.05 and M = 0.1. The results show that the relation

in Eq. (10.70) remains within the bound of Eq. (10.61) for n ≤ 0.7444. Furthermore, when the free

parameter n is taken to be close to zero, the bound in Eq. (10.60) becomes constant, which is consistent

with the ΛCDM scenario.
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10.6.4 Model 4: F (K) = b0K
n + Log[K]

The second model considered for examining BBN constraints within the framework of Einstein–Aether

gravity is formulated in a more general form is given as

F (K) = b0K
n + Log[K], (10.71)

here b0 is constant and n is a free parameter. Hence, the mathematical expression for the constant b0

during the BBN era can be derived as follows.

b0 =

3−n

(
H2

0γ
M2

)−n(
− 2M2 + 6H2

0M
2
pΩDEO +M2 log

[
3H2

0γ
M2

])
M2 (−1 + 2n)

(10.72)

Substituting Eqs.(10.71) and (10.72) into (10.66), we obtained the value of ρEA which gives Eq.(10.60)

as

∣∣∣∣∆Tf
Tf

∣∣∣∣ = 1

60 cqM2
p T 7

f ξ

(
M2

[
2 +

(
H2

0γ
M2

)−n(
T 4
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Figure 10.5: Plot of BBN constraint
∣∣∣∆Tf

Tf

∣∣∣ against model parameter n for Model V in

Einstein-Aether gravity.

Figure 1.5 illustrates the plot of the above equation with respect to the parameter n, considering

an upper bound of 4.7 × 10−4. It is evident that the absolute value of the given relation remains below
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this limit for n ≤ 0.7393. The fixed parameters used in this analysis are H0 = 70, γ = 0.05, ΩDEO = 0.7,

Mp = 1 and M = 0.1. Furthermore, when the parameter n is taken close to zero, the bound from Eq.

(10.60) becomes constant, which is consistent with the ΛCDM framework.

10.7 Conclusions

The exploration of the universe’s fundamental nature has led to various cosmological theories, includ-

ing Einstein-Æther gravity, which explains late-time cosmic expansion without disturbing early-universe

behavior such as GB and BBN. Our analysis focuses on these aspects, highlighting that despite ob-

servational progress, the baryon asymmetry problem persists. We examined GB and BBN within the

framework of Einstein-Æther gravity. The baryon-to-entropy ratio was computed using fixed parame-

ters M∗ = 1012 GeV, TD = 2 × 1016 GeV, gb = 1, and g∗s = 106. BBN was further analyzed for

two Einstein-Æther models under observational limits on the primordial abundance of 4He, yielding

the bound
∣∣∆Tf

Tf

∣∣ < 4.7 × 10−4. Interestingly, both models of BBN constraints are satisfied up to some

particular value of the free parameter n as shown in Figures 1.4, 1.5 respectively.

Our analysis shows that Einstein-Æther gravity aligns well with the mechanisms of GB and BBN

across various models. The observational analysis supports their validity and provides a foundation for

further research in modified gravity cosmology. Future studies can extend this work by exploring other

cosmological epochs under Einstein-Æther gravity. A detailed comparison with upcoming observational

data may further refine model parameters. Additionally, incorporating quantum and thermodynamic

effects could offer deeper insight into early-universe dynamics.
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CHAPTER 11

Topological Descriptors of Chemical Networks: A Case Study of M-Carbon

via Entropy Measures and Regression Modeling
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Abstract: This chapter presents a detailed characterization of M-carbon, a superhard hypo-

thetical carbon allotrope with a monoclinic crystal structure (C2/m), using a suite of degree-

based topological indices. We compute and compare several well-known indices, including the

forgotten index, augmented Zagreb index, redefined Zagreb indices, sum connectivity index,

arithmetic geometric index, Somber index, and reduced Somber index. In addition to calculating

these indices, we determine their corresponding entropy measures. To explore the relationship

between the indices and entropy, we analyze power, rational, and logarithmic models to iden-

tify the best-fit representation. Furthermore, we investigate the correlation between the various

indices and their associated entropy to elucidate how these topological features influence one

another.

This analysis provides a comprehensive topological profile of M-carbon, contributing to a deeper

understanding of its structural properties, which are critical for potential applications in ultra-

hard materials, cutting tools, and wear-resistant coatings.

Keywords: M-carbon, topological indices, entropy, best fit model, correlation
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11.1 Introduction

Diamond is one of the hardest carbon structures. A great deal of superhard allotropes, which are as

hard as diamonds, were created in 2011 by Andriy and Artem. Lyakhov and Oganov in [17] searched

9500 structures with various system sizes. M-carbon was one of the superhard carbon allotropes they

examined. Li et al. in [18] and Umemoto et al. in [27] suggest that cold compression of graphite can

produce carbon allotropes like M-carbon.

Several variations, including graphite, diamond, lonsdaleite (a hexagonal diamond), carbynes, nan-

otubes, fullerences, and amorphous carbon, are possible for carbon. This is due to the fact that carbon

may create hybridised bonds with sp, sp2, and sp3. We have discovered a new monoclinic structure with

C2/m symmetry as a metastable low-energy polymorph that is distinct from diamond and hexagonal

diamond better than graphite at pressures exceeding 13.4GPa. This monoclinic polymorph is known as

M-carbon.

M-carbon exhibits sixfold rings that create twisted ”layers.” One way to describe this fascinating

structure is as warped graphite: Sp3 bonds between the planes occur when the planes compress against

graphite, causing the planes to slide and buckle. XRD ( X-ray diffraction) pattern is a graphical rep-

resentation of the diffraction of X-rays by the atoms in a structure. When X-rays are directed at a

structure, they are scattered in specific directions that depend on the structure. The anticipated graphite

experimental XRD patterns show changes at 14 GPa, which is in perfect agreement with the M-carbon

transition pressure of 13.4 GPa. M-carbon XRD accurately replicates the main experimental results in

[19, 30], which show that the high pressure phase’s strongest line arises between peaks 100 and 110. The

M-carbon diffraction peaks become more pronounced as pressure rises. Observe that the comparatively

weaker M-carbon peaks in the 11◦–14◦ range have also blended into the background, much like that in

pure graphite. The peaks at ∼ 9 and ∼ 17 also had a role in the peak broadening. Thus, examination of

the XRD patterns adds to the evidence supporting the formation of M-carbon from the cold compression

of graphite.

While numerous carbon allotropes exist, M-carbon presents a uniquely compelling subject for topolog-

ical analysis due to its distinct, anisotropic structure that emerges from the cold compression of graphite.

Unlike the isotropic frameworks of diamond or graphite, M-carbon’s orthorhombic lattice, composed of

fused C4 and C6 rings, creates a complex and highly interconnected network. This specific architecture

poses critical structural questions regarding its bond connectivity, network robustness, and the influence

of its unique ring distribution on overall stability and electronic properties. By applying a suite of topo-

logical indices—such as the Randić index to quantify branching complexity, the Zagreb indices to assess

molecular stability, and the harmonic index to correlate with energetic properties—we can decode the un-

derlying structural code of M-carbon. The computed indices will provide quantitative, structure-derived

predictors for properties like bond strength, lattice energy, and potential chemical reactivity, offering a

novel, mathematical lens through which to understand and predict the behavior of this high-pressure
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phase, which is difficult to probe experimentally.

11.2 Literature

In mathematical chemistry, we use mathematical methods to explain and analyse some properties of a

chemical structure. Chemistry has benefited greatly from the many tools that graph theory has given

us, including topological indices. The field of chemical sciences greatly benefits from the study of graph

theory. The use of molecular descriptors makes it possible to manipulate and examine chemical structure

data. The study of molecular structure benefits from the application of graph theory to the mathematical

modelling of molecular events, which is made possible by chemical graph theory.

Molecular descriptors are important tools in mathematical chemistry, particularly when it comes to

modelling quantitative structure activity relationships and property relationships. A remarkable space is

allotted among them for the well-known topological indices, also known as graph invariants. Topological

indices are the term used to refer to the graph invariants in mathematical chemistry. Some familiar

topological indices are Wiener index, Randić index, connectivity indices, Zagreb indices etc. The concept

of topological indices was first introduced in 1947 when renowned scientist Harold Wiener discovered the

Wiener index [29], the first topological index for finding alkane boiling points. The Zagreb indices are

linked to the most widely used molecular descriptors among the topological indices developed in the early

stages. It was firstly presented by Gutman and Trinajestić [7, 8], where it was acknowledged on [9] that

they looked at how the structure of molecules affects the total energy of ϕ-electron. M.C. Shanmukha

and co-authors compute anticancer Zagreb indices in 2020.(Refer to [25] article)

Other well-known and frequently used degree-based topological indices to model various structure

property/structure-activity relationships include the symmetric division degree index [28], the forgotten

topological index [6], the Randić index [23], and the sum connectivity index [31]. B. Basavanagoud and

co-authors in [4] introduces zagreb indices and forgotten index of C- product of graph. Chemical graph

theory is heavily dependent on degree based and neighborhood based topological indices, particularly in

the discipline of chemistry. The edge version of the degree base topological indices of boron triangular

nanotubes are calculated by Amna Amer, M. Irfan, and Hamood ul Rehman in [2] and Amna Amer, et al.

in [3]. According to [14], the nanotube’s neighbourhood degree base topological indices were determined

in 2024. Degree-base topological indices, such as entropy and M-polynomial, can be used to compute

various formulas. Using degree based topological indices of certain networks, M-polynomials and entropy

were computed in [13, 21]. Neighborhood forgotten index of graphene structure calculated in 2019[20].

In 2010, scientists concentrated on creating increasingly intricate indices and using them with polymers,

particularly those utilised in the material sciences. In 2020, chemical graph theory had spread to novel

fields such as drug design and nanotechnology, with a rising focus on new indices like sum-connectivity

and the harmonic index that have found use in materials and pharmaceutical research. F. Afzal et al.
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in [1] calculate some new degree base topological indices of polyhex graphs. Researchers from various

fields began exploring this novel approach to study the chemical and physical properties of molecules,

compounds, and chemical structures.

While topological indices are well-established for characterizing stable carbon allotropes, a signif-

icant gap exists in their application to metastable, high-pressure phases like M-carbon, whose unique

anisotropic structure remains topologically unexplored. This work fills this gap by performing a com-

prehensive computational analysis of M-carbon using a suite of advanced degree-based indices. We then

extend this analysis by computing the corresponding entropy measures to quantify structural complexity

and employing regression modeling to uncover fundamental index-entropy relationships. This integrated

approach provides a novel topological descriptor set that deciphers the underlying structural code of

M-carbon, enabling the prediction of its properties and bridging a critical divide between mathematical

chemistry and the design of advanced superhard materials.

Chemical graph theory is a branch of mathematics that applies graph theory to study molecular

structures in chemistry. In this context, atoms are represented as vertices (nodes) and chemical bonds as

edges in a graph. This abstraction allows chemists to analyze molecular structures using graph theoretical

concepts. Let G(V,E) be a graph with vertex set V and edge set E. If a is a vertex then the number of

edges connected to a is called its degree, denoted as ha.

In this study, we calculated degree based topological indices and their corresponding entropy of M-

carbon structure. The structural aspects of the graphs are calculated using a wide range of topological

index and their entropy. They are classified into degree based, distance-based, eccentric based and count-

ing related indices of graphs. Topological indices that we shall discuss in this article include harmonic

index, sum connectivity index, arithmetic geometric index, redefined zagreb indices, somber index, re-

duced somber index, augmented Zagreb index and forgotten index.

In 2013 I. Gutman[12] introduced harmonic index is defined as:

H(G) =
∑

ab∈E(G)

2

ha + hb
(11.1)

Trinajstic, Zhou[31] Discussed the characteristics of the sum connectivity index for graphs and provided

the sum-connectivity index for a graph G in 2009. The sum-connectivity index SCI of graph G is defined

as follows:

SCI(G) =
∑

ab∈E(G)

1√
ha + hb

(11.2)

In 2015, Shegehalli and Kanabur[24] introduced the arithmetic–geometric index AGI of a graph G.

Some fundamental properties of the arithmetic–geometric index have been found in Refs [10].

AGI(G) =
∑

ab∈E(G)

ha + hb

2
√
ha × hb

(11.3)
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In 2013 [22] Ranjini et al. defined the redefined first, second, and third zagreb indices for a graph as

follows.

ReZG1(G) =
∑

ab∈E(G)

ha + hb
ha × hb

(11.4)

ReZG2(G) =
∑

ab∈E(G)

ha × hb
ha + hb

(11.5)

ReZG3(G) =
∑

ab∈E(G)

(ha × hb)(ha + hb) (11.6)

The somber index and the reduced somber index are degree-based topological indices that are based

on a vertex degree. These indices introduced by Gutman[11]. The following definition of somber index

and reduced somber index.

SO(G) =
∑

ab∈E(G)

√
(ha)2 + (hb)2 (11.7)

SOred(G) =
∑

ab∈E(G)

√
(ha − 1)2 + (hb − 1)2 (11.8)

The augmented zagreb index was introduced by Furtula et al. in 2010 [5] and was described as follows:

AZI(G) =
∑

ab∈E(G)

[
ha × hb

ha + hb − 2
]3 (11.9)

F. Gutman presented the F-index or forgotten topological index in 2015[6] was described as follows:

F (G) =
∑

a∈V (G)

(ha)
3 =

∑
ab∈E(G)

[(ha)
2 + (hb)

2] (11.10)

The entropy of a graph expressing a chemical molecule can be used to measure the complexity

and structural diversity of that graph. One common entropy metric is the Shannon entropy, which is

determined by studying the distribution of particular structural properties in a set of chemical graphs.

Shannon entropy can be computed from the distribution of atom and bond types, from topological

features like connection patterns and ring diameters, and from other sources as well. In 1948, Shannon

also established the idea of entropy, which assesses the molecular disorder of the system [26]. A greater

entropy number indicates that there is more structural variety within the set of molecules. In the context

of chemical graph theory, the Shannon entropy measures applied to topological indices do not represent

thermodynamic entropy but rather informational entropy or structural complexity. It quantifies the degree

of uncertainty, heterogeneity, or ”surprise” in the distribution of a specific structural property across the

entire network. The entropy in nanostructures with Y-junctions was investigated by Koam [15]. The idea

of the Nirmala indices based entropy was recently suggested by Virendra Kumar et al. in [16].

ENT = −
r∑

i=1

Ui
f(hahb)

TI
log

f(hahb)

TI
= log(TI)− 1

TI

r∑
i=1

Uif(hahb)logf(hahb) (11.11)
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In this context, TI =
∑r

i=1 Uif(hahb) represents the topological index, where Ui is the frequency, r is

the number of edges, and f(hahb) is the weight of the edge hahb.

Construction of M-carbon M [l,m, n]

We will discuss our key findings on the M-carbon structure, which is represented by the notation

M [l,m, n]. Firstly, we must briefly describe the variables l,m, n in the notation M [l,m, n].

Figure 11.1: Unit

Cell Figure 11.2: Chain of Three Unit Cells

Figure 11.3: M [4, 4, 1] Figure 11.4: Structure of M [4, 4, 2]

In this section, we shall present our main results about theM -carbon structure denoted asM [l,m, n].

First, we need to give a brief explanation of the variables l, m, n in the notation M [l,m, n]. To find and

compute the topological indices of the M -carbon structure, we have introduced a way of constructing its

structure by the means of these three variables, where l represents the unit as shown in Figures 11.1 and

11.2 represents a chain containing four units, where the connection (bond) is shown in red color. The

variable m represents the number of connected chains with each having l numbers of units, Figure 11.3

represents four connected chains. The variable n represents the number of connected layers, the Figure

11.4 represents two layers of four connected chains with four units in each chain.
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11.3 The counts, topological invariants and entropies of M-carbon

Using the construction ofM [l,m, n] the numbers of vertices and edges inM [l,m, n] are 8lmn and 16lmn−

4ln− 5mn− 2lm+ n+m, respectively for l ≥ 2, m ≥ 2, and n ≥ 2.

M [l,m, n] have 2(m+ 1)n, 4l − 2 + 2(m− 1)n, 2lmn+ 2lm+ 6ln−mn− 6l −m− 3n+ 3, and 6lmn−

2lm − 6ln − 3mn + 2l + m + 3n − 1 vertices of degrees 1, 2, 3, and 4, respectively. The degree base

edge partition of M [l,m, n] is given in Table 11.1. Table 11.2 and 11.3 show the numerical comparison

of degree based indices and Figures 11.5 and 11.6 shows their graphical representations. Table 11.4 and

11.5 show the numerical comparison of degree based entropies and Figures 11.7 and 11.8 shows their

graphical representations.

Table 11.1: Degree-Based Edge Partition of M carbon M [l,m, n] for l,m, n ≥ 2

(ha, hb) Frequency

(1,3) 2n+ 2

(1,4) 2mn− 2

(2,2) 2

(2,3) 8l + 2m+ 2n− 8

(2,4) 4mn− 4m− 6n+ 6

(3,3) 6ln+ 2lm− 4l − 2m− 3n+ 5

(3,4) 4lm+ 4ln− 2m− 4n+ 2

(4,4) 16lmn− 8lm− 14ln− 11mn− 4l + 7m+ 10n− 7

11.3.1 Degree-Based Topological Invariants

The degree based indices of M-carbon structure can be computed by using Table 11.1 and equations

11.1,11.2,11.3,11.4,11.5,11.6,11.7,11.8,11.9,11.10.

• Harmonic Index

H(M [l,m, n]) = (2n + 2)( 2
1+3 ) + (2mn − 2)( 2

1+4 ) + 2( 2
2+2 ) + (8l + 2m + 2n − 8)( 2

2+3 ) + (4mn − 4m −

6n+6)( 2
2+4 )+ (6ln+2lm− 4l− 2m− 3n+5)( 2

3+3 )+ (4lm+4ln− 2m− 4n+2)( 2
3+4 )+ (16lmn− 8lm−

14ln− 11mn− 4l + 7m+ 10n− 7)( 2
4+4 ),

H(M [l,m, n]) = 4lmn− 0.19lm− 0.35ln− 0.61mn+ 0.86l − 0.02m+ 0.15n− 0.71.

• Sum Connectivity Index

SCI(M [l,m, n]) = (2n+ 2) 1√
1+3

+ (2mn− 2) 1√
1+4

+ 2 1√
2+2

+ (8l + 2m+ 2n− 8) 1√
2+3

+ (4mn− 4m−

6n+6) 1√
2+4

+ (6ln+2lm− 4l− 2m− 3n+5) 1√
3+3

+ (4lm+4ln− 2m− 4n+2) 1√
3+4

+ (16lmn− 8lm−

14ln− 11mn− 4l + 7m+ 10n− 7) 1√
4+4

,

SCI(M [l,m, n]) = 5.65lmn− 0.50lm− 0.98ln− 1.36mn+ 0.53l + 0.16m+ 0.24n+ 0.29.
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• Arithmetic Geometric Index

AGI(M [l,m, n]) = (2n+2)( 1+3
2
√
1×3

)+(2mn−2)( 1+4
2
√
1×4

)+2( 2+2
2
√
2×2

)+(8l+2m+2n−8)( 2+3
2
√
2×3

)+(4mn−

4m− 6n+ 6)( 2+4
2
√
2×4

) + (6ln+ 2lm− 4l − 2m− 3n+ 5)( 3+3
2
√
3×3

) + (4lm+ 4ln− 2m− 4n+ 2)( 3+4
2
√
3×4

) +

(16lmn− 8lm− 14ln− 11mn− 4l + 7m+ 10n− 7)( 4+4
2
√
4×4

),

AGI(M [l,m, n]) = 16lmn− 1.95lm− 9.95ln− 4.25mn+ 0.16l + 0.77m+ 0.94n+ 0.02.

• Redefined First Zagreb Index

ReZG1(M [l,m, n]) = (2n+2)( 1+3
1×3 )+(2mn−2)( 1+4

1×4 )+2( 2+2
2×2 )+(8l+2m+2n−8)( 2+3

2×3 )+(4mn−4m−

6n+6)( 2+4
2×4 )+ (6ln+2lm− 4l− 2m− 3n+5)( 3+3

3×3 )+ (4lm+4ln− 2m− 4n+2)( 3+4
3×4 )+ (16lmn− 8lm−

14ln− 11mn− 4l + 7m+ 10n− 7)( 4+4
4×4 ),

ReZG1(M [l,m, n]) = 8lmn− 0.33lm− 0.66ln+ 2l − 0.33m+ 0.5n+ 1.

• Redefined Second Zagreb Index

ReZG2(M [l,m, n]) = (2n+2)( 1×3
1+3 )+(2mn−2)( 1×4

1+4 )+2( 2×2
2+2 )+(8l+2m+2n−8)( 2×3

2+3 )+(4mn−4m−

6n+6)( 2×4
2+4 )+ (6ln+2lm− 4l− 2m− 3n+5)( 3×3

3+3 )+ (4lm+4ln− 2m− 4n+2)( 3×4
3+4 )+ (16lmn− 8lm−

14ln− 11mn− 4l + 7m+ 10n− 7)(4×4
4+4 ),

ReZG2(M [l,m, n]) = 32lmn− 6.14lm+ 43.85ln− 15.06mn− 4.4l + 5.90m+ 4.54n− 2.77.

• Redefined Third Zagreb Index

ReZG3(M [l,m, n]) = (2n+2)(1× 3)(1+3)+ (2mn− 2)(1× 4)(1+4)+2(2× 2)(2+2)+ (8l+2m+2n−

8)(2× 3)(2 + 3) + (4mn− 4m− 6n+ 6)(2× 4)(2 + 4) + (6ln+ 2lm− 4l − 2m− 3n+ 5)(3× 3)(3 + 3) +

(4lm+4ln−2m−4n+2)(3×4)(3+4)+(16lmn−8lm−14ln−11mn−4l+7m+10n−7)(4×4)(4+4),

ReZG3(M [l,m, n]) = 2048lmn− 580lm− 1132ln− 1176mn− 488l + 488m+ 578n− 394.

• Somber Index

SO(M [l,m, n]) = (2n+2)(
√
12 + 32)+(2mn−2)(

√
12 + 42)+2(

√
22 + 22)+(8l+2m+2n−8)(

√
22 + 32)+

(4mn− 4m− 6n+ 6)(
√
22 + 42) + (6ln+ 2lm− 4l− 2m− 3n+ 5)(

√
32 + 32) + (4lm+ 4ln− 2m− 4n+

2)(
√
32 + 42) + (16lmn− 8lm− 14ln− 11mn− 4l + 7m+ 10n− 7)(

√
42 + 42),

SO(M [l,m, n]) = 90.50lmn− 18.43lm− 35.40ln− 36.09mn− 10.75l + 11.27m− 59.91n− 7.49.

• Reduced Somber Index

SOred(M [l,m, n]) = (2n+ 2)(
√
(1− 1)2 + (3− 1)2) + (2mn− 2)(

√
(1− 1)2 + (4− 1)2) +

2(
√
(2− 1)2 + (2− 1)2) + (8l + 2m+ 2n− 8)(

√
(2− 1)2 + (3− 1)2) + (4mn− 4m− 6n+ 6)

(
√
(2− 1)2 + (4− 1)2)+ (6ln+2lm− 4l− 2m− 3n+5)(

√
(3− 1)2 + (3− 1)2)+ (4lm+4ln− 2m− 4n+

2)(
√
(3− 1)2 + (4− 1)2) + (16lmn− 8lm− 14ln− 11mn− 4l + 7m+ 10n− 7)(

√
(4− 1)2 + (4− 1)2),

SOred(M [l,m, n]) = 67.88lmn− 13.86lm− 28.00ln− 28.01mn− 10.39l + 8.65m+ 9.01n− 6.43.

• Augmented Zagreb Index
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AZI(M [l,m, n]) = (2n+ 2)( 1×3
1+3−2 )

3 + (2mn− 2)( 1×4
1+4−2 )

3 + 2( 2×2
2+2−2 )

3 + (8l + 2m+ 2n− 8)( 2×3
2+3−2 )

3 +

(4mn − 4m − 6n + 6)( 2×4
2+4−2 )

3 + (6ln + 2lm − 4l − 2m − 3n + 5)( 3×3
3+3−2 )

3 + (4lm + 4ln − 2m − 4n +

2)( 3×4
3+4−2 )

3 + (16lmn− 8lm− 14ln− 11mn− 4l + 7m+ 10n− 7)( 4×4
4+4−2 )

3,

AZI(M [l,m, n]) = 303.40lmn− 73.62lm− 141.84ln− 171.85mn− 57.41l + 66.31m+ 74.91n− 46.13.

• Forgotten Index

F (M [l,m, n]) = (2n + 2)(12 + 32) + (2mn − 2)(12 + 42) + 2(22 + 22) + (8l + 2m + 2n − 8)(22 + 32) +

(4mn− 4m− 6n+6)(22+42)+ (6ln+2lm− 4l− 2m− 3n+5)(32+32)+ (4lm+4ln− 2m− 4n+2)(32+

42) + (16lmn− 8lm− 14ln− 11mn− 4l + 7m+ 10n− 7)(42 + 42),

F (M [l,m, n]) = 512lmn− 120lm− 240ln− 238mn− 96l + 84m+ 92n− 66.

Table 11.2: Numerical Comparison of Degree-Based Indices for M [l,m, n]l,m, n ≥ 2

[l,m, n] H(G) SCI(G) AGI(G) RezG1(G) RezG2(G)

[2, 2, 2] 29.8357 36.0304 91.1074 65.3333 129.3810

[3, 3, 3] 101.0167 130.1982 346.1232 214.5000 575.4000

[4, 4, 4] 241.8690 320.4891 868.7901 505.6667 1530.7143

[5, 5, 5] 476.3929 640.8442 1755.1081 986.8333 3187.3238

[6, 6, 6] 828.5881 1125.2047 3101.0771 1706.0000 5737.2286

[7, 7, 7] 1322.4548 1807.5116 5002.6973 2711.1667 9372.4286

[8, 8, 8] 1981.9929 2721.7061 7555.9685 4050.3333 14284.9238

[9, 9, 9] 2831.2024 3901.7294 10856.8909 5771.5000 20666.7143

[10, 10, 10] 3894.0833 5381.5225 15001.4643 7922.6667 28709.8000

Table 11.3: Numerical Comparison of Degree-Based Indices for M [l,m, n] l,m, n ≥ 2

[l,m, n] RezG3(G) SO(G) SOred(G) AZI(G) F (G)

[2, 2, 2] 5594 391.4652 271.16 999.4665 1798

[3, 3, 3] 30644 1688.3725 1219.31 4911.4160 8616

[4, 4, 4] 86782 4441.2532 3249.05 13510.0587 23454

[5, 5, 5] 186296 9193.1653 6768.17 28615.8391 49384

[6, 6, 6] 341474 16487.1669 12183.95 52049.2017 89478

[7, 7, 7] 564604 26866.3158 19903.67 85630.5908 146808

[8, 8, 8] 867974 40873.6702 30334.61 131180.4510 224446

[9, 9, 9] 1263872 59052.2881 43884.05 190519.2267 325464

[10, 10, 10] 1764586 81945.2274 60959.27 265467.3623 452934
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Figure 11.5: Numerical Comparison of

H(G),SCI(G),AGI(G),RezG1(G), RezG2(G)

Figure 11.6: Numerical Comparison of

RezG3(G),SO(G),SOred(G),AZI(G) ,F (G)

11.3.2 Degree-Based Entropies

The degree based entropy of M-carbon structure can be computed by using above topological indices,

equations 11.11 and Table 11.1.

• Harmonic Entropy

ENTH(M [l,m,n]) = log(4lmn− 0.19lm− 0.35ln− 0.61mn+ 0.86l − 0.02m+ 0.15n− 0.71)−
1

4lmn−0.19lm−0.35ln−0.61mn+0.86l−0.02m+0.15n−0.71

[
(2n+2)( 2

1+3 )log(
2

1+3 )+(2mn−2)( 2
1+4 )log(

2
1+4 )+2( 2

2+2 )

log( 2
2+2 ) + (8l + 2m + 2n − 8)( 2

2+3 )log(
2

2+3 ) + (4mn − 4m − 6n + 6)( 2
2+4 )log(

2
2+4 ) + (6ln + 2lm − 4l −

2m− 3n+5)( 2
3+3 )log(

2
3+3 ) + (4lm+4ln− 2m− 4n+2)( 2

3+4 )log(
2

3+4 ) + (16lmn− 8lm− 14ln− 11mn−

4l + 7m+ 10n− 7)( 2
4+4 )log(

2
4+4 )

]
.

• Sum Connectivity Entropy

ENTSCI(M [l,m,n]) = log(5.65lmn− 0.50lm− 0.98ln− 1.36mn+ 0.53l + 0.16m+ 0.24n+ 0.29)−
1

5.65lmn−0.50lm−0.98ln−1.36mn+0.53l+0.16m+0.24n+0.29

[
(2n + 2) 1√

1+3
log 1√

1+3
+ (2mn − 2) 1√

1+4
log 1√

1+4
+

2 1√
2+2

log 1√
2+2

+(8l+2m+2n−8) 1√
2+3

log 1√
2+3

+(4mn−4m−6n+6) 1√
2+4

log 1√
2+4

+(6ln+2lm−4l−

2m− 3n+ 5) 1√
3+3

log 1√
3+3

+ (4lm+ 4ln− 2m− 4n+ 2) 1√
3+4

log 1√
3+4

+ (16lmn− 8lm− 14ln− 11mn−

4l + 7m+ 10n− 7) 1√
4+4

log 1√
4+4

]
.

• Arithmetic Geometric Entropy

ENTAGI(M [l,m,n]) = log(16lmn− 1.95lm− 9.95ln− 4.25mn+ 0.16l + 0.77m+ 0.94n+ 0.02)−
1

16lmn−1.95lm−9.95ln−4.25mn+0.16l+0.77m+0.94n+0.02

[
(2n+ 2)( 1+3

2
√
1×3

)log( 1+3
2
√
1×3

) + (2mn− 2)( 1+4
2
√
1×4

)

log( 1+4
2
√
1×4

)+2( 2+2
2
√
2×2

)log( 2+2
2
√
2×2

)+ (8l+2m+2n− 8)( 2+3
2
√
2×3

)log( 2+3
2
√
2×3

)+ (4mn− 4m− 6n+6)( 2+4
2
√
2×4

)

log( 2+4
2
√
2×4

)+(6ln+2lm−4l−2m−3n+5)( 3+3
2
√
3×3

)log( 3+3
2
√
3×3

)+(4lm+4ln−2m−4n+2)( 3+4
2
√
3×4

)log( 3+4
2
√
3×4

)+
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(16lmn− 8lm− 14ln− 11mn− 4l + 7m+ 10n− 7)( 4+4
2
√
4×4

)log( 4+4
2
√
4×4

)

]
.

• Redefined First Zagreb Entropy

ENTRezG1(M [l,m,n]) = log(8lmn− 0.33lm− 0.66ln+ 2l − 0.33m+ 0.5n+ 1)−
1

8lmn−0.33lm−0.66ln+2l−0.33m+0.5n+1

[
(2n+2)( 1+3

1×3 )log(
1+3
1×3 )+(2mn−2)( 1+4

1×4 )log(
1+4
1×4 )+2( 2+2

2×2 )log(
2+2
2×2 )+

(8l + 2m + 2n − 8)( 2+3
2×3 )log(

2+3
2×3 ) + (4mn − 4m − 6n + 6)( 2+4

2×4 )log(
2+4
2×4 ) + (6ln + 2lm − 4l − 2m − 3n +

5)( 3+3
3×3 )log(

3+3
3×3 ) + (4lm+ 4ln− 2m− 4n+ 2)( 3+4

3×4 )log(
3+4
3×4 ) + (16lmn− 8lm− 14ln− 11mn− 4l+ 7m+

10n− 7)( 4+4
4×4 )log(

4+4
4×4 )

]
.

• Redefined Second Zagreb Entropy

ENTRezG2(M [l,m,n]) = log(32lmn− 6.14lm+ 43.85ln− 15.06mn− 4.4l + 5.90m+ 4.54n− 2.77)−
1

32lmn−6.14lm+43.85ln−15.06mn−4.4l+5.90m+4.54n−2.77

[
(2n + 2)( 1×3

1+3 )log(
1×3
1+3 ) + (2mn − 2)( 1×4

1+4 )log(
1×4
1+4 ) +

2( 2×2
2+2 )log(

2×2
2+2 ) + (8l+2m+2n− 8)( 2×3

2+3 )log(
2×3
2+3 ) + (4mn− 4m− 6n+6)( 2×4

2+4 )log(
2×4
2+4 ) + (6ln+2lm−

4l − 2m − 3n + 5)(3×3
3+3 )log(

3×3
3+3 ) + (4lm + 4ln − 2m − 4n + 2)( 3×4

3+4 )log(
3×4
3+4 ) + (16lmn − 8lm − 14ln −

11mn− 4l + 7m+ 10n− 7)( 4×4
4+4 )log(

4×4
4+4 )

]
.

• Redefined Third Zagreb Entropy

ENTRezG3(M [l,m,n]) = log(2048lmn− 580lm− 1132ln− 1176mn− 488l + 488m+ 578n− 394)

− 1
2048lmn−580lm−1132ln−1176mn−488l+488m+578n−394

[
(2n+2)(1×3)(1+3)log(1×3)(1+3)+(2mn−2)(1×

4)(1 + 4)log(1 × 4)(1 + 4) + 2(2 × 2)(2 + 2)log(2 × 2)(2 + 2) + (8l + 2m + 2n − 8)(2 × 3)(2 + 3)log(2 ×

3)(2 + 3) + (4mn − 4m − 6n + 6)(2 × 4)(2 + 4)log(2 × 4)(2 + 4) + (6ln + 2lm − 4l − 2m − 3n + 5)(3 ×

3)(3 + 3)log(3× 3)(3 + 3) + (4lm+ 4ln− 2m− 4n+ 2)(3× 4)(3 + 4)log(3× 4)(3 + 4) + (16lmn− 8lm−

14ln− 11mn− 4l + 7m+ 10n− 7)(4× 4)(4 + 4)log(4× 4)(4 + 4)

]
.

• Somber Entropy

ENTSO(M [l,m,n]) = log(90.50lmn− 18.43lm− 35.40ln− 36.09mn− 10.75l + 11.27m− 59.91n− 7.49)−
1

90.50lmn−18.43lm−35.40ln−36.09mn−10.75l+11.27m−59.91n−7.49

[
(2n+ 2)(

√
12 + 32)log(

√
12 + 32) + (2mn− 2)

(
√
12 + 42)log(

√
12 + 42) + 2(

√
22 + 22)log(

√
22 + 22) + (8l + 2m + 2n − 8)(

√
22 + 32)log(

√
22 + 32) +

(4mn−4m−6n+6)(
√
22 + 42)log(

√
22 + 42)+(6ln+2lm−4l−2m−3n+5)(

√
32 + 32)log(

√
32 + 32)+

(4lm + 4ln − 2m − 4n + 2)(
√
32 + 42)log(

√
32 + 42) + (16lmn − 8lm − 14ln − 11mn − 4l + 7m + 10n −

7)(
√
42 + 42)log(

√
42 + 42)

]
.
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• Reduced Somber Entropy

ENTSOred(M [l,m,n]) = log(67.88lmn− 13.86lm− 28.00ln− 28.01mn− 10.39l + 8.65m+ 9.01n− 6.43)−
1

67.88lmn−13.86lm−28.00ln−28.01mn−10.39l+8.65m+9.01n−6.43

[
(2n+ 2)(

√
(1− 1)2 + (3− 1)2)

log(
√
(1− 1)2 + (3− 1)2) + (2mn− 2)(

√
(1− 1)2 + (4− 1)2)log(

√
(1− 1)2 + (4− 1)2) +

2(
√
(2− 1)2 + (2− 1)2)log(

√
(2− 1)2 + (2− 1)2) + (8l + 2m+ 2n− 8)(

√
(2− 1)2 + (3− 1)2)

log(
√
(2− 1)2 + (3− 1)2)+(4mn−4m−6n+6)(

√
(2− 1)2 + (4− 1)2)log(

√
(2− 1)2 + (4− 1)2)+(6ln+

2lm − 4l − 2m − 3n + 5)(
√
(3− 1)2 + (3− 1)2)log(

√
(3− 1)2 + (3− 1)2) + (4lm + 4ln − 2m − 4n +

2)(
√
(3− 1)2 + (4− 1)2)log(

√
(3− 1)2 + (4− 1)2) + (16lmn − 8lm − 14ln − 11mn − 4l + 7m + 10n −

7)(
√
(4− 1)2 + (4− 1)2)log(

√
(4− 1)2 + (4− 1)2)

]
.

• Augmented Zagreb Entropy

ENTAZI(M [l,m,n]) = log(303.40lmn−73.62lm−141.84ln−171.85mn−57.41l+66.31m+74.91n−46.13)−
1

303.40lmn−73.62lm−141.84ln−171.85mn−57.41l+66.31m+74.91n−46.13

[
(2n+ 2)( 1×3

1+3−2 )
3log( 1×3

1+3−2 )
3 + (2mn− 2)

( 1×4
1+4−2 )

3log( 1×4
1+4−2 )

3 + 2( 2×2
2+2−2 )

3log( 2×2
2+2−2 )

3 + (8l+ 2m+ 2n− 8)( 2×3
2+3−2 )

3log( 2×3
2+3−2 )

3 + (4mn− 4m−

6n+ 6)( 2×4
2+4−2 )

3log( 2×4
2+4−2 )

3 + (6ln+ 2lm− 4l− 2m− 3n+ 5)( 3×3
3+3−2 )

3log( 3×3
3+3−2 )

3 + (4lm+ 4ln− 2m−

4n+ 2)( 3×4
3+4−2 )

3log( 3×4
3+4−2 )

3 + (16lmn− 8lm− 14ln− 11mn− 4l+ 7m+ 10n− 7)( 4×4
4+4−2 )

3log( 4×4
4+4−2 )

3

]
.

• Forgotten Entropy

ENTF (M [l,m,n]) = log(512lmn− 120lm− 240ln− 238mn− 96l + 84m+ 92n− 66)−
1

512lmn−120lm−240ln−238mn−96l+84m+92n−66

[
(2n + 2)(12 + 32)log(12 + 32) + (2mn − 2)(12 + 42)log(12 +

42)+2(22+22)log(22+22)+(8l+2m+2n−8)(22+32)log(22+32)+(4mn−4m−6n+6)(22+42)log(22+

42) + (6ln+ 2lm− 4l− 2m− 3n+ 5)(32 + 32)log(32 + 32) + (4lm+ 4ln− 2m− 4n+ 2)(32 + 42)log(32 +

42) + (16lmn− 8lm− 14ln− 11mn− 4l + 7m+ 10n− 7)(42 + 42)log(42 + 42)

]
.

Table 11.4: Numerical Comparison of Degree-Based Entropy for M [l,m, n] l,m, n ≥ 2

[l,m, n] ENTH(G) ENTSCI(G) ENTAGI(G) ENTRezG1(G) ENTRezG2(G)

[2, 2, 2] 4.4092 4.4236 4.8439 4.6423 5.0965

[3, 3, 3] 5.8036 5.7911 6.1936 5.9280 6.5637

[4, 4, 4] 6.7566 6.7270 7.1202 6.8325 7.5339

[5, 5, 5] 7.4795 7.4391 7.8268 7.5285 8.2632

[6, 6, 6] 8.0618 8.0140 8.3981 8.0938 8.8486

[7, 7, 7] 8.5493 8.4963 8.8778 8.5695 9.3377

[8, 8, 8] 8.9686 8.9116 9.2912 8.9802 9.7580

[9, 9, 9] 9.3364 9.2763 9.6545 9.3415 10.1264
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[10, 10, 10] 9.6640 9.6014 9.9785 9.6640 10.4544

Table 11.5: Numerical Comparison of Degree-Based Entropy for M [l,m, n] l,m, n ≥ 2

[l,m, n] ENTRezG3(G) ENTSO(G) ENTSOred(G) ENTAZI(G) ENTF (G)

[2, 2, 2] 8.6349 6.0471 5.7158 6.9375 7.5112

[3, 3, 3] 10.3341 7.5026 7.2044 8.5238 9.0753

[4, 4, 4] 11.3747 8.4678 8.1805 9.5339 10.0759

[5, 5, 5] 12.1385 9.1943 8.9124 10.2836 10.8201

[6, 6, 6] 12.7443 9.7778 9.4991 10.8813 11.4142

[7, 7, 7] 13.2471 10.2657 9.9892 11.3788 11.9092

[8, 8, 8] 13.6771 10.6850 10.4100 11.8051 12.3335

[9, 9, 9] 14.0528 11.0527 10.7789 12.1781 12.7051

[10, 10, 10] 14.3865 11.3802 11.1072 12.5097 13.0355

Figure 11.7: Numerical Comparison of

ENTH(G),ENTSCI(G),ENTAGI(G),ENTRezG1(G),

ENTRezG2(G)

Figure 11.8: Numerical Comparison of

ENTRezG3(G),ENTSO(G),ENTSOred(G),

ENTAZI(G),ENTF (G)

11.4 Comparative Analysis of Regression Models for Best Fit

In this section, We used three regression models logarithmic, power, and rational to investigate the

link between degree based topological indices and the associated entropy measures. The selection of

logarithmic, power, and rational models for our regression analysis was motivated by the fundamental

nature of the relationship between topological indices and entropy. Topological indices (TIs) are aggregate

sums of functions of local vertex degrees, while entropy measures the overall structural complexity and
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information content of the entire network. The logarithmic regression model, in which the effect of the

predictor variable reduces as values rise, is employed to evaluate nonlinear relationships. The equation is

as follows:

Y = aln(X) + b

Here, the independent variable is the topological index (X), and the dependent variable is the entropy

measure (Y).

When the dependent variable vary corresponding to a power of the independent variable, the power

regression model is suitable. It works best in systems where small changes to X result in major adjustments

to Y. The equation is:

Y = aX2

Here, X is the independent variable, Y is the dependent variable , and a and b are constants that

define the strength of the relationship. This model is ideal for data that exhibits exponential growth or

decay.

The rational regression model is applied when a ratio provides the most effective summary of the

relationship between variables. A greater increase in the result from the denominator and the numerator

increases its effectiveness. The equation is:

Y =
aX + b

cX +X

where X is the independent variable and Y is the dependent variable, and a, b, c, and d are constants.

This method is effective when the result is affected by a number of connected variables with a more

complex and fractional impact.

Figure 11.9: Model Between H(G) and

ENTH(G)

Figure 11.10: Model Between SCI(G) and

ENTSCI(G)
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Table 11.6: Statistical Values for Logarithmic Model of H(G) and SCI(G)

Logarithmic Model R2 RMSE SE F P − value

ENTH = 0.8247 lnH + 1.0736 0.9996 0.0325 0.0525 17916.3954 0.00

ENTSCI = 0.7547 lnSCI + 1.0317 0.9999 0.0156 0.0256 76021.2960 0.00

Figures 11.9 and 11.10 graphically depict the logarithmic, power, and rational of the regression

model, while Table 11.6 displays the statistical values for the logarithmic model of harmonic index and

sum connectivity index. Logarithmic, rational, and power regression models were used to analyze the

harmonic index and sum connection index. The logarithmic model was the most appropriate for both

indices; the harmonic index had a R² of 0.9996 and the sum connectivity index 0.9999, demonstrating

almost perfect correlations between the topological indices and entropy measurements. For the power

model R² value for harmonic index is 0.9849 and for the sum connectivity index is 0.9873 indicate that

performed better. On the other hand, the rational model showed a less robust match with greater RMSE

and P-values. In terms of model’s, the logarithmic model frequently outperformed the other.

Figure 11.11: Model Between AGI(G) and

ENTAGI(G)

Figure 11.12: Model Between RezG1(G) and

ENTRezG1(G)

Table 11.7: Statistical Values for Logarithmic Model of AGI(G) and RezG1(G)

Logarithmic Model R2 RMSE SE F P − value

ENTAGI = 0.3118 lnAGI + 1.0055 1.0000 0.0028 0.0051 2362038.8521 0.00

ENTRezG1
= 0.3115 lnRezG1 + 1.0440 0.9999 0.0175 0.0318 56654.6241 0.00

Table 11.7 display the statistical data for the logarithmic model of the arithmetic geometric index and

the first redefined Zagreb index, while Figures 11.11 and 11.12 show the regression models (logarithmic,

power, and rational). Three models were used to analyze both indices. Logarithmic model fitting best of

R² is 1.0000 for arithmetic geometric index and 0.9999 for first redefined Zagreb index indicate practically

210 Chapter 11. Topological Descriptors of Chemical Networks



Ptolemy Scientific Research Press https://pisrt.org/

perfect correlation between topological indices and entropy metrics. The power model outperformed the

rational model with R² values of 0.9900 and 0.9881, respectively. Rational model indicating weaker fit its

RMSE and P-values are higher. Logarithmic models scored highest for both indices.

Figure 11.13: Model Between RezG2(G) and

ENTRezG2(G)

Figure 11.14: Model Between RezG3(G) and

ENTRezG3(G)

Table 11.8: Statistical Values for Logarithmic Model of RezG2(G) and RezG3(G)

Logarithmic Model R2 RMSE SE F P − value

ENTRezG2 = 0.2607 lnRezG2 + 0.9925 1.0000 0.0048 0.0090 857262.6260 0.00

ENTRezG3
= 0.0080 lnRezG3 + 0.9996 1.0000 0.0003 7.60 ×10−4 266398765.7769 0.00

The statistical values for the logarithmic model of second redefined Zagreb index and third redefined

Zagreb index are shown in Table 11.8, while the logarithmic, power, and rational of the regression model

are graphically shown in Figures 11.13 and 11.14, respectively. Logarithmic, rational, and power regression

models were used to examine the second and third redefined Zagreb indices. The value of R² is 1.0000 for

the second redefined Zagreb index and R² is 1.0000 for the third redefined index, the logarithmic model

was the best fit for both indices, suggesting that the topological indices and entropy measurements are

nearly perfectly related. R² values is 0.9908 for the power model and 0.9947 for the rational model

indicate that the former fared better. The rational model, on the other hand, fit not as well due to its

larger RMSE and P-values. In general, the logarithmic model always performed better on both indices.

Table 11.9: Statistical Values for Logarithmic Model of SO(G) and SOred(G)

Logarithmic Model R2 RMSE SE F P − value

ENTSO = 0.0859 lnSO + 0.9981 1.000 0.0012 0.002 14268356.9467 0.00

ENTSOred
= 0.1293 lnSOred + 0.9961 1.0000 0.0029 0.0059 2376176.1156 0.00

Figures 11.15 and 11.16 display the graphical representation of the logarithmic, power, and rational
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Figure 11.15: Model Between SO(G) and

ENTSO(G)

Figure 11.16: Model Between SOred(G) and

ENTSOred(G)

regression models, while Table 11.9 presents statistical values for the Logarithmic Model of somber index

and reduced sombre index. The Somber index and the reduced somber index were best fitted by the

logarithmic model, which showed a near perfect association with entropy measures (R² values of 1.0000).

While the rational model displayed higher RMSE and P-values, suggesting a weaker fit, the power model

performed better with value of R² is 0.9924 and 0.9918 of both indices.

Figure 11.17: Model Between AZI(G) and

ENTAZI(G)

Figure 11.18: Model Between F (G) and

ENTF (G)

Table 11.10: Statistical Values for Logarithmic Model of F (G) and AZI(G)

Logarithmic Model R2 RMSE SE F P − value

ENTAZI = 0.0391 lnAZI + 1.9984 1.0000 0.0011 0.0025 17575021.0407 0.00

ENTF = 0.0215 lnF + 0.9992 1.0000 0.0005 0.0013 72535468.1319 0.00
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Figure 11.19: Correlation Between Indices and Entropies

Logarithmic, power, and rational regression models are illustrated graphically in Figures F (G) and

AZI(G), while statistical data for the logarithmic model of the forgotten index and the Augmented

Zagreb index are presented in Table 11.10. The logarithmic model, with an R² of 1.0000, was the best

fit for both the Augmented Zagreb index and the forgotten index. The power model outperformed the

rational model, with R² values of 0.9932 and 0.9940, respectively. However, the rational model showed

higher RMSE and p-values, indicating a weaker fit. Moreover, the primacy of the logarithmic model is

theoretically justified by the functional form of the entropy definition itself equation 11.11. This establishes

an intrinsic logarithmic relationship, where the leading term dominates the scaling behavior. The second

term acts as a bounded corrective sum, ensuring that the fundamental dependence of entropy on the

topological index is inherently logarithmic, thus providing a rigorous a priori rationale for the model’s

superiority over purely empirical power or rational fits.

11.4.1 Correlation Between Indices and Entropies

This heatmap depicts the correlation between entropy metrics and topological indices in Figure 11.19.

The Pearson correlation coefficient for each cell indicates the extent of linear association between the two

variables. A perfect positive correlation is represented by a value of +1, a total absence of connection by

a value of 0, and a perfect negative correlation by a value of -1. In contrast, red shows a weak negative

correlation, while green denotes a strong positive correlation. The correlation between RezG1(G) and

ENTRezG1(G) is week, whereas the correlation between F(G) and ENTF(G) is strong. This study
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identifies variables with robust patterns for data analysis or modeling.

11.5 Conclusion

This study provides a comprehensive topological profile of the M-carbon structure using a suite of degree-

based indices and their corresponding entropy measures. Our analysis revealed that the logarithmic

regression model demonstrates a superior, near-perfect correlation (R2 ≈ 1) between these indices and

their entropies.

The profound predictive power of this logarithmic model has significant broader implications for

materials science. It establishes a powerful mathematical framework to predict the properties of larger,

as-yet-unsynthesized M-carbon structures directly from their topological descriptors. By extrapolating

our models, one can estimate key indicators of stability, connectivity, and complexity for massive sys-

tems without resorting to prohibitively expensive experimental or full-scale computational methods. This

approach enables the in-silico screening and design of superhard carbon allotropes by targeting specific

topological indices that correlate with desired macroscopic properties, such as extreme hardness and wear

resistance.

Consequently, this work bridges a critical gap between mathematical chemistry and advanced material

design, offering a robust, computationally efficient tool to guide the future exploration and application

of M-carbon and related superhard materials in cutting tools, abrasives, and protective coatings.

11.6 Future Work

The methodological framework established in this chapter opens several promising avenues for future

research. The immediate next step involves applying this integrated approach—calculating topological

indices, their entropies, and identifying best-fit models—to other superhard carbon allotropes (e.g., bct-

carbon, W-carbon) and related nanomaterials. A comparative analysis across different allotropes would

elucidate how subtle differences in network connectivity manifest in their topological and entropy profiles,

helping to identify key structural descriptors for extreme hardness.

Furthermore, the computed indices provide a rich dataset for Quantitative Structure-Property Re-

lationship (QSPR) modeling. Future work will focus on correlating these topological descriptors with

experimentally determined physicochemical properties of superhard materials, such as bulk modulus,

hardness, and thermal conductivity. Developing such predictive QSPR models could ultimately acceler-

ate the virtual design and discovery of novel materials with tailored mechanical properties, reducing the

reliance on trial-and-error experimentation in the lab.
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Abstract: Neural networks are a process of deep learning used in artificial intelligence which

enables computers to process information like human brain. Artificial Intelligence techniques

are based on set of methods and algorithms used to develop intelligent systems, one of those

techniques is neural networks. It enables data processing machines to work in humanoid way. It

is deep learning, that uses interconnected nodes or neurons in a layered structure that duplicates

the human brain. It develops a flexible system that enables machines to learn from their mis-

takes and improve continuously. In this article, Cellular Neural Network(CNN) and Kohonen

Neural Network (KNN) are studied for their structural behavior. Degree based computations of

M-polynomials are done and by using these M-polynomials, some particular degree based topo-

logical indices are acquired. These indices will provide underlying topology of CNN and KNN.

A comprehensive comparison of M-polynomials is done and 3-D models of M-polynomials are

also presented.

Keywords: M-polynomial,Topological Index, Neural Networks, Cellular Neural Network, Ko-

honen Neural Network
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12.1 Introduction

Artificial intelligence is in golden age for its progress where it has magnificently transformed every walk

of science. Neural networks, also known as artificial neural networks (ANNs) or simulated neural net-

works (SNNs). These networks mimic the signals of biological neurons. Neural networks are of immense

importance in the domains of neural chemistry and molecular modeling, offering unique capabilities to

unravel complex relationships within vast datasets [1]. Cellular neural networks, inspired by biological

systems, simulate local interactions and are valuable in spatially distributed processes within cells or

tissues, aiding in understanding complex cellular mechanisms and spatial arrangements of molecules. On

the other hand, Kohonen neural networks, specifically useful in unsupervised learning, excel in pattern

recognition and clustering, allowing for the identification of similarities or differences within molecular

structures. The adaptability and pattern recognition capacities of both cellular neural networks and Ko-

honen networks make them integral in understanding the intricate behaviors of molecules and cellular

processes [2].

Cellular neural networks (CNNs) and Kohonen neural networks (KNNs)(also known as self-organizing

maps) are interconnected concepts in computational and neural sciences [3]. CNNs are inspired by biolog-

ical neural networks, consist of interconnected cells governed by local rules and interactions. KNNs utilize

unsupervised learning to cluster and organize data, with their architecture represented as a graph. In neu-

ral chemistry, these networks aid in predicting molecular properties, understanding chemical reactions,

and exploring drug interactions which is crucial in drug development and material science.

Graph theory is a valuable mathematical field in which we study the graphs. It provides a mathemat-

ical framework to study complex networks and understand the relationships and structures within them.

Its principles are employed to model and analyze the dynamics and information processing capabilities

of neural networks [4]. Recently it has emerged as one of the most applicable mathematical discipline,

as it has wide range of applications from chemistry to linguistics, from computer science to electrical

and from geography to architecture. It contributes in both social and scientific research and has gain

a lot of attention [5]. Graph theory concepts like connectivity and distance metrics play a vital role in

training and adapting Kohonen networks, enabling effective mapping of input data onto the network’s

topology. Graph theory acts as a foundation to comprehend and analyze the mechanisms of cellular neural

networks and Kohonen neural networks, enhancing their modeling and learning abilities [6]. Topological

descriptors is a single value that represents an entire graph [7]. They are utilized in chemical graph theory

to estimate biological activities and atomic movements [8]. The Wiener index, introduced by Wiener in

1947, is the first topological descriptor [9]. Other well-known topological descriptors include the Hosoya

polynomial, Schultz index, atom-bond connectivity, and geometric-arithmetic index [10]. These descrip-

tors can be categorized based on the calculation method used. In applied sciences, vertex-edge topological

descriptors are currently gaining significance.

This study’s insights into the topological indices of Cellular Neural Networks (CNN) and Kohonen
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Neural Networks (KNN) have practical implications in real-world applications, particularly in fields such

as pattern recognition, control systems, and robotics. By understanding and calculating M-polynomials

and associated topological indices, we provide a structural framework that could be applied to optimize

network architectures, enhancing both stability and resilience. For example, CNNs are extensively used

in image processing tasks, where insights into network topology can help improve feature recognition

accuracy, critical in quality control applications in manufacturing [11]. Similarly, KNNs play a pivotal role

in control systems and robotics, where efficient network configurations can enhance the adaptability and

robustness of robotic systems [12]. Future studies could further validate these indices through empirical

simulations, comparing topological variations against network performance metrics to demonstrate their

practical value.

12.2 Related Works

In reference [13], the authors concentrate on the computation of M-polynomials and entropy, specifically

for the allotropic form of carbon known as diamond. The manuscript [14] derives universal expressions

for distance-based topological indices, including those of Szeged, Mostar, and Padmakar-Ivan, utilizing

SMP-polynomials. Reference [15] explores the geometric index (GA) and atom bond connectivity (ABC)

index within diverse CP graphs, constructed from paths, cycles, and complete graphs. After introducing

topological indices in neutrosophic graphs (NG), the authors calculate these indices for various well-

known graphs such as cycles, paths, stars, wheels, complete graphs, and bipartite complete neutrosophic

graphs [16]. In [17], the authors shift their focus to the 2D allotrope structure, carbon nanotubes, and

dominating oxide and silicate chemical networks.

Likewise, in reference [18], the authors computed diverse topological descriptors for both fractal and

Cayley-type dendrimer trees. Furthermore, entropy values predicted by these indices were determined.

In the article [19], an investigation was conducted on the recently developed Sombor indices for various

nanotube Y-junctions. Reference [20] involves the calculation of three neighborhood number-based topo-

logical indices, the Mostar index, PI index, and Szeged index, for the graphene structure. The objective

of the paper [21] is to ascertain degree-based topological indices, specifically the atom-bond connectivity

(ABC), ABC4, geometric-arithmetic (GA) and GA5 indices, for cellular neural networks (CNN).

Table 12.1: Related Works.

Ref.

No.

Graph Type M-

Polynomial

Degree-

based

Topologi-

cal Indices

General

Formula

for Indices

[11] Diamond structure ✓
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Table 12.1 (continued): Related Works.

Ref.

No.

Graph Type M-

Polynomial

Degree-

based

Topologi-

cal Indices

General

Formula

for Indices

[12] Polyacenes ✓ ✓ ✓

[13] Corona Product

graphs

✓ ✓

[14] Neutrosophic graphs ✓

[15] Chemical graphs ✓ ✓

[16] Fractal-type molecular

graphs

✓

[17] Nano-structures ✓

[18] Graphene ✓

[19] Cellular Neural Net-

works

✓

This

paper

Cellular Neural Net-

works and Kohonen

Neural Network

✓ ✓ ✓

12.2.1 Motivations and contributions

An exhaustive examination of prior research and the information presented in Table 12.1 leads to the

observation that researchers have not yet generalized the degree-based topological indices of CNN and

KNN utilizing the M-polynomial.

• In [14], [15], [16], and [21], researchers exclusively explored degree-based topological indices. Meanwhile,

in [13] and [14], researchers delved into topological indices utilizing the M-polynomial. Additionally,

in [14], [15], [17], [18], [19], and [20], researchers generalized the formulas for topological indices across

various structures.

• The combination of degree-based topological indices employing the M-polynomial and the derivation

of a generalized formula for topological indices remains unexplored.

• To the best of our knowledge, there has been no exploration by researchers into the simultaneous

consideration of degree-based topological indices, M-polynomial-based topological indices, and the

derivation of a generalized formula for topological indices specifically for CNN and KNN.

This study investigates the combined utilization of degree-based topological indices, M-polynomial-

based topological indices, and the derivation of a generalized formula for topological indices specific to
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CNN and KNN. The key contributions of this paper are outlined as follows:

• This paper introduces a novel mathematical model for computing topological indices of CNN and

KNN.

• The combined usage of degree-based topological indices, M-polynomial-based topological indices, and

the derivation of a generalized formula for topological indices specific to CNN and KNN.

The assumption of representing neural networks as simple, finite, and undirected graphs provides a

solid foundation for calculating M-polynomials and topological indices with clear interpretability. This

approach effectively captures core structural insights, which can be valuable in various practical appli-

cations. For instance, in analyzing social networks, where connections between individuals (nodes) often

require more complex, weighted representations to capture varying interaction strengths, the simplified

model may serve as a starting point before introducing these nuances. Additionally, in brain network

studies, neural pathways are frequently directed and weighted to reflect asymmetrical information flow

and connectivity strength between brain regions, adding complexity to accurately modeling cognitive

processes [22]. While these real-world systems involve additional dimensions, the foundational insights

offered here could inform future adaptations to such complex, weighted, and directed networks. This

study, therefore, provides a robust base that can be extended to more detailed analyses in applied net-

work structures.

The sequence of the remaining paper is as follows. Section 3 includes the Preliminaries. The proposed

results of CNN and KNN are in section 4, and section 5 respectively. Section 6 concludes the paper.

12.3 Preliminaries

12.3.1 Neural Networks

In this research , the network considered particularly is simple, finite and undirected. If there is no special

explanation, the terminology and notation we mainly use come from [23, 24, 25]. This paper deals with

the computation of degree-based topological indices of special classes of neural networks. A network is

a set of vertices that are connected together considering some pattern and a neural networks means a

network of artificial neurons and nodes [26].

Definition 1: (Cellular Neural Network)

A cellular neural network is shown in Figure 12.1. It contains of Q × Q cells. Cells can be arranged in

several configurations; however, the most common is the two-dimensional CNNs organized in an eight-

neighbor rectangular grid. Each cell has an input, a state, and an output, and it interacts directly only

with the cells within its radius of neighborhood r: when r = 1, which is a common assumption, the

neighborhood includes the cell itself and its eight nearest neighboring cells.
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Q

Q

Figure 12.1: Graphical Representation of C4

Definition 2: (Kohonen Neural Network)

Figure 12.2 represents a Kohonen neural network, which is also called self-organizing map. It has two

layers, one is the input layer and the other one is the output layer. The structure wise difference between

CNN and KNN is that, each cell in the later one is further connected to n vertices.

P

1

2

3

4

P

5

Figure 12.2: Graphical Representation of K5
3

12.3.2 Topological Indices

Let ⅁ = ⅁(V, E) be a simple connected graph, where V = {v1, v2, ..., vu} and E = {e1, e2, ..., eu} represent

the set of vertices and edges of the graph. Degree of vertex vi is symbolic as dvi , which is number of

connected edges to the vertex vi. Topological indices are numerical values that describe and interpret

crucial characteristics of the graph [27]. By using M-polynomial we compute some special indices based

on degree [28]. The M-polynomial is a contemporary polynomial, that will open to us crucial results and

brilliant ideas in our study of degree-based topological descriptors.
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Definition 3: (Zegreb Indices)

[30, 31, 32] defined the most expensive topological indices namely, Zegreb indices. For a graph ⅁ the first,

second and second modified Zegreb indices are denoted by M1, M2 and Mm2 respectively and formulated as

follows:

M1(⅁) =
∑

vivj∈E(⅁)

(
dvi + dvj

)
,

M2(⅁) =
∑

vivj∈E(⅁)

(
dvi dvj

)
,

Mm2 (⅁) =
∑

vivj∈E(⅁)

1

dvi dvj
.

Definition 4: (Augmented Zegreb index)

A(⅁) is known as Augmented Zegreb index [32] defined as:

A(⅁) =
∑

vivj∈E(⅁)

(
dvi dvj

dvi + dvj − 2

)3

.

Definition 5: (Symmetric Division Degree Index )

The significant index for a graph ⅁, denoted by

SDD(⅁) =
∑

vivj∈E(⅁)

(
min

(
dvi , dvj

)
max

(
dvi , dvj

) + max
(
dvi , dvj

)
min

(
dvi
, dvj

) ) .
Definition 6: (Inverse Sum Index)

For a graph ⅁, a toplogical index known as Inverse sum index [34, 35] is denoted by I(⅁) and defined as:

I(⅁) =
∑

vivj∈E(⅁)

dvidvj
dvi + dvj

.

Definition 7: (Randić Indices)

For a given graph ⅁ Randić index is denoted by R− 1
2
(⅁), and defined as:

R− 1
2
(⅁) =

∑
vivj∈E(⅁)

1√
dvidvj

.

The general form of Randić index was designed by Bollobás et al. [28] and revisited by Amić et al.

[29]. General Randić index and inverse Randić index for a given graph ⅁ are denoted by Rα(⅁) and RRα(⅁)

respectively and formulated as:

Rα(⅁) =
∑

vivj∈E(⅁)

(dvidvj )
α,

RRα(⅁) =
∑

vivj∈E(⅁)

1

(dvi
dvj )

α
.
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Definition 8: (Harmonic Index) There is another version of Randić index known as Harmonic index

introduced by [30] and defined as:

H(⅁) =
∑

vivj∈E(⅁)

2

dvi + dvj
.

Definition 9: (M-Polynomial)

For a graph ⅁, the M-polynomial is denoted by M(⅁;x, y) and defined as:

M(⅁;x, y) =
∑

α≤i≤j≤β

ωij(⅁)xiyj

ωij(⅁) symbolize the number of total edges vivj ∈ E(⅁) such that (dvi , dvj ) = (i, j), α = min dvi : vi ∈

V(⅁), and β = max dvi ∈ V(⅁).

Remark 12.3.1. (Relation between topological indices and M-polynomial )

All the above defined indices can also be feasibly computed using M-polynomial.

Let

Dx = x
∂(f(x, y))

∂x
,

Dy = y
∂(f(x, y))

∂y
,

Sx =

x∫
0

f(t, y)

t
dt,

Sy =

y∫
0

f(x, t)

t
dt,

J(f(x, y)) = f(x, x),Qαf(x, y) = xαf(x, y)

then

M1(⅁) = (Dx + Dy)(f(x, y))|x=y=1,

M2(⅁) = (DxDy)(f(x, y))|x=y=1,

Mm2 (⅁) = (SxSy)(f(x, y))|x=y=1.

A(⅁) = S3xQ−2JD
3
xD

3
y(f(x, y))|x=1,

SDD(⅁) = (DxSy + SxDy)(f(x, y))|x=y=1.

I(⅁) = SxJDxDy(f(x, y))|x=y=1.

Rα(⅁) = (DαxD
α
y )(f(x, y))|x=y=1,

RRα(⅁) = (SαxS
α
y )(f(x, y))|x=y=1,

H(⅁) = 2SxJ(f(x, y))|x=1,
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12.4 Topological Indices of CNN

Table 12.2 contains partitioning of the edges of cellular neural networks. This division is degree-based of

end vertices of each edge. Figure 12.3 represents the 3D plot of M- polynomial of CNN.

(dvidvj ) (3, 5) (3, 8) (5, 5) (5, 8) (8, 8)

Frequency 8 4 8r − 4 24r − 20 16r2 − 28r + 12

Table 12.2: Edge partitioning of CNN based on degree vertices

Theorem 12.4.1: Let Cr be a cellular neural networks. Then M-polynomial of Cr, r > 0 is

M(Cr;x, y) = (8)x3y5 + (4)x3y8 + (8r − 4)x5y5 + (24r − 20)x5y8 + (16r2 − 28r + 12)x8y8 (12.1)

Proof: Let Cr be a cellular neural network. The main five edge sets are:

E1(Cr) = {vivj ∈ E(⅁) : dvi = 3, dvj = 5},

E2(Cr) = {vivj ∈ E(⅁) : dvi = 3, dvj = 8},

E3(Cr) = {vivj ∈ E(⅁) : dvi = 5, dvj = 5},

E4(Cr) = {vivj ∈ E(⅁) : dvi = 5, dvj = 8},

E5(Cr) = {vivj ∈ E(⅁) : dvi = 8, dvj = 8}.

|E1(Cr)| = 8, |E2(Cr)| = 4, |E3(Cr)| = 8r − 4, |E4(Cr)| = 24r − 20, |E5(Cr)| = 16r2 − 28r + 12.

Now by applying the definition of M- polynomial on cellular neural network we have:

M(Cr;x, y) =
∑
i≤j

ωij(Cr)xiyj =
∑

vivj∈E1(⅁)

ω35(Cr)x3y5 +
∑

vivj∈E2(⅁)

ω38(Cr)x3y8

+
∑

vivj∈E3(⅁)

ω55(Cr)x5y5 +
∑

vivj∈E4(⅁)

ω58(Cr)x5y8 +
∑

vivj∈E5(⅁)

ω88(Cr)x8y8

= |E1(Cr)|x3y5 + |E2(Cr)|x3y8 + |E3(Cr)|x5y5 + |E4(Cr)|x5y8 + |E5(Cr)|x8y8

M(Cr;x, y) = (8)x3y5 + (4)x3y8 + (8r − 4)x5y5 + (24r − 20)x5y8 + (16r2 − 28r + 12)x8y8.
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Figure 12.3: The 3D plot of M- polynomial of CNN

Proposition 12.4.2: Let Cr be a cellular neural networks. Then following are the topological indices

of Cr, r > 0 based on degree :

1. M1(⅁) = 256r2 − 56r

2. M2(⅁) = 1024r2 − 632r + 84

3. Mm2 (⅁) = 1
4r

2 + 193
400r +

91
400

4. SDD(⅁) = 16r2 − 5r + 9
5

5. H(⅁) = 2r2 + 233
130r +

501
1430

6. I(⅁) = 64r2 − 236
13 r +

27
143

7. A(⅁) = 524288
343 r2 − 5329294373

4174016 r + 415745977553
1577778048

8. RRα(⅁) = (8)
15α + (4)

24α + (8r−4)
52α + (24r−20)

40α + (16r2−28r+12)
82α

9. Rα(⅁) = (8)15α + (4)(24α) + (8r − 4)52α + (24r − 20)40α + (16r2 − 28r + 12)82α.

Proof: Let Cr, r > 0 be a cellular neural networks, its M-polynomial is computed in last theorem.

M(Cr;x, y) = (8)x3y5 + (4)x3y8 + (8r − 4)x5y5 + (24r − 20)x5y8 + (16r2 − 28r + 12)x8y8.

By using the formulas defined in Remark 3.10, some computations are collected:

Dx[(f(x, y)] = 3x3y5(8) + 3x3y8(4) + 5x5y5(8r − 4) + (24r − 20)5x5y8 (12.2)

+ (16r2 − 28r + 12)8x8y8,

Dy[(f(x, y)] = x35y5(8) + x38y8(4) + 5x5y5(8r − 4) + (24r − 20)8x5y8 (12.3)

+ (16r2 − 28r + 12)8x8y8,

DxDy[(f(x, y)] = 15x35y5(8) + 24x38y8(4) + 25x5y5(8r − 4) (12.4)

+ 40x5y8(24r − 20) + 64(16r2 − 28r + 12)x8y8,
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Sx[(f(x, y)] =
x3y5

3
(8) +

x3y8

3
(4) +

x5y5

5
(8r − 4) +

x5y8

5
(24r − 20) (12.5)

+ (16r2 − 28r + 12)
x8y8

8
,

Sy[(f(x, y)] =
x3y5

5
(8) +

x3y8

8
(4) +

x5y5

5
(8r − 4) +

x5y8

8
(24r − 20) (12.6)

+ 7(16r2 − 28r + 12)
x8y8

8
,

SxSy[(f(x, y)] =
x3y5

15
(8) +

x3y8

24
(4) +

x5y5

25
(8r − 4) +

x5y8

40
(24r − 20) (12.7)

+
x8y8

64
(16r2 − 28r + 12),

SxDy[(f(x, y)] =
5

3
x3y5(8) +

8

3
x3y8 + x5y5(8r − 4) +

8

5
x5y8(24r − 20) (12.8)

+ (16r2 − 28r + 12)x8y8,

DxSy[(f(x, y)] =
3

5
x3y5(8) +

3

8
x3y8 + x5y5(8r − 4) +

5

8
x5y8(24r − 20) (12.9)

+ (16r2 − 28r + 12)x8y8,

DαxD
α
y [(f(x, y)] = 15αx3y5(8) + 24αx3y8(4) + 52αx5y5(8r − 4) (12.10)

+ 40αx5y8(24r − 20) + 82αx8y5(16r2 − 28r + 12),

SαxS
α
y [(f(x, y)] =

x3y5

15α
(8) +

x3y8

24α
(4) +

x5y5

52α
(8r − 4) +

x5y8

402α
(24r − 20) (12.11)

+
x8y8

82α
(16r2 − 28r + 12),

J[(f(x, y)] = x8(8) + x11(4) + x10(8r − 4) + x13(24r − 20) (12.12)

+ x16(16r2 − 28r + 12)

by using above expression we have,

SxJ[(f(x, y)] = (8)
x8

8
+ (4)

x11

11
+ (8r − 4)

x10

10
+ (24r − 20)

x13

13
(12.13)

+ (16r2 − 28r + 12)
x16

16

SxJ(DxDy)[(f(x, y)] =
15

8
x8(8)− 24

11
x11(4) +

25

10
x10(8r − 4) (12.14)

+
40

13
x13(24r − 20) +

64

16
x16(16r2 − 28r + 12).

In consequence of the values from the equation (12.1) to (12.14) and M-polynomial, following topological

indices are obtained, Figure 12.4 represents the 3D plot of M- polynomial of CNN.

M1(⅁) = 256r2 − 56r

M2(⅁) = 1024r2 − 632r + 84

Mm2 (⅁) =
1

4
r2 +

193

400
r +

91

400
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Figure 12.4: 2D plot of topological indices of CNN

SDD(⅁) = 16r2 − 5r +
9

5

H(⅁) = 2r2 +
233

130
r +

501

1430

I(⅁) = 64r2 − 236

13
r +

27

143

A(⅁) =
415745977553

1577778048
− r

5329294373

4174016
+ r2

524288

343

RRα(⅁) =
8

15α
+

4

24α
+

(8r − 4)

52α
+

(24r − 20

40α
+

(16r2 − 28r + 12

82α

Rα(⅁) = 15α(8) + (4)(24α) + (8r − 4)52α + (24r − 20)40α + (16r2 − 28r + 12)82α.

12.5 Topological Indices of KNN

Table 14.3 contains the edge partition of Kohonen Neural Network networks Kn
r networks based on

degrees of end vertices of each edge. Figure 12.5 represents the 3D plot of M- polynomial of KNN.

(dvidvj ) ((2r + 1)2), n+ 3) ((2r + 1)2), n+ 5) ((2r + 1)2), n+ 8) (n+ 3, n+ 5)

Frequency 4n 4n(2r − 1) n(2r − 1)2) 8

(dvidvj ) (n+ 3, n+ 8) (n+ 5, n+ 5) (n+ 5, n+ 8) (n+ 8, n+ 8)

Frequency 4 8r − 4 24r − 20 16r2 − 28r + 12

Table 12.3: Edge partitioning of KNN based on degree vertices
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Figure 12.5: The 3D plot of M- polynomial of KNN

Theorem 12.5.1: Let Kn
r be a Kohonen Neural networks. Then M-polynomial of Kn

r is

M(Kn
r ;x, y) = (4n)x(2r+1)2yn+3 + (4n(2r − 1))x(2r+1)2yn+5 + (n(2r − 1)2)x(2r+1)2yn+8

+ (8)xn+3yn+5 + (4)xn+3yn+8 + (8r − 4)xn+5yn+5 + (24r − 20)xn+5yn+8

+ (16r2 − 28r + 12)xn+8yn+8 (12.15)

Proof: Let Kn
r be a neural network. The edge partitions have following edge sets:

E1(Kn
r ) = {vivj ∈ E(⅁) : dvi = (2r + 1)2, dvj = n+ 3},

E2(Kn
r ) = {vivj ∈ E(⅁) : dvi = (2r + 1)2, dvj = n+ 5},

E3(Kn
r ) = {vivj ∈ E(⅁) : dvi = (2r + 1)2, dvj = n+ 8},

E4(Kn
r ) = {vivj ∈ E(⅁) : dvi = 3, dvj = 5},

E5(Kn
r ) = {vivj ∈ E(⅁) : dvi = 3, dvj = 8},

E6(Kn
r ) = {vivj ∈ E(⅁) : dvi = 5, dvj = 5},

E7(Kn
r ) = {vivj ∈ E(⅁) : dvi = 5, dvj = 8},

E8(Kn
r ) = {vivj ∈ E(⅁) : dvi = 8, dvj = 8}.

then

|E1(Kn
r )| = 4n, |E2(Kn

r )| = 4n(2r + 1), |E3(Kn
r )| = n(2r − 1)2, |E4(Kn

r )| = 8,
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|E5(Kn
r )| = 4, |E6(Kn

r )| = 8r − 4, |E7(Kn
r )| = 24r − 20, |E8(Kn

r )| = 16r2 − 28r + 12.

Now by applying the definition of M- polynomial on Kohonen Neural Network network we have:

M(Kn
r ;x, y) =

∑
i≤j

ωij(Kn
r )x

iyj

M(Kn
r ;x, y) =

∑
vivj∈E1(⅁)

ω((2r+1)2)(n+3)(Kn
r )x

(2r+1)2yn+3

+
∑

vivj∈E2(⅁)

ω((2r+1)2)(n+5)(Kn
r )x

(2r+1)2yn+5

+
∑

vivj∈E3(⅁)

ω((2r+1)2)(n+8)(Kn
r )x

(2r+1)2yn+8

+
∑

vivj∈E4(⅁)

ω35(Kn
r )x

3y5 +
∑

vivj∈E5(⅁)

ω38(Kn
r )x

3y8 +
∑

vivj∈E6(⅁)

ω55(Kn
r )x

5y5

+
∑

vivj∈E7(⅁)

ω58(Kn
r )x

5y8 +
∑

vivj∈E8(⅁)

ω88(Kn
r )x

8y8

M(Kn
r ;x, y) = |E1(Kn

r )|x(2r+1)2yn+3 + |E2(Kn
r )|x(2r+1)2yn+5 + |E3(Kn

r )|x(2r+1)2yn+8

+ |E4(Kn
r )|x3y5 + |E5(Kn

r )|x3y8 + |E6(Kn
r )|x5y5 + |E7(Kn

r )|x5y8

+ |E8(Kn
r )|x8y8

M(Kn
r ;x, y) = (4n)x(2r+1)2yn+3 + (4n(2r − 1))x(2r+1)2yn+5 + (n(2r − 1)2)x(2r+1)2yn+8

+ (8)xn+3yn+5 + (4)xn+3yn+8 + (8r − 4)xn+5yn+5 + (24r − 20)xn+5yn+8

+ (16r2 − 28r + 12)xn+8yn+8
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Proposition 12.5.2: Let Kr
n be a Kohonen Neural Network networks. Then following are the topolog-

ical indices of Kr
n based on degree:

1. M1(⅁) = n(2r + 1)4 + 4(n+ 8)2r2 + (4n2 + 16n− 56)r + n2

2. M2(⅁) = 4(2r + 1)2((r + 1/2)2n+ 8r2 + 2r)n+ 84 + 16(n+ 8)2r2 + (4n2 − 56n− 632)r

3. Mm2 (⅁) = 4n((r+1/2)2n2+(8r2+14r+4)n+15r2+33r+79/4)
(n+3)(n+5)(n+8)(2r+1)2 +

(16r2+4r)n3+(208r2+172r)n2+(880r2+1252r+204)n+1200r2+2316r+1092
(n+3)(n+5)2(n+8)2

4. SDD(⅁) = 4n(r+1/2)2n+8r2+2r
n(2r+1)2 +

(16r4+32r3+56r2+16r+1)n3+(128r4+352r3+832r2+248r+16)n2+(240r4+768r3+3432r2+1296r+31)n+3840r2+1608r+216
(n+3)(n+5)(n+8)

5. H(⅁) = 8n(16r6+48r5+(8n+92)r4+(16n+128)r3+(n2+20n+110)r2+(n2+18n+66)r+(1/4)n2+(9/2)n+24)
(4r2+n+4r+4)(4r2+n+4r+6)(4r2+n+4r+9)

6. I(⅁) = 4n(2r+1)2(r+1/2)2 ((16n+128)r4+(32n+160)r3+(8n2+120n+320)r2+(8n2+80n+192)r+n3+18n2+96n+120)
(4r2+n+4r+4)(4r2+n+4r+6)(4r2+n+4r+9)

7. A(⅁) = (4n) (n+3)3(2r+1)6

(n+1+(2r+1)2)3+(4n(2r−1)) (n+5)3(2r+1)6

(n+3+(2r+1)2)3+(n(2r−1)2) (n+8)3(2r+1)6

(n+6+(2r+1)2)3+(8) (n+3)3(n+5)3

(2(n+3))3 +

(4) (n+3)3(n+8)3

(2n+9)3 + (8r − 4) (n+5)6

(2(n+4))3 + (24r − 20) (n+5)3(n+8)3

(2n+11)3 + (16r2 − 28r + 12) (n+8)6

(2(n+7))3

8. RRα(⅁) = (2r + 1)2α[ (4n)
(n+3)α + (4n(2r−1)

(n+5)α + (n(2r−1)2)
(n+8)α ] + 1

(n+3)α [
(8)

(n+5)α + (4)
(n+8)α ] +

1
(n+5)α [

(8r−4)
(n+5)α +

(24r−20)
(n+8)α ] + (16r2−28r+12)

(n+8)2α

9. Rα(⅁) = (2r+1)2α[((n+3)α + (n+5)α + (n+8)α] + (n+3)α[(n+5)α + (n+8)α] + (n+5)α[(n+

5)α + (n+ 8)α] + (n+ 8)2α.

Figure 12.6: 3D plot of topological indices of KNN

Proof: M-polynomial of Kn
r is computed in last theorem is as follows:

M(Kn
r ;x, y) = (4n)x(2r+1)2yn+3 + (4n(2r − 1))x(2r+1)2yn+5 + (n(2r − 1)2)x(2r+1)2yn+8

+ (8)xn+3yn+5 + (4)xn+3yn+8 + (8r − 4)xn+5yn+5 + (24r − 20)xn+5yn+8

+ (16r2 − 28r + 12)xn+8yn+8
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Some of the following results are computed using M-polynomial defined as in Remark 3.10,

Dx[(f(x, y)] = (4n)(2r + 1)2x(2r+1)2yn+3 + (4n(2r − 1))(2r + 1)2x(2r+1)2yn+5 (12.16)

+ (n(2r − 1)2)(2r + 1)2x(2r+1)2yn+8 + (8)(n+ 3)xn+3yn+5 + (4)(n+ 3)xn+3yn+8

+ (8r − 4)(n+ 5)xn+5yn+5 + (24r − 20)(n+ 5)xn+5yn+8

+ (16r2 − 28r + 12)(n+ 8)xn+8yn+8

Dy[(f(x, y)] = (4n)(n+ 3)x(2r+1)2yn+3 + (4n(2r − 1))(n+ 5)x(2r+1)2yn+5 (12.17)

+ (n(2r − 1)2)(n+ 8)x(2r+1)2yn+8 + (8)(n+ 5)xn+3yn+5 + (4)(n+ 8)xn+3yn+8

+ (8r − 4)(n+ 5)xn+5yn+5 + (24r − 20)(n+ 8)xn+5yn+8

+ (16r2 − 28r + 12)xn+8yn+8(n+ 8)

DxDy[(f(x, y)] = (4n)(2r + 1)2(n+ 3)x(2r+1)2yn+3 (12.18)

+ (4n(2r − 1))(2r + 1)2(n+ 5)x(2r+1)2yn+5

+ (n(2r − 1)2)(2r + 1)2(n+ 8)x(2r+1)2yn+8 + (8)(n+ 3)(n+ 5)xn+3yn+5

+ (4)(n+ 3)(n+ 8)xn+3yn+8 + (8r − 4)(n+ 5)2xn+5yn+5

+ (24r − 20)(n+ 5)(n+ 8)xn+5yn+8 + (16r2 − 28r + 12)(n+ 8)2xn+8yn+8

Sx[(f(x, y)] = (4n)
x(2r+1)2

(2r + 1)2
yn+3 + (4n(2r − 1))

x(2r+1)2

(2r + 1)2
yn+5 (12.19)

+ (n(2r − 1)2)
x(2r+1)2

(2r + 1)2
yn+8 + (8)

xn+3

(n+ 3)
yn+5 + (4)

xn+3

(n+ 3)
yn+8

+ (8r − 4)
xn+5

(n+ 5)
yn+5 + (24r − 20)

xn+5

(n+ 5)
yn+8 + (16r2 − 28r + 12)

xn+8

(n+ 8)
yn+8

Sy[(f(x, y)] = (4n)x(2r+1)2 yn+3

(n+ 3)
+ (4n(2r − 1))x(2r+1)2 yn+5

(n+ 5)
(12.20)

+ (n(2r − 1)2)x(2r+1)2 yn+8

(n+ 8)
+ (8)xn+3 yn+5

(n+ 5)
+ (4)xn+3 yn+8

(n+ 8)

+ (8r − 4)xn+5 yn+5

(n+ 5)
+ (24r − 20)xn+5 yn+8

(n+ 8)
+ (16r2 − 28r + 12)xn+8 yn+8

(n+ 8)

SxSy[(f(x, y)] = (4n)
x(2r+1)2yn+3

(2r + 1)2(n+ 3)
+ (4n(2r − 1))

x(2r+1)2yn+5

(2r + 1)2(n+ 5)
(12.21)

+ (n(2r − 1)2)
x(2r+1)2yn+8

(2r + 1)2(n+ 8)
+ (8)

xn+3yn+5

(n+ 3)(n+ 5)
+ (4)

xn+3yn+8

(n+ 3)(n+ 8)

+ (8r − 4)
xn+5yn+5

(n+ 5)2
+ (24r − 20)

xn+5yn+8

(n+ 5)(n+ 8)

+ (16r2 − 28r + 12)
xn+8yn+8

(n+ 8)2

SxDy[(f(x, y)] = (4n)
(n+ 3)

(2r + 1)2
x(2r+1)2yn+3 + (4n(2r − 1))

(n+ 5)

(2r + 1)2
x(2r+1)2yn+5 (12.22)

+ (n(2r − 1)2)
(n+ 8)

(2r + 1)2
x(2r+1)2yn+8 + (8)

(n+ 5)

x

n+3

(n+ 3)yn+5

+ (4)
(n+ 8)

(n+ 3)
xn+3yn+8 + (8r − 4)xn+5yn+5 + (24r − 20)

(n+ 8)

(n+ 5)
xn+5yn+8

+ (16r2 − 28r + 12)xn+8yn+8
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DxSy[(f(x, y)] = (4n)
(2r + 1)2

(n+ 3)
x(2r+1)2yn+3 + (4n(2r − 1))

(2r + 1)2

(n+ 5)
x(2r+1)2yn+5 (12.23)

+ (n(2r − 1)2)
(2r + 1)2

(n+ 8)
x(2r+1)2yn+8 + (8)

(n+ 3)

(n+ 5)
xn+3yn+5

+ (4)
(n+ 3)

(n+ 8)
xn+3yn+8 + (8r − 4)xn+5yn+5 + (24r − 20)

(n+ 5)

(n+ 8)
xn+5yn+8

+ (16r2 − 28r + 12)xn+8yn+8

DαxD
α
y [(f(x, y)] = (4n)x(2r+1)2yn+3(2r + 1)2α(n+ 3)α (12.24)

+ (4n(2r − 1))x(2r+1)2yn+5(2r + 1)2α(n+ 5)α

+ (n(2r − 1)2)x(2r+1)2yn+8(2r + 1)2α(n+ 8)α + (8)xn+3yn+5(n+ 3)α(n+ 5)α

+ (4)xn+3yn+8(n+ 3)α(n+ 8)α + (8r − 4)xn+5yn+5(n+ 5)2α

+ (24r − 20)xn+5yn+8(n+ 5)α(n+ 8)α + (16r2 − 28r + 12)xn+8yn+8(n+ 8)2α

SαxS
α
y [(f(x, y)] = (4n)

x(2r+1)2yn+3

(2r + 1)2α(n+ 3)α
+ (4n(2r − 1))

x(2r+1)2yn+5

(2r + 1)2α(n+ 5)α
(12.25)

+ (n(2r − 1)2)
x(2r+1)2yn+8

(2r + 1)2α(n+ 8)α
+ (8)

xn+3yn+5

(n+ 3)α(n+ 5)α

+ (4)
xn+3yn+8

(n+ 3)α(n+ 8)α
+ (8r − 4)

xn+5yn+5

(n+ 5)2α

+ (24r − 20)
xn+5yn+8

(n+ 5)α(n+ 8)α
+ (16r2 − 28r + 12)

xn+8yn+8

(n+ 8)2α

J[(f(x, y)] = (4n)x(2r+1)2+(n+3) + (4n(2r − 1))x(2r+1)2+(n+5) (12.26)

+ (n(2r − 1)2)x(2r+1)2+(n+8) + (8)x2n+8 + (4)x2n+11 + (8r − 4)x2n+10

+ (24r − 20)x2n+13 + (16r2 − 28r + 12)x2n+16

by using the above expression we have,

SxJ[(f(x, y)] = (4n)
x(2r+1)2+(n+3)

(2r + 1)2 + (n+ 3)
+ (4n(2r − 1))

x(2r+1)2+(n+5)

(2r + 1)2 + (n+ 5)

+ (n(2r − 1)2)
x(2r+1)2+(n+8)

(2r + 1)2 + (n+ 8)
+ (8)

x2n+8

2n+ 8
+ (4)

x2n+11

2n+ 11

+ (8r − 4)
x2n+10

2n+ 10
+ (24r − 20)

x2n+13

2n+ 13
+ (16r2 − 28r + 12)

x2n+16

2n+ 16

SxJ(DxDy)[(f(x, y)] = (4n)
(2r + 1)2(n+ 3)

(2r + 1)2 + (n+ 3)
x(2r+1)2+(n+3)

+ (4n(2r − 1))x(2r+1)2+(n+5) (2r + 1)2(n+ 5)

(2r + 1)2 + (n+ 5)

+ (n(2r − 1)2)x(2r+1)2+(n+8) (2r + 1)2(n+ 8)

(2r + 1)2 + (n+ 8)

+ (8)x2n+8 (n+ 3)(n+ 5)

2n+ 11
+ (4)x2n+8 (n+ 3)(n+ 8)

2n+ 11
+ (8r − 4)x2n+10 (n+ 5)2

2n+ 10

+ (24r − 20)x2n+13 (n+ 5)(n+ 8)

2n+ 13
+ (16r2 − 28r + 12)x2n+16 (n+ 8)2

2n+ 16

In consequence of the values from the equation 12.15 to 12.26 and M-polynomial, the topological
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indices are obtained

M1(⅁) = n(2r + 1)4 + 4(n+ 8)2r2 + (4n2 + 16n− 56)r + n2

M2(⅁) = 4(2r + 1)2((r + 1/2)2n+ 8r2 + 2r)n+ 84 + 16(n+ 8)2r2 + (4n2 − 56n− 632)r

Mm2 (⅁) = 4n((r+1/2)2n2+(8r2+14r+4)n+15r2+33r+79/4)
(n+3)(n+5)(n+8)(2r+1)2 +

(16r2+4r)n3+(208r2+172r)n2+(880r2+1252r+204)n+1200r2+2316r+1092
(n+3)(n+5)2(n+8)2

SDD(⅁) = 4n(r+1/2)2n+8r2+2r
n(2r+1)2 +

(16r4+32r3+56r2+16r+1)n3+(128r4+352r3+832r2+248r+16)n2+(240r4+768r3+3432r2+1296r+31)n+3840r2+1608r+216
(n+3)(n+5)(n+8)

H(⅁) = 8n(16r6+48r5+(8n+92)r4+(16n+128)r3+(n2+20n+110)r2+(n2+18n+66)r+(1/4)n2+(9/2)n+24)
(4r2+n+4r+4)(4r2+n+4r+6)(4r2+n+4r+9)

I(⅁) = 4n(2r + 1)2(r + 1/2)2 ((16n+128)r4+(32n+160)r3+(8n2+120n+320)r2+(8n2+80n+192)r+n3+18n2+96n+120)
(4r2+n+4r+4)(4r2+n+4r+6)(4r2+n+4r+9)

A(⅁) = (4n) (n+3)3(2r+1)6

(n+1+(2r+1)2)3 + (4n(2r − 1)) (n+5)3(2r+1)6

(n+3+(2r+1)2)3 + (n(2r − 1)2) (n+8)3(2r+1)6

(n+6+(2r+1)2)3 + (8) (n+3)3(n+5)3

(2(n+3))3 +

(4) (n+3)3(n+8)3

(2n+9)3 + (8r − 4) (n+5)6

(2(n+4))3 + (24r − 20) (n+5)3(n+8)3

(2n+11)3 + (16r2 − 28r + 12) (n+8)6

(2(n+7))3

RRα(⅁) = (2r+1)2α[ (4n)
(n+3)α + (4n(2r−1)

(n+5)α + (n(2r−1)2)
(n+8)α ]+ 1

(n+3)α [
(8)

(n+5)α + (4)
(n+8)α ]+

1
(n+5)α [

(8r−4)
(n+5)α + (24r−20)

(n+8)α ]+

(16r2−28r+12)
(n+8)2α

Rα(⅁) = (2r+1)2α[((n+3)α + (n+5)α + (n+8)α] + (n+3)α[(n+5)α + (n+8)α] + (n+5)α[(n+5)α +

(n+ 8)α] + (n+ 8)2α.

12.6 Conclusions

This paper delves into the intricate realm of neural networks, where we meticulously computed degree-

based topological indices. Our methodology commenced with the calculation of the m-polynomials for

both CNN and KNN. Subsequently, we rigorously determined a suite of advanced topological metrics,

encompassing the Zagreb Indices (M1(⅁), M2(⅁), M2m(⅁)), Augmented Zegreb index (A(⅁)), Symmetric

Division Degree Index (SDD(⅁)), Inverse Sum Index(I(⅁)), Randić Indices (RRα(⅁), Rα(⅁)) and Har-

monic Index H(⅁). This rigorous analytical approach illuminates the intricate structural characteristics

of neural networks, providing valuable insights into their topological properties. Future work could ex-

tend these methods by incorporating directed and weighted edges or exploring topological indices in

dynamic networks to enhance their relevance to real-world applications in fields like pattern recognition

and autonomous systems.
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Abstract: The lentivirus known as HIV (human immune deficiency) virus is the root cause

of AIDS (acquired immune deficiency syndrome). This deadly illness weakens a person’s im-

mune system, which leads to potentially fatal opportunistic infections. Antiretroviral therapy’s

inauguration has transformed HIV from an incurable disease to a curable one. We developed

a mathematical model with two different stages of infectious population induced for analyzing

the dynamics of HIV infection transmission and incorporating ART. This study concentrated

on the analysis and creation of the best control plan by using integer order and fractional order

model of the HIV-AIDS pandemic. The use of the Caputo Fabrizio fractional order aims to

address the singularity problem often encountered in modelling real-world systems. The study

concerned with preventing singularities in the HIV-AIDS model, making it more applicable to

real-world scenarios. The existence and uniqueness of problem investigated. The Adam Bash-

forth method used to solve the system of equations. Finally, simulation of results demonstrated

by using MATLAB, we have illustrated the obtained numerical results through graphs.

Keywords: HIV-AIDS, Equilibrium point, Reproduction number, Adam Bashforth, Caputo

Fabrizio.
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13.1 Introduction

Human actions that alter the environment are the primary source of epidemics. Devastating diseases

including AIDS, Ebola, malaria, and COVID-19 have emerged as a result of microorganisms’ adaptation

and changes, also they have claimed a significant number of deaths. Despite significant advancements

in science and effective health intervention techniques, HIV-AIDS remains one of the most devastating

diseases in human history [1]. HIV is the virus that causes HIV infection, and it may be passed from

person to person through genitals, nursing, and sharing injecting supplies like needles with HIV positive

individuals. AIDS is the most advanced stage of HIV infection and is caused by the HIV infectious virus

[2]. According to forecasts, there will be 1.2 million fatalities and 37.9 million individuals living with HIV-

AIDS worldwide in 2018. Around 62% of patients with infections had diagnoses and were on antiretroviral

therapy (ART) [3]. Despite progress made globally in implementing treatment-as-prevention programs,

certain 2 million new HIV infections occur annually [4]. In retrospect, evaluations of the HIV burden

are essential to the evaluation of control strategies. Future HIV load estimates are crucial for directing

resource allocation and optimizing policy in the long haul. HIV Collaborators for the global burden of

disease (GBD) 2017 in the British medical journal ‘The Lancet’ HIV [5] appraise changes in 195 nations

and possessions’ HIV incidence, prevalence, mortality, and treatment coverage between 1980 and 2017.

In addition to assessing treatment penetration and current HIV loads, the GBD 2017 HIV peers forecast

scenarios to 2030 [6]. One crucial area that has to be reinforced in order to meet the worldwide goal

of ending AIDS by 2030 is the dynamics of HIV-AIDS transmission. The prevention of the HIV-AIDS

epidemic is a critical goal that can only be fulfilled by putting into practice realistic and effective measures,

chief among them the provision of HIV-AIDS treatment [7]. Antiretroviral therapy (ART) is one of such

significant treatment that infected people may undergo [8]. These therapy interventions are essential

because they stop the disease from spreading between sexual partners. Consequently, early access to

antiretroviral therapy (ART) is strongly advised, since it not only improves the health condition of those

who are living with HIV-AIDS but also acts as a deterrent to the virus’s spread [9]. Currently, modeling

approaches are essential for controlling and minimizing the spread of viral diseases, both in theory and in

execution. This breakthrough has left a substantial impact on how disease epidemiology-related policy is

made in many different nations around the world [10]. In the process of understanding the fundamental

variables that affect the transmission of disease, mathematical modeling in epidemiology offers suggestions

for prevention initiatives [11]. Predictions, parameters, and variables are clarified throughout the model

formulation. Additionally, models offer conceptual outcomes like replacement numbers, contact numbers,

basic reproduction numbers, and milestones. For the sake of developing and testing theories, evaluating

quantitative speculations, providing reliable answers, identifying parameter sensitivity, and estimating

the important parameters from statistics, mathematical models and computer simulations are helpful

experimental instruments [12]. In order to comprehend the transmission and containment tactics, several

researchers worldwide are focusing on HIV-AIDS models. Jan, et al. [13] suggested a mathematical model.
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For the chaotic and dynamic behavior they offered a unique numerical method. The fundamental concept

of fractional calculus was illustrated by them inside the Atangana–Baleanu framework. Singh, H. Dubey.

R.S, et al. [14] proposed HIV-1 infection model to a fractional mathematical model by employing the

fractional derivative techniques of Caputo-Fabrizio and Atangana-Baleanu. Which fractional derivative

operator was more efficient was demonstrated by a graphical comparison of the results obtained for the

Caputo-Fabrizio and the Atangana-Baleanu operator. Cheneke, et al. [15] investigated dynamic analysis

of the HIV-AIDS fractional-order model. The endemic equilibrium point arose and was unconditionally

asymptotically stable worldwide if the fundamental reproduction number R0 was greater than one. They

used the Predictor-Corrector approach to do some numerical simulations to demonstrate the dynamical

analysis. The impact of medication therapy on an HIV infected model examined by Rids. et al. [16].

Bachar and Dorfmayr [17] demonstrated that treating a condition without reducing perilous behavior

may potentially cause the proportion of infected individuals to rise. Khalaf and Lazim. [18] suggested an

in-vivoven dimensional fractional model for the dynamics of HIV to evaluate Caputo fractional model

to HIV infection. The next-generation matrix technique was also used to calculate each HIV strain’s

fundamental reproduction rate. Khan M.A, et al. [19] investigated the dynamics of HIV utilizing a

Caputo-type fractional operator in this work. With the use of a novel technique and a Newton polynomial

method, they solved the fractional mathematical model of HIV to visually obtain the numerical solution.

The significant parameter was displayed graphically in some cases. When R0 less or larger than 1, the

model was displayed locally asymptotical. Okosun K.O, et al. [20] evaluated the effectiveness of HIV-AIDS

treatment and prevention tactics in the context of careless susceptible and therapy. They also extract

the prerequisites for the best possible management of the illness. They also studied the reproductive

number (R0) sensitivity analysis. By utilizing the model parameters defined by Moore, E.J. et al. [21]

along with we modified model given in [22]. The current study’s primary goal is to create and evaluate a

Caputo-Fabrizio fractional derivative model for the HIV-AIDS pandemic, which comprises the infected-1

populations receiving ART therapy and infected-2 populations to whom the therapy is not suitable with

incorporating ART. To confirm the theoretical conclusions and show the impacts of changing the fractional

order model, numerical simulations are performed over a variety of fractional orders by implementing

three-step Adams–Bashforth predictor approach. The definitions of Caputo Fabrizio derivative along with

its some properties are illustrated in Section 2. The fractional model of HIV-AIDS along two different

stages of infected people and including treatment compartment is given in Section 3. Section 4 exhibits

the existence and uniqueness of the fractional model. In Section 5 the equilibrium and basic reproduction

number for the model is defined. Section 6 comprises the numerical technique for the model’s solution

and graphical results of numerical simulation. At last, in Section 7 the conclusions have been discussed.
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13.2 Preliminaries

13.2.1 Caputo–Fabrizio Fractional Derivative and Integration

The definitions and characteristics of Caputo–Fabrizio (CF) derivative and integration have been stream-

lined in this section and fractional operators required.

Let H1(c, d) = {g/g ∈ X2(c, d) and g ∈ X2(c, d)}, where X2(c, d) is the space of square integrable

functions on the interval (c, d).

Definition 1. Let g ∈ H1(c, d) and γ ∈ (0, 1). Next Caputo–Fabrizio fractional derivative is described as

CFDγ
t g(t) =

E(γ)

1− γ

∫ t

0

g′(ω) exp

(
− γ

1− γ
(t− ω)

)
dω, (13.1)

where, E(γ) is a normalization function such that E(0) = E(1) = 1. However, if g(t) /∈ H1(a, b), then

the derivative is defined as

CFDγ
t g(t) =

γE(γ)

(1− γ)

∫ t

0

g(t)− g(ω) exp

(
− γ

1− γ
((t− ω))

)
dω. (13.2)

Remark 13.1: If we let ν =
1− γ

γ
∈ (0,∞), then γ =

1

1 + ν
∈ (0, 1). As consequences, Eq.( 13.1) can

be assume to form

CFDγ
t (g(t̂)) =

N(ν)

ν

∫ t

ρ

exp

[
− t̂− ω

ν

]
g′(ω)dω, (13.3)

where, in Eq.( 13.3), N(ν) is a term used for normalization that relates to E(γ) such that N(0) =

N(∞) = 1.

Remark 13.2: The following property holds:

lim
ν→0

1

ν
exp

[
− t− ω

ν

]
= δ(ω − t), where δ(·) denotes the Dirac delta function. (13.4)

Losada and Nieto subsequently modified the Caputo–Fabrizio fractional derivative as follows:

CFDγ
t (g(t)) =

E(γ)(2− γ)

(1− γ)2

∫ t

ρ

g′(ω) exp

[
− t− ω

1− γ
γ

]
dω, (13.5)

Nieto and Losada defined the fractional integral corresponding to the derivative in Eq.( 13.5) as

follows.

Definition 13.1: Let 0 < γ < 1. The following integer of order γ of a function g is described by

CFDγ
t (g(t)) =

(1− γ)2

E(γ)(2− γ)
g(t) +

2γ

E(γ)(2− γ)

∫ t

0

g(ω)dω, t ≥ 0. (13.6)
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Remark 13.3: According to the definition given in Eq.( 13.1), the function’s mean and its integral of

order one represent the fractional integral of Caputo-Fabrizio type for a function of order 0 < γ < 1, i.e.,

2(1− γ)

(2− γ)E(γ)
+

2γ

(2− γ)E(γ)
= 1, (13.7)

And therefore, E(γ) =
2

2− γ
, 0 < γ < 1.

Using E(γ) =
2

2− γ
, the new Caputo derivative and its associated integral were proposed by Losada

and Nieto as given.

Definition 13.2: Let 0 < γ < 1. The order γ of a function g of fractional Caputo-Fabrizio derivative

is given by

CFDγ
t (g(t)) =

1

1− γ

∫ t

ρ

exp

[
− t− ω

1− γ

]
γg′(ω)dω, t ≥ 0, (13.8)

moreover, its fractional integral is described as

CFDγ
t (g(t)) = g(t)(1− γ) + γ

∫ t

0

g(ω)dω, t ≥ 0. (13.9)

13.3 HIV–AIDS Model Formulation Including Treatment Com-

partment with CF Fractional Derivative

In this section, we formulate an HIV–AIDS epidemic model that incorporates an ART treatment compart-

ment. The entire population at time t is divided into six compartments, namely S(t), I1(t), I2(t), A(t), T (t), R(t).

Hence, the total population is given by N(t) = S(t) + I1(t) + I2(t) +A(t) + T (t) +R(t).

Figure 13.1: Dynamics of HIV infection in different population classes.

13.3 HIV–AIDS Model Formulation Including Treatment Compartment with CF Fractional
Derivative
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The governing system of ordinary differential equations is given by

dS

dt
= Λ− β1SI1 − β2SI2 − (µ+ d)S,

dI1
dt

= β1SI1 − αI1 − (µ+ d)I1,

dI2
dt

= αI1 − (k1 + k2 + µ+ d)I2,

dA

dt
= k1I2 + α1T − (µ+ d)A,

dT

dt
= k2I2 − (d1 + α1 + δ + µ)T,

dR

dt
= δT − dR.

(13.10)

In this model, six compartments constitute the overall population at time t, namely: S(t) represents

the number of susceptible patients, I1(t) represents the HIV-positive population with ART consumption

so that this population can survive longer, I2(t) represents the HIV-positive population without ART

consumption, A(t) indicates the number of patients with advanced AIDS who are not responding well

to treatment or are not receiving ART at all, T (t) shows the total number of individuals receiving ART

treatment and the number of patients for whom the treatment is effective, and R(t) represents the number

of people whose sexual behaviors have sufficiently changed to make them resistant to contracting HIV

through intercourse.

The initial conditions are specified as

S(0) = S0, I1(0) = I10, I2(0) = I20, A(0) = A0, T (0) = T0, R(0) = R0.

To incorporate memory effects and hereditary properties of the disease dynamics, we replace the classical

first-order derivatives in Eq. (13.10) with the Caputo–Fabrizio fractional derivative defined in Eq. (13.5).

The resulting fractional-order HIV–AIDS model with therapy compartments is given by

CFDγ1

t S = Λ− β1SI1 − β2SI2 − (µ+ d)S,

CFDγ2

t I1 = β1SI1 − αI1 − (µ+ d)I1,

CFDγ3

t I2 = αI1 − (k1 + k2 + µ+ d)I2,

CFDγ4

t A = k1I2 + α1T − (µ+ d)A,

CFDγ5

t T = k2I2 − (d1 + α1 + δ + µ)T,

CFDγ6

t R = δT − dR,

(13.11)

with initial conditions

(S(0), I1(0), I2(0), A(0), T (0), R(0)) = (S0, I10, I20, A0, T0, R0). (13.12)

where the fractional orders satisfy 0 < γi < 1 for i = 1, 2, . . . , 6.
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13.4 Existence and uniqueness of the HIV-AIDS model

In the present part, we examine the uniqueness and existence of the solutions to the Caputo-Fabrizio

fractional model for HIV-AIDS in Eq. 13.11 under prescribed I.C’s ( 13.12). By imposing the fixed point

theory. In this way, we can demonstrate the model’s existence and uniqueness. Apply the Caputo Fabrizio

fractional integral operator in Eq.( 13.1) to each side of Eq.( 13.11), and after applying fractional integral

we attain

S(t)− S(0) = CF Iγ1

t

[
Λ− β1I1S − β2I2S − (µ+ d)S

]
,

I1(t)− I1(0) =
CF Iγ2

t

[
β1I1S + αT − (k1 + d)I1

]
,

I2(t)− I2(0) =
CF Iγ3

t

[
β2I2S − (k2 + k3 + d)I2

]
,

A(t)−A(0) = CF Iγ4

t

[
k2I2 + α2T − (δ1 + d)A

]
,

T (t)− T (0) = CF Iγ5

t

[
k1I1 + k3I2 − (α1 + α2 + δ2 + d)T

]
,

R(t)−R(0) = CF Iγ6

t

[
µ1S − dR

]
.

(13.13)

Next, we define the subsequent Kernels for computational convenience:

M1(t, S) = Λ− β1I1(t)S(t)− β2I2(t)S(t)− µS(t)− dS(t),

M2(t, I1) = β1I1(t)S(t) + αT (t)− k1I1(t)− dI1(t),

M3(t, I2) = β2I2(t)S(t)− (k2 + k3 + d)I2(t),

M4(t, A) = k2I2(t) + α2T (t)− (δ1 + d)A(t),

M5(t, T ) = k1I1(t) + k3I2(t)− (α1 + α2 + δ2 + d)T (t),

M6(t, R) = µ1S(t)− dR(t).

(13.14)

and the functions

Ω(γ) =
(1− γ)2

E(γ)(2− γ)
, σ(γ) =

2γ

E(γ)(2− γ)
. (13.15)

The following theorems will be proved under the assumption that and are nonnegative bounded functions.

i.e.,

|S(t)| ≤ θ1, |I1(t)| ≤ θ2, |I2(t)| ≤ θ3, |A(t)| ≤ θ4, |T (t)| ≤ θ5, |R(t)| ≤ θ6,

where θ1, θ2, θ3, θ4, θ5, θ6 are some positive constants. Denote

λ1 = β1θ2 + β2θ3 + µ+ d, λ2 = β1θ1 + α+ k1 + d,

λ3 = β2θ1 + k2 + k3 + d, λ4 = α2 + δ1 + d,

λ5 = α1 + α2 + δ2 + d, λ6 = d.

(13.16)

Now, we impose the Caputo Fabrizio fractional integral definition given in Eq.( 13.1) to Eq.( 13.13),
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then we have

S(t)− S(0) = Ω(γ1)M1(t, S) + σ(γ1)

∫ t

0

M1(ξ, S(ξ)) dξ,

I1(t)− I1(0) = Ω(γ2)M2(t, I1) + σ(γ2)

∫ t

0

M2(ξ, I1(ξ)) dξ,

I2(t)− I2(0) = Ω(γ3)M3(t, I2) + σ(γ3)

∫ t

0

M3(ξ, I2(ξ)) dξ,

A(t)−A(0) = Ω(γ4)M4(t, A) + σ(γ4)

∫ t

0

M4(ξ, A(ξ)) dξ,

T (t)− T (0) = Ω(γ5)M5(t, T ) + σ(γ5)

∫ t

0

M5(ξ, T (ξ)) dξ,

R(t)−R(0) = Ω(γ6)M6(t, R) + σ(γ6)

∫ t

0

M6(ξ,R(ξ)) dξ.

(13.17)

Theorem 4: If the following inequality holds:

0 ≤ Z = max{λ1, λ2, λ3, λ4, λ5, λ6} < 1, (13.18)

then kernelsM1,M2,M3,M4,M5 andM6 accomplish Lipschitz conditions and are contraction mappings.

Proof: We have the Kernel M1. Let S and S̄ be any two functions, then we have

|M1(t, S)−M1(t, S̄)| = |(−S(t)− S̄(t))(β1I1(t) + β2I2(t) + µ+ d)|

= |(S(t)− S̄(t))|(β1I1(t) + β2I2(t) + µ+ d).

(13.19)

Utilizing the triangle inequality for norm on the right side of above equation we arrive at

|M1(t, S)−M1(t, S̄)| ≤ |S(t)− S̄(t)| · |β1I1(t) + β2I2(t) + µ+ d| ≤ λ1|S(t)− S̄(t)|. (13.20)

Hence the Kernel M1 satisfy the Lipschitz condition. Similarly, results for kernels M2,M3,M4,M5 and

M6 can be derived by using I1, I2, A, T,R, as follows:

|M2(t, I1)−M2(t, Ī1)| ≤ λ2|I1(t)− Ī1(t)|,

|M3(t, I2)−M3(t, Ī2)| ≤ λ3|I2(t)− Ī2(t)|,

|M4(t, A)−M4(t, Ā)| ≤ λ4|A(t)− Ā(t)|,

|M5(t, T )−M5(t, T̄ )| ≤ λ5|T (t)− T̄ (t)|,

|M6(t, R)−M6(t, R̄)| ≤ λ6|R(t)− R̄(t)|.

(13.21)

As λ1, λ2, λ3, λ4, λ5 and λ6 are defined in Eq. ( 13.16). Therefore, the Lipschitz prerequisites have been

satisfied for M1,M2,M3,M4,M5 and M6. In addition, since

0 ≤ Z = max{λ1, λ2, λ3, λ4, λ5, λ6} < 1,
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contractions compose up the Kernels. The following is a depiction of the state variables in terms of

Kernels derived from Eq.( 13.17):

S(t) = S(0) + Ω(γ1)M1(t, S) + σ(γ1)

∫ t

0

M1(ξ, S(ξ)) dξ,

I1(t) = I1(0) + Ω(γ2)M2(t, I1) + σ(γ2)

∫ t

0

M2(ξ, I1(ξ)) dξ,

I2(t) = I2(0) + Ω(γ3)M3(t, I2) + σ(γ3)

∫ t

0

M3(ξ, I2(ξ)) dξ,

A(t) = A(0) + Ω(γ4)M4(t, A) + σ(γ4)

∫ t

0

M4(ξ, A(ξ)) dξ,

T (t) = T (0) + Ω(γ5)M5(t, T ) + σ(γ5)

∫ t

0

M5(ξ, T (ξ)) dξ,

R(t) = R(0) + Ω(γ6)M6(t, R) + σ(γ6)

∫ t

0

M6(ξ,R(ξ)) dξ.

(13.22)

We now present the following recursive formulae on interval [Sn, Sn+1] using Eq.( 13.22):

Sn(t) = Ω(γ1)M1(t, Sn−1) + σ(γ1)

∫ t

0

M1(ξ, Sn−1(ξ)) dξ,

I1n(t) = Ω(γ2)M2(t, I1n−1
) + σ(γ2)

∫ t

0

M2(ξ, I1n−1
(ξ)) dξ,

I2n(t) = Ω(γ3)M3(t, I2n−1
) + σ(γ3)

∫ t

0

M3(ξ, I2n−1
(ξ)) dξ,

An(t) = Ω(γ4)M4(t, An−1) + σ(γ4)

∫ t

0

M4(ξ, An−1(ξ)) dξ,

Tn(t) = Ω(γ5)M5(t, Tn−1) + σ(γ5)

∫ t

0

M5(ξ, Tn−1(ξ)) dξ,

Rn(t) = Ω(γ6)M6(t, Rn−1) + σ(γ6)

∫ t

0

M6(ξ,Rn−1(ξ)) dξ.

(13.23)

Based on the specified beginning circumstances, the following I.C’s of the recursive formulae above

are established:

S0(t) = S(0), I10(t) = I1(0), I20(t) = I2(0), A0(t) = A(0), T0(t) = T (0), R0(t) = R(0).

(13.24)

By evaluating the difference between succeeding values, we attain the following expressions:
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ϕn(t) = Sn(t)− Sn−1(t) = Ω(γ1)(M1(t, Sn−1)−M1(t, Sn−2))

+ σ(γ1)

∫ t

0

(M1(ξ, Sn−1)−M1(ξ, Sn−2)) dξ,

ψn(t) = I1n(t)− I1n−1
(t) = Ω(γ2)(M2(t, I1n−1

)−M2(t, I1n−2
))

+ σ(γ2)

∫ t

0

(M2(ξ, I1n−1
)−M2(ξ, I1n−2

)) dξ,

φn(t) = I2n(t)− I2n−1(t) = Ω(γ3)(M3(t, I2n−1)−M3(t, I2n−2))

+ σ(γ3)

∫ t

0

(M3(ξ, I2n−1)−M3(ξ, I2n−2)) dξ,

ξn(t) = An(t)−An−1(t) = Ω(γ4)(M4(t, An−1)−M4(t, An−2))

+ σ(γ4)

∫ t

0

(M4(ξ, An−1)−M4(ξ, An−2)) dξ,

χn(t) = Tn(t)− Tn−1(t) = Ω(γ5)(M5(t, Tn−1)−M5(t, Tn−2))

+ σ(γ5)

∫ t

0

(M5(ξ, Tn−1)−M5(ξ, Tn−2)) dξ,

ηn(t) = Rn(t)−Rn−1(t) = Ω(γ6)(M6(t, Rn−1)−M6(t, Rn−2))

+ σ(γ6)

∫ t

0

(M6(ξ,Rn−1)−M6(ξ,Rn−2)) dξ.

(13.25)

Assuming that:

Sn(t) =

n∑
i=0

ϕi(t), I1n(t) =

n∑
i=0

ψ1i(t), I2n(t) =

n∑
i=0

ψ2i(t),

An(t) =

n∑
i=0

ξi(t), Tn(t) =

n∑
i=0

χi(t), Rn(t) =

n∑
i=0

ηi(t).

(13.26)

Next, we create the inequality that recursively determines the differences ϕ1(t), ψ1(t), ψ2(t), ξ(t), ζ(t) and

η(t) as follows:

∥ϕn(t̄)∥ = ∥Sn(t̄)− Sn−1(t̄)∥

=

∥∥∥∥∥Ω(γ1)(M1(t̄, Sn−1)−M1(t̄, Sn−2))

+ ω(γ1)

∫ t̄

0

(
M1(y, Sn−1)−M1(y, Sn−2)

)
dy

∥∥∥∥∥ (13.27)

Apply the triangular inequality for norms to Eq.( 13.27):

∥Sn(t̄)− Sn−1(t̄)∥ ≤ Ω(γ1)∥M1(t̄, Sn−1)−M1(t̄, Sn−2)∥

+ ω(γ1)

∫ t̄

0

∥M1(y, Sn−1)−M1(y, Sn−2)∥ dy (13.28)

Consequently, since the kernel M1 uses the Lipschitz constant λ1 to satisfy the Lipschitz condition, we
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have

∥Sn(t̄)− Sn−1(t̄)∥ ≤ Ω(γ1)λ1∥Sn−1 − Sn−2∥

+ ω(γ1)λ1

∫ t̄

0

∥Sn−1 − Sn−2∥ dy (13.29)

Thus, we obtain

∥ϕn(t̄)∥ ≤ Ω(γ1)λ1∥ϕn−1(t̄)∥+ ω(γ1)λ1

∫ t̄

0

∥ϕn−1(y)∥ dy (13.30)

In similar manner we obtain the following results:

∥ψn(t̄)∥ ≤ Ω(γ2)λ2∥ψn−1(t̄)∥+ ω(γ2)λ2

∫ t̄

0

∥ψn−1(y)∥dy,

∥φn(t̄)∥ ≤ Ω(γ3)λ3∥φn−1(t̄)∥+ ω(γ3)λ3

∫ t̄

0

∥φn−1(y)∥dy,

∥ξn(t̄)∥ ≤ Ω(γ4)λ4∥ξn−1(t̄)∥+ ω(γ4)λ4

∫ t̄

0

∥ξn−1(y)∥dy, (13.31)

∥χn(t̄)∥ ≤ Ω(γ5)λ5∥χn−1(t̄)∥+ ω(γ5)λ5

∫ t̄

0

∥χn−1(y)∥dy,

∥ηn(t̄)∥ ≤ Ω(γ6)λ6∥ηn−1(t̄)∥+ ω(γ6)λ6

∫ t̄

0

∥ηn−1(y)∥dy,

Theorem 5: If there exist a time t̄0 > 0 such that the following inequalities holds:

Ω(γj)λj + ω(γj)λjt0 < 1, (13.32)

Then a system of solutions exists for the fractional HIV model Eq.( 13.11) and Eq.( 13.12).

Proof: Since the functions S(t̄), I1(t̄), I2(t̄), A(t̄), T (t̄) and R(t̄) are assumed to be bounded assuming

every Kernel fulfills a Lipschitz requirement, the ensuing relations have obtained.

|ϕn(t̄)| ≤ ∥S(0)∥ [Ω(γ1)λ1 + ω(γ1)λ1t̄]
n, (13.33)

|ψn(t̄)| ≤ ∥I1(0)∥ [Ω(γ2)λ2 + ω(γ2)λ2t̄]
n, (13.34)

|φn(t̄)| ≤ ∥I2(0)∥ [Ω(γ3)λ3 + ω(γ3)λ3t̄]
n, (13.35)

|ξn(t̄)| ≤ ∥A(0)∥ [Ω(γ4)λ4 + ω(γ4)λ4t̄]
n, (13.36)

|χn(t̄)| ≤ ∥T (0)∥ [Ω(γ5)λ5 + ω(γ5)λ5t̄]
n, (13.37)
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|ηn(t̄)| ≤ ∥R(0)∥ [Ω(γ6)λ6 + ω(γ6)λ6t̄]
n. (13.38)

Eq.( 13.33) to Eq.( 13.38) show the presence and reliability of the functions listed in Eq.( 13.26). We

demonstrate that the function Sn(t̄), I1(t̄), I2(t̄), An(t̄), Tn(t̄), Rn(t̄) eventually settle a system of solutions

of Eq.( 13.11) and Eq.( 13.12). We define Bn(t̄), Cn(t̄), Dn(t̄), En(t̄), Fn(t̄), and after n iterations, as the

remaining conditions i.e.,

S(t̄)− S(0) = S1(t̄)−Bn(t̄), (13.39)

I1(t̄)− I1(0) = I1(t̄)− Cn(t̄), (13.40)

I2(t̄)− I2(0) = I2(t̄)−Dn(t̄), (13.41)

A(t̄)−A(0) = An(t̄)− En(t̄), (13.42)

T (t̄)− T (0) = Tn(t̄)− Fn(t̄), (13.43)

R(t̄)−R(0) = Rn(t̄)−Gn(t̄). (13.44)

Now, the Lipschitz condition and the triangle inequality are used for M1, we have

∥Bn(t̄)∥ =

∥∥∥∥∥Ω(γ1)(M1(t̄, S)−M1(t̄, Sn−1)) + ω(γ1)

∫ t̄

0

(M1(y, S)−M1(y, Sn−1))dy

∥∥∥∥∥, (13.45)

≤ Ω(γ1)∥M1(t̄, S)−M1(t̄, Sn−1)∥+ ω(γ1)

∫ t̄

0

∥(M1(y, S)−M1(y, Sn−1))∥dy, (13.46)

≤ Ω(γ1)λ1∥S − Sn−1∥+ ω(γ1)λ1∥S − Sn−1∥t̄. (13.47)

Recursively, using the preceding process, we get

∥Bn(t̄)∥ ≤ [(Ω(γ1) + ω(γ1)t̄)λ1]
n+1θ1. (13.48)

Then at t̄0, we gain

∥Bn(t̄)∥ ≤ [(Ω(γ1) + ω(γ1)t̄0)λ1]
n+1θ1. (13.49)
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After utilizing condition Eq.( 13.32) and putting the limit on Eq.( 13.49), we obtain ∥Bn(t̄)∥ → 0.

Using similar process as done above, we obtain the following relations:

∥Cn(t̄)∥ ≤ [(Ω(γ2) + ω(γ2)t̄0)λ2]
n+1θ2, (13.50)

∥Dn(t̄)∥ ≤ [(Ω(γ3) + ω(γ3)t̄0)λ3]
n+1θ3, (13.51)

∥En(t̄)∥ ≤ [(Ω(γ4) + ω(γ4)t̄0)λ4]
n+1θ4, (13.52)

∥Fn(t̄)∥ ≤ [(Ω(γ5) + ω(γ5)t̄0)λ5]
n+1θ5, (13.53)

∥Gn(t̄)∥ ≤ [(Ω(γ6) + ω(γ6)t̄0)λ6]
n+1θ6. (13.54)

Similarly taking limit on Eq.( 13.49) as n→ ∞ and applying the condition Eq. 13.32, we have

∥Cn(t̄)∥ → 0, ∥Dn(t̄)∥ → 0, ∥En(t̄)∥ → 0, ∥Fn(t̄)∥ → 0, and ∥Gn(t̄)∥ → 0.

Therefore, it indicates that the system of solutions for the system Eq.( 13.11)–(Eq. 13.12) exists.

Now, we establish specifications for the system of solutions to be singular.

Theorem 6: Coupled with the IC’s Eq.( 13.12), system Eq.( 13.11) has a distinct set of solutions in the

instance that the given below conditions satisfied:

(1− Ω(γi)λi − ω(γi)λit̄) > 0, for i = 1, 2, . . . , 6. (13.55)

Proof: Assuming that {S(t̄), I1(t̄), I2(t̄), A(t̄), T (t̄), R(t̄)} be an array of equation’s solution (1.11)–(1.12)

in regarding to solutions set {S(t̄), I1(t̄), I2(t̄), A(t̄), T (t̄), R(t̄)} existence have derived in theorem 4 and

5. Then we have equation

S(t̄)− S1(t̄) = Ω(γ1)(M1(t̄, S)−M1(t̄, S1)) + ω(γ1)

∫ t̄

0

(M1(y, S)−M1(y, S1))dy. (13.56)

Implementing norms on both ends of Eq.( 13.56)

∥S(t̄)− S1(t̄)∥ =

∥∥∥∥∥Ω(γ1)(M1(t̄, S)−M1(t̄, S1)) + ω(γ1)

∫ t̄

0

(M1(y, S)−M1(y, S1))dy

∥∥∥∥∥. (13.57)
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By employing property of triangular inequality, we have

∥S(t̄)− S1(t̄)∥ ≤ Ω(γ1)∥M1(t̄, S)−M1(t̄, S1)∥+ ω(γ1)

∫ t̄

0

∥(M1(y, S)−M1(y, S1))∥dy. (13.58)

Using Lipschitz condition for M1, we find

∥S(t̄)− S1(t̄)∥ − ∥S(t̄)− S1(t̄)∥(Ω(γ1)λ1 + ω(γ1)λ1t̄) ≤ 0. (13.59)

Then rearranging/taking common values of Eq.( 13.59), we obtain

∥S(t̄)− S1(t̄)∥(1− Ω(γ1)λ1 + ω(γ1)λ1t̄) ≤ 0. (13.60)

Finally applying condition (1− Ω(γi)λi − ω(γi)λit̄) > 0 for i = 1 to Eq.( 13.60) we have

∥S(t̄)− S1(t̄)∥ = 0, (13.61)

And therefore S(t̄) = S1(t̄). Applying the similar process to each of the following pairs (I1(t̄), I11(t̄)),

(I2(t̄), I21(t̄)), (A(t̄), A1(t̄)), (T (t̄), T1(t̄)) and (R(t̄), R1(t̄)), with inequality Eq.( 13.55) for i = 2, 3, 4, 5, 6,

respectively. We have

I1(t̄) = I11(t̄), I2(t̄) = I21(t̄), A(t̄) = A1(t̄), T (t̄) = T1(t̄), R(t̄) = R1(t̄). (13.62)

It is demonstrated that the fractional order system’s solution is unique.

13.5 Equilibration points of the model and basic reproduction

number

By equating the fractional order system Eq.( 13.11)’s right side equal to zero, we obtained the equilibrium

locations. After the corresponding algebraic system solved, we are left with two different equilibrium

points: one under endemic conditions and another for lack of illness. The equilibrium point free from

illness is E0 = (S0, I01 , I
0
2 , A

0, T 0, R0). This equilibrium points free from sickness means we have the

number of susceptible population with zero the infected population which AIDS treatment populations

and the highly effected AIDS population are equal to zero. It indicates that there isn’t any population-

wide infection transmission.

We are provided the disease-free equilibration point as

E0 = (S0, I01 , I
0
2 , A

0, T 0, R0) =

(
Λ

(µ1 + d)
, 0, 0, 0, 0,

µ1Λ

(d+ µ1)d

)
. (13.63)
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Endemic Equilibrium and Parameter Definitions. The endemic equilibrium point arises when

both I1 ̸= 0 and I2 ̸= 0, yielding E∗ = (S∗, I∗1 , I
∗
2 , A

∗, T ∗, R∗). The corresponding equilibrium values are

obtained as

I∗1 =
α1T

∗

(k1 + d− β1S∗)
,

I∗2 =
(α1 + α2 + δ2 + d)β2(k1 + d)− (α1 + α2 + δ2 + d)β1(k2 + k3 + d)− α1k1β2

α1k3β2
I∗1 ,

(13.64)

and

S∗ =
Λ

β1I∗1 + β2I∗2 + µ1 + d
,

A∗ =
k3I

∗
2 + α2T

∗

δ1 + d
,

T ∗ =
k1I

∗
1 + k3I

∗
2

α1 + α2 + δ2 + d
,

R∗ =
µ1Λ(

β1I∗1 + β2I∗2 + µ1 − d
)
d
.

(13.65)

Here, the parameters are defined as follows: Λ denotes the recruitment rate of susceptible individuals,

d is the natural mortality rate, and µ1 is the recovery rate associated with immune response. The trans-

mission coefficients are represented by β1 and β2 for infection through classes I1 and I2, respectively. The

progression parameters α1 and α2 govern the transition from treatment and asymptomatic stages into

subsequent compartments, while δ1 and δ2 represent disease-induced death rates in the asymptomatic

and treated classes. The parameters k1, k2, k3 are therapy-related rates corresponding to treatment initi-

ation and modification across compartments. Finally, S∗, I∗1 , I
∗
2 , A

∗, T ∗, and R∗ denote the steady-state

populations of susceptible individuals, primary infected class, secondary infected class, asymptomatic

class, treated class, and recovered class, respectively.

The fundamental reproduction number R0, which oftenly computed by employing the next-generation

matrix technique. We have system of equations in Eq.( 13.11). Let x = (I1, I2, A, T, S,R)
T , then system

of equation can be written as:

R0 =
β2Λ

(µ1 + d)(k2 + k3 + d)
. (13.66)

It is evident that a specific endemic equilibration point E∗ exists if R0 > 1. The developed activation

function is characterized by two sets of parameters: (α1, µ1) and (α2, µ2). In this model, the parameter

α denotes the progression rate from the primary infected class I1 to the secondary infected class I2. The

parameter α1 represents the transition rate of infected individuals receiving antiretroviral therapy (ART)

into the treatment class T , while α2 denotes the transition rate from treatment to the asymptomatic

class A. The parameter µ corresponds to the natural mortality rate applicable to all population classes,

whereas µ1 denotes the recovery rate associated with behavioral change that transfers individuals from
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the susceptible class S to the resistant class R.

13.6 Adams-Bashforth scheme via three steps and Numerical

Simulations

The vast range of nonlinear fractional derivative models that have served as real world issues has led to the

development of several innovative analytical techniques in recent years. The novel analytical techniques

include the local fractional homotopy perturbation Laplace transform method (LFH-PLTM), the ho-

motopy analysis transform method (HATM), and the homotopy analysis Sumudu transform technique

(HASTM). Furthermore, a variety of numerical techniques have been developed to relent approximations

for fractional differential equation solutions. These techniques, which are usually based on discretizing

the independent variable, include finite difference, finite element, and Adams-Bashforth Moulton type

predictor-corrector approaches, among other variants of the integer order techniques. In this paper, we

derived numerical approaches for the fractional model Eq.( 13.11) of Caputo-Fabrizio using a three step

fractional Adams-Bashforth approach. In order to establish First, we introduce the three-step fractional

Adams-Bashforth technique in this section, which provides Quantitative explanations for the fractional

HIV-AIDS framework provided in Eq.( 13.11) for various values of fractional orders and a range of real-

istic parameter values.

Rather using the Losada and Nieto formulation defined in Eq.( 13.1), we described the numerical strate-

gies using applying the authentic Eq.( 13.5) formulation of the Caputo-Fabrizio fractional derivative.

Analyze the differential equation for fractions of Caputo-Fabrizio:

CFDγ
t (v(t)) = g(t, v(t)), (13.67)

Where CFD
(∗)
t defined in Eq.( 13.1) is the Caputo-Fabrizio fractional derivative. The integral in fractional

terms defined as:

FCIγt (g(t)) =
1− γ

E(γ)
g(t) +

γ

E(γ)

∫ t

0

g(ω) dω, (13.68)

by imposing the integral in fractional terms on either side of Eq. (1.49), we obtain

FCIγt (
CFDγ

t (v(t))) =
FCIγt (g(t, v(t))),

v(t)− v(0) = FCIγt (g(t, v(t))),

v(t)− v(0) =
1− γ

E(γ)
g(t, v(t)) +

γ

E(γ)

∫ t

0

g(s, v(s)) ds. (13.69)
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Next, we divide the period of time span into discrete halves [0, t] in step of order h and acquired the

sequence t0 = 0, tj = tj−1 + h, j = 0, 1, 2, . . . , n− 1, tn = t. By Eq.( 13.69), the recursive formulae that

have developed shown below:

v(tj+1)− v(0) =
1− γ

E(γ)
g(tj , v(tj)) +

γ

E(γ)

∫ tj+1

0

g(t, v(t)) dt, (13.70)

and

v(tj)− v(0) =
1− γ

E(γ)
g(tj−1, v(tj−1)) +

γ

E(γ)

∫ tj

0

g(t, v(t)) dt, (13.71)

now, we subtract Eq. 13.71 from Eq. 13.70, we obtain

v(tj+1)− v(tj) =
1− γ

E(γ)
[g(tj , vj)− g(tj−1, vj−1)] +

γ

E(γ)

∫ tj+1

tj

g(t, v(t)) dt. (13.72)

We derive a three-step predictor method of the Adams-Bashforth by approximating the integral
∫ tj+1

tj
g(t, v(t)) dt,

using the approximation in the equation above
∫ tj+1

tj
B2(t) dt, where B2(t) is Lagrange polynomial with a

degree of two that traverses these three locations (tj−2, g(tj−2, v(tj−2))), (tj−1, g(tj−1, v(tj−1))), (tj , g(tj , v(tj))).

That is,

B2(t) =

2∑
i=0

g(tj−i, vj−i)Li(t), (13.73)

as, Li(t) are the basis polynomials for Lagrange at three-point (tj−2, tj−1, tj). Using the variable’s change

s =
tj − ti
h

, sh = tj+1 − t, after integrating and replacing the Lagrange basis polynomials, we have

∫ tj+1

tj

g(t, v(t)) ds = h

[
(s− 2)(s− 3)

(1− 2)(1− 3)
g(tj , vj)

+
(s− 1)(s− 3)

(2− 1)(2− 3)
g(tj−1, vj−1) +

(s− 2)(s− 1)

(3− 2)(3− 1)
g(tj−2, vj−2)

]1
0

(13.74)

∫ tj+1

tj

g(t, v(t)) ds = h

[
23

4!
g(tj , vj)−

4

3
g(tj−1, vj−1) +

5

4!
g(tj−2, vj−2)

]
, (13.75)

as, vj−2 = v(tj−2), vj−1 = v(tj−1), vj = v(tj). By inserting Eq.( 13.75) into Eq. Eq.( 13.73), the

iterative formula obtained is as follows:

v(tj+1) = v(tj) +
1

E(γ)

[
23hγ

12
+ (1− γ)

]
g(tj , vj)−

1

E(γ)

[
4hγ

3
+ (1− γ)

]
g(tj−1, vj−1)

+
5h

12

γ

E(γ)
g(tj−2, vj−2),

(13.76)

for a particular situation γ = 1, Eq.( 13.76) demonstrates to the three-step, classic Adams-Bashforth

predictor formula
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v(tj+1) = v(tj) +
1

E(γ)

[
23h

12
g(tj , vj)−

4h

3
g(tj−1, vj−1) +

5h

12
g(tj−2, vj−2)

]
. (13.77)

The Lagrange interpolating polynomial error estimate may be used to estimate the truncation error for

the three-step formula, namely

g(t, v(t)) = B2(t) +X2(t), (13.78)

X2(t) =
g(3)(ζ, u(ζ))

3!
(t− t)(t− tj)(t− tj−2), ζj ∈ (tj−2, t). (13.79)

then we have,

∫ tj

tj

X2(t)dt =

∫ tj

tj

f (3)(ζ, u(ζ))

3!
(t− tj)(t− tj−1)(t− tj−2)dt, (13.80)

≈ h4g(3)(ν(µj), µj)

6(3!)

∫ 1

0

(s− 1)(3− 2)(s− 3) ds, (13.81)

=
3

8
h4g(3)(ν(µj), µj), (13.82)

However, µj ∈ (tj−2, tj+1), and to approximate the integral, we have applied the mean value theorem.

Signifying the complete right-hand side of Eq.( 13.76) by that value, we have

vj+1 = vj + (ν(µj), µj)
3

8
h4g(3).

Consequently, the local truncation error resulting from using the formula Eq.( 13.76) is ascertained by

vj+1 − vj
h

=
3
8h

4g(3)(ν(µj), µj)

h
· γ

E(γ)
, (13.83)

=
3

8E(γ)
γh3g(3)(µj , ν(µj)). (13.84)

Next, Numerical solutions for the fractional model Eq.( 13.11)– Eq.( 13.12), are derived via the

fractional Adam Bashforth method, three steps in Eq.( 13.76),. We assumed for the numerical simulations

that each fractional derivative in the system Eq.( 13.11), possesses same order, i.e.,

γ1 = γ2 = γ3 = γ4 = γ5 = γ6 = γ. (13.85)

After that, we mentioned the system’s right-hand side:

CFDγ
t (v(t)) = g(t, v(t)), 0 < γ < 1. (13.86)
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Where,

v(t) =



S(t)

I1(t)

I2(t)

A(t)

T (t)

R(t)


, g(t, v(t)) =



g1(t, v(t))

g2(t, v(t))

g3(t, v(t))

g4(t, v(t))

g5(t, v(t))

g6(t, v(t))


(13.87)

The scalar function gi, i = 1, 2, . . . , 6, we stated the system’s Eq.( 13.11), right side as,

g1(t, v(t)) = Λ− β1I1S − β2I2S − (µ1 + d)S,

g2(t, v(t)) = β1I1S + αT − (k1 + d)I1,

g3(t, v(t)) = β2I2S − (k2 + k3 + d)I2,

g4(t, v(t)) = k2I2 + αT − (δ1 + d)A,

g5(t, v(t)) = k1I1 + k3I2 − (α+ a2 + δ2 + d)T,

g6(t, v(t)) = µ1S − dR.

(13.88)

Implementing fractional integral defined in Eq.( 13.68), to both sides of Eq.( 13.86), we gain

v(t)− v(0) =
1− γ

E(γ)
g(t, v(t)) +

γ

E(γ)

∫ t

0

g(s, v(s)) ds. (13.89)

Utilizing the numerical technique in Eq.( 13.89), we have the following iterative formula:

νj+1 = vj +
1

E(γ)

[
23

12
hγ + (1− γ)

]
g(tj , vj)−

1

E(γ)

[
4

3
hγ + (1− γ)

]
g(tj−1, vj−1)

+
5hγ

12E(γ)
g(tj−2, vj−2),

(13.90)

Where, νj+1 = v(tj+1), vj = v(tj), vj−1 = v(tj−1), vj−2 = v(tj−2), and

v0 = v(t0) =
[
S(t0), I1(t0), I2(t0), A(t0), T (t0), R(t0)

]T
.

The IC’s are as S(0) = 35, I1(0) = 25, I2(0) = 35, A(0) = 15, T (0) = 8, R(0) = 0. Hence we have

E0 = (S0, I01 , I
0
2 , A

0, T 0, R0) = (0.0887, 0, 0, 0, 0, 16.9725), R0 = 0.00284 < 1.% We established the

fractional orders in the system in Eq.( 13.11) for computational ease, as γ1 = γ2 = γ3 = γ4 = γ5 = γ6 = γ,

and we select E(γ) = 1. Scheme in Eq.( 13.90,) is used to generate numerical simulations that are intended

to illustrate the behaviours for γ = 0.6, 0.8, 0.95. For our estimation, we have utilized the following initial

values and numerical parameter:
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Parameters Description Values

Λ The population’s rate at which susceptible individuals are recruited 0.55

β1 The transmission coefficient of I1 0.0023

β2 The transmission coefficient of I2 0.0033

α1 The rapid pace of shifting individuals from the infectious class to having full-blown AIDS 0.08

α2 Rate at which I1 population receive treatment 0.03

k1 Progress rate from infected (I1) to T 0.15

k2 Progress rate from infected (I2) to A 0.35

k3 Progress rate from I2 to T 0.05

µ1 The rate of change of susceptible whose alter the sexual habits 0.03

d Physical mortality rate 0.0196

δ1 The deaths caused by AIDS 0.0909

δ2 The mortality rate of treated 0.0667

Table 13.1: Initial values and numerical parameters.

Figure 13.2: The time series plot for each state variable in model Eq.( 13.11), for different values of

γ = 0.6, γ = 0.8, and γ = 0.95.
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Figure 13.3: The time series plot for each state variable in model Eq.( 13.11), for different values of

γ = 0.6, γ = 0.8, and γ = 0.95.

The mathematical calculations have been conducted with the intention of analyzing the numerical

results of various parametric merit employed in the current study for the pandemic behaviour of different

populations of HIV along with the distinctive values of order. The order of the model lies between 0 and 1.

Different parameters show the pandemic behavior of the disease. In order to have a detailed quantitative

analysis occurred due to variations in the numerical values of. The Figure 13.2(a) shows that the state

variable exposes its dynamic behaviour of HIV infection with respect to time, as we have order of the

state variable model. Initially the value of state variable increases but with time the value decreases and

tends to the value 11.0887 which is the point at which the disease free equilibration exists. Similarly, the

Figure 13.2(b), Figure 13.2(c), Figure 13.2(d), Figure 13.2(e) exhibit that the state variables show, at

initial time, an increase but with time the value of variables decreases and tends to zero which is the point

at which the disease free equilibration exists. The Figure 13.2(f) exhibits that the state variable shows an

increase with passage of time and its increasing value approaches to 16.9725 which is the point at which the

disease free equilibration exists. The information which are utilized for the Figure 14.2 (a), (b), (c) are I.C’s

which are given as S(t) = 35, I1(t) = 25, I2(t) = 35, A(t) = 15, T (t) = 8, R(t) = 0, and the order of the

model γ = 0.6. The behaviour of the graph shows that with the change of time the all compartmental

values shows its dynamic behaviour with respect to the value of order of model i.e γ = 0.6, 0.8, 0.95.

Initially the all state variables increase and approaches to its initial conditions then with the passage of

time the all state variables approaches to its equilibrium points i.e E0 = (11.0887, 0, 0, 0, 0, 16.9725).
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13.7 Conclusion

Using the transfer diagram designed for this study, the SI1I2ATR model is formulated, comprising com-

partments of susceptibles, infected patients with ART (I1), infected patients without ART (I2), advanced

AIDS cases (A), treated individuals (T ), and recovered individuals (R). The model demonstrates the

uniqueness and existence of solutions. Both disease-free and endemic equilibria are obtained. Numerical

simulations using the three-step fractional Adams–Bashforth method highlight the influence of fractional

orders γ on the system’s dynamics.
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Abstract: A topological descriptor serves as a mathematical function that converts a chemi-

cal structure into a numeric value, proving invaluable in Quantitative Structure-Property Re-

lationship (QSPR) analysis of various drugs. Degree-based topological indices are particularly

utilized to ascertain the physical and chemical properties of drugs because they provide valuable

insights into molecules’ structural and physicochemical properties, critical for understanding

their activity in biological systems and optimizing their pharmacological qualities. Bone cancer

is characterized by uncontrolled cell growth in the bones. QSPR provides a design paradigm that

demonstrates the precise connection between molecular physicochemical qualities and their bi-

ological impact on a drug’s response. Using QSPR models, researchers can create and optimize

drug candidates with improved efficacy, safety, and physiological features, boosting the probabil-

ity of success in clinical trials. This study focuses on QSPR analysis applied to drugs used for

treating bone cancer, including Doxorubicin, Ifosfamide, Gemcitabine, Etoposide, Methotrex-

ate, Cisplatin, Zoledronic, Sunitinib, and Regorafenib. The investigation reveals a significant

correlation between topological indices imposed on these drugs and their physical properties.

Keywords: chemical graph, drugs; linear QSPR model; degree-based topological indices.
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14.1 Introduction

The main types of bone cancers are Ewing sarcoma, osteosarcoma, and chondrosarcoma. Bone cancers

that directly arise from bone are rare. Less than 1% of all diagnosed bone cancers are malignant, but

their morbidity and mortality are important [1]. Among two-thirds of bone cancers, Osteosarcoma is

the most important bone cancer [2]. In the US almost 1,200 patients are diagnosed with osteosarcoma

annually. This cancer originated from primitive mesenchymal cells that undergo that malignant change,

which in turn produces a malignant osteoid matrix. No doubt that osteosarcomas can originate in any

bone, but mainly develops in the metaphysis part of long bones. Almost 60% of osteosarcoma occur in

the proximal tibia, distal femur, and the proximal humerus [3]. The second most common type of bone

cancer is Ewing sarcoma. It is thought to have originated from primitive stem cells, and the extent of

malignancy depends on the stage at which stem cells are arrested during differentiation [4]. It primarily

affects children and adults of an average age of 15 years. Ewing tumors can metastasize the lungs and other

bones. Among cartilage-producing bone tumors of malignant nature is chondrosarcoma. Its incidence is

one in 200,000 persons means that it is the least common bone tumor [5]. It mostly occurs in the central

skeleton, arising from the pelvic girdle, vertebrae, and proximal long bones [6]. The symptoms of bone

cancer are pain in bones which are immovable and inflammation in the affected area. These symptoms

are mainly due to pressure effects on near nerves or organs. The treatment modality is based on the type

and stage of bone cancer, its spread, and the patient’s health and age. Treatment options are available

surgery, chemotherapy, radiation, or a combination. In Chemotherapy, we use antimetabolites that kill

cancer cells. They work by decreasing or inhibiting cancer cells which are growing and dividing quickly.

However, these drugs also had adverse effects on normal cells. Such as disrupting mucosa of GIT and

hair loss. In chemotherapy, some drugs work to kill cancer cells some work by slowing their divisions

and some prevent them from spreading in nearby areas. Some of these drugs include vincristine sulfate,

doxorubicin hydrochloride, cyclophosphamide, ifosfamide, and etoposide. Some bone tumors can also be

treated by using drugs affecting normal cells of bones (osteoblasts and osteoclasts). These are mainly

used for primary bone cancer, but we can also use these drugs for bone cancers that are spread.

Drug discovery passes from various steps i.e., identification of cases, synthesis, characterization, valida-

tion, optimization, screening, and assays for therapeutic efficacy. These steps aim to identify a compound

that is either therapeutically useful in curing and treating diseases or not. In the development of new drugs

used for treating diseases drug discovery is also important as it allows researcher and identify new targets

for drugs and to develop new drugs that are more effective therapeutically and has fewer complications.

Now researchers are using the QSPR approach to predict drug properties [7]. A design tool known as

QSRP shows a clear connection between molecular physicochemical properties and their biological effects

on medication responsiveness. Topological indices are numerical parameters of a graph that characterize

its topology and are usually graph invariant. Topological indices are used for example in the develop-

ment of quantitative structure-activity relationships (QSARs) in which the biological activity or other
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properties of molecules are correlated with their chemical structure [8]. Degree-based topological indices

of various chemical graphs are being studied by many researchers [26, 27, 28, 29, 30, 31, 32, 34, 35, 36].

S, Zamen provided structural modelling of dendrimers and some Networks in [37]. The researcher can

read more about QSPR analysis on cancer diseases [17, 18, 19, 20, 21] and various drugs and diseases

[22, 23, 24, 25]. The majority of the researchers investigated these features because of their effect on

bioactivities and drug transportation in human tissue. In this research paper, we are computing thera-

peutic indices for drugs used in bone cancer treatment. This paper investigates nine anticancer drugs,

Zoledronic , Ifosfamide, Gemcitabine, Methotrexate, Doxorubicine , Cisplatin, Sunitinib, Regorafenib,

and Etoposide, that are secure and reliable remedies for the community heath. Figure 14.1 displays the

chemical structure of these medicines.

14.2 Material and Methods

In drug structure Elements are represented as vertices, and the interconnected bonds of these atoms are

represented by edges. Let G(V, E) be represented as a graph of drug structure, V represents a vertex

set, while E represents an edge set of chemical graphs. The vertex degree of a graph G is represented by

du and is the number of vertices adjacent to u. Degree-based topological indices which are used for our

calculation are given below.

Definition 10: Randic’s index [9] was established by Milan Randič and is stated as

χ(G) =
∑

uv∈E

1√
dudv

.

Definition 11: Estrada et al. in [10] proposed a degree-based topology index ABC and defined as.

ABC(G) =
∑
uvϵG

√
du + dv + 2

dudv
.

Definition 12: The Sum Connectivity index introduces by Zhou and Trinjstic [11] defined as

SCI(G) =
∑

uv∈E

1√
du+dv

.

Definition 13: The GA index is designed by Vukicevic et al. [12] as

GA(G) =
∑
uv∈E

2
√
dudv

du+dv
.

Definition 14: First and the Second Zagreb indices are designed by Trinajestic and Gutman [13],
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defiened as

M1(G) =
∑
uv∈E

[du + dv],

M2(G) =
∑
uv∈E

[dudv].

Definition 15: Harmonic index is designed by Fajtlowicz in [14] as

H(G) =
∑

uv∈E

2

[du+dv]
.

Definition 16: The Hyper Zagreb index was proposed by Shirdel et al. [15] as,

HM (C[G ]) =
∑

uv∈E

(du+dv)
2
.

Definition 17: Forgotten topological index defined by Furtula et al. in [16] as,

F (G) =
∑

uv∈E

(
du

2 + dv
2
)
.

Physical property values are obtained from Chemspider. The data in Table. 14.2 shows that they

are normally distributed. The topological indices for chemical structures shown in Fig. ??, are stated in

Table. 14.1. As a result, the linear regression model is best to examine and use in this analysis. Fig. 14.1

depicts the association between topological indices and drugs.

The molecular formula related to Doxorubicine is C27H29NO11. It is a chemotherapeutic medication

used for cancer therapy. Doxorubicin is utilized to treat Hodgkin’s lymphoma and leukemias, along

with cancers or other origins bladder, stomach, breast, ovaries, lung, soft tissue, thyroid, sarcoma, and

multiple myeloma. The Chemical formula related to Ifosfamide is C7H15C12N2O2P . it is utilized for

the therapy of Breast testicular cancer and some Lymphoma (Hodgkin and non-Hodgkin), bone tumor,

soft tissue sarcoma, female reproductive cancer, and Lung cancer. The molecular formula related to

Gemcitabine is C9H11F2N3O4. Gemcitabine is used to treat different carcinomas. It is commonly used

to treat cholangiocarcinoma and some other kinds of biliary tract cancers. It is given by intravenous

intake at a chemotherapy clinic. The molecular formula related to Etoposide is C29H32O13. It is utilized

as a chemotherapy format for cancers such as Ewing’s sarcoma, Kaposi’s sarcoma, testicular cancer, lung

cancer, glioblastoma multiforme, lymphoma and nonlymphocytic leukaemia. Etoposide is often used in a

conditioning regimen before a blood stem cell or bone marrow transplant. Methotrexate has its molecular

formula as C20H22N8O5. Methotrexate is being used for the therapy of several cancers. The molecular

formula related to Cisplatin is [Pt(NH3)2Cl2]. It is being used to cure various types of cancers, including
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bladder cancer, sarcomas, some carcinomas lymphomas, germ cell tumors, and cervical cancer. Zoledronic

has its molecular formula C5H10C12N2O7P2. Zoledronic acid is being used to control bone fractures in

patients with cancers such as multiple myeloma prostate cancer and osteoporosis. It is also used to treat

hypercalcemia and can be useful for treating aches from bone metastases. The molecular formula related

to Sunitinib is C22H27FN4O2. Sunitinib is being used in Meningioma, Gastrointestinal stromal tumors,

Renal cell carcinoma, and Pancreatic neuroendocrine tumors. Regorafenib has its molecular formula

as C21H15ClF4N4O3. Regorafenib is being used for the treatment of advanced gastrointestinal stromal

tumors, colorectal cancer and in hepatocellular carcinoma which were treated before with sorafenib.

Figure 14.1: 2D graph of TIs with drugs

Name of Drug ABC(G) RA(G) M1(G) M2(G) HM(G) H(G) SCI(G) F(G) GA(G)

Doxorubicine 30.772 18.427 220 275 1164 17.485 19.286 614 41.246

Ifosfamide 9.996 6.7265 64 72 310 6.4857 6.6908 166 13.521

Gemcitabine 13.836 8.3743 96 116 504 7.8381 8.5829 272 17.978
Etoposide 33.882 20.283 242 302 1252 19.634 21.617 648 46.772

Methotrexate 25.422 15.634 168 193 822 14.867 16.091 436 33.565

Cisplatin 3.464 2 20 16 100 1.6 1.7888 68 3.2
Zoledronic 12.236 7.0783 84 98 462 6.334 7.0875 266 14.482

Sunitinib 22.184 13.849 150 178 748 13.267 14.274 392 29.933

Regorafenib 25.480 15.562 170 195 844 14.753 16.018 454 33.413

Table 14.1: Topological indices associated to the bone-cancer drugs.
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Name of
Drug

Boiling
Point

Refractive
index

Flash
point

Molar
volume

complexity Enthalpy Molar re-
fractivity

Doxorubicin 810.3 1.710 443.8 336.6 977 123.5 131.5
Ifosfamide 336.1 1.506 157.1 195.7 218 57.9 58.1
Gemcitabine 482.7 1.652 245.7 142.3 426 86.2 52.1
Etoposide 798.1 1.662 263.6 378.5 969 121.7 140.1
Methotrexate 823 1.738 - 295.7 704 - 119.0
Cisplatin 270 - - - 7.6 - -
Zoledronic 764.0 1.719 415.8 127.4 327 116.7 50.3
Sunitinib 572.1 1.611 299.8 324.1 636 85.8 112.5
Regorafenib 513.4 1.616 264.3 323.7 686 78.5 113.1

Table 14.2: Physical properties related to drugs used for the treatment of Bone Cancer.

14.3 Regression Models and Calculation of Statistical Parame-

ters

Seven physical characteristics of the nine medications being used to treat bone cancer are modelled using

the nine topological indices previously described. The following is the value of the physical properties of

different drugs used to treat bone cancer. For defined degree-based topological indices and physiochemical

properties, the linear regression model is formulated as.

P = A+ b(TI) (14.1)

Where P indicates the physicochemical property of the drug, A is denoted by a constant, b is a regression

coefficient, and TI is a topological index. Constant A and regression coefficient b are calculated from SPSS

[31] software for seven physical properties and nine topological indices of the molecular structure of 9

drugs. In this part, the QSPR model is utilized to determine a relationship between the physical properties

and the calculation of statistical parameters for anti-bone cancer medications. Topological indices are

taken as independent variables with b, r, and N as dependent variables represented as regression model

constants, correlation coefficients, and sample size, respectively. Tables 14.3, 14.4, 14.5, 14.6, 14.7, 14.8,

14.9, 14.10, 14.11 include the statistical parameters of the linear regression model of topological indices.

14.3.1 Regression models for the Atom Bond Connectivity index.

Boiling Point = 349.278 + 13.264 [ABC(G)]

Refractive index = 1.577 + .003 [ABC(G)]

Flash Point = 229.842 + 3.243 [ABC(G)]

Molar volume = 48.208 + 10.001 [ABC(G)]

Complexity = -59.350 + 31.171 [ABC(G)]
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Figure 14.2: Drugs with their Molecular structure.
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Enthalpy = 63.164 + 1.538 [ABC(G)]

Molar refractivity = 8.244 + 4.089 [ABC(G)]

Physiochemical property N A b r r2 F P

Boiling point 8 349.278 13.264 .633 .400 4.007 .092

Refractive index 8 1.577 .003 .405 .164 1.177 .320

Flash point 7 229.842 3.243 .305 .093 .514 .506

Molar Volume 8 48.208 10.001 .920 .847 33.107 .001

Complexity 8 -59.350 31.171 .987 .974 226.382 .000

Enthalpy 7 63.164 1.538 .575 .331 2.469 .177

Molar Refractivity 8 8.244 4.089 .969 .940 93.458 .000

Table 14.3: Statistical parameters for the linear QSPR model for topological index ABC(G).

14.3.2 Regression models for Randic index RA(G)

Boiling Point = 356.146 + 21.244 [RA(G)]

Refractive index = 1.582 + .005 [RA(G)]

Flash Point = 237.069 + 4.769 [RA(G)]

Molar volume = 37.104 + 17.248 [RA(G)]

Complexity = -74.428 + 52.281 [RA(G)]

Enthalpy = 64.849 + 2.396 [RA(G)]

Molar refractivity = 4.594 + 6.985 [RA(G)]

Physiochemical property N A b r r2 F P

Boiling point 8 356.146 21.244 .600 .360 3.380 .116

Refractive index 8 1.582 .005 .365 .133 .921 .374

Flash point 7 237.069 4.769 .265 .070 .378 .566

Molar Volume 8 37.104 17.248 .940 .883 45.474 .001

Complexity 8 -74.428 52.281 .981 .962 150.181 .000

Enthalpy 7 64.849 2.396 .529 .280 1.945 .222

Molar Refractivity 8 4.594 6.985 .981 .962 151.836 .000

Table 14.4: Statistical parameters for the linear QSPR model for topological index RA(G)

14.3.3 Regression models for first Zagreb index M1(G)

Boiling Point = 358.919 + 1.866 [M1(G)]
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Refractive index = 1.579 + .000 [M1(G)]

Flash Point = 228.541 + .478 [M1(G)]

Molar volume = 63.824 + 1.351 [M1(G)]

Complexity = -27.387 + 4.323 [M1(G)]

Enthalpy = 62.807 + .225 [M1(G)]

Molar refractivity = 14.286 + .555 [M1(G)]

Physiochemical property N A b r r2 F P

Boiling point 8 358.919 1.866 .645 .416 4.279 .084

Refractive index 8 1.579 .000 .413 .171 1.233 .309

Flash point 7 228.541 .478 .328 .108 .604 .472

Molar Volume 8 63.824 1.351 .901 .812 25.857 .002

Complexity 8 -27.387 4.323 .992 .984 376.580 .000

Enthalpy 7 62.807 .225 .614 .377 3.023 .143

Molar Refractivity 8 14.286 .555 .953 .908 59.523 .000

Table 14.5: Statistical parameters for the linear QSPR model for topological index M1(G)

14.3.4 Regression models for the second Zagreb index M2(G)

Boiling Point = 374.829 + 1.470 [M2(G)]

Refractive index = 1.584 + .000 [M2(G)]

Flash Point = 230.051 + .388 [M2(G)]

Molar volume = 80.534 + 1.035 [M2(G)]

Complexity = 13.072 + 3.386 [M2(G)]

Enthalpy = 63.339 + .184 [M2(G)]

Molar refractivity = 20.952 + .426 [M2(G)]

Physiochemical property N A b r r2 F P

Boling point 8 374.829 1.470 .648 .420 4.352 .082

Refractive index 8 1.584 .000 .410 .168 1.213 .313

Flash point 7 230.051 .388 .342 .117 .661 .453

Molar Volume 8 80.534 1.035 .881 .775 20.720 .004

Complexity 8 13.072 3.386 .991 .982 330.921 .000

Enthalpy 7 63.339 .184 .642 .413 3.511 .120

Molar Refractivity 8 20.952 .426 .934 .872 41.006 .001

Table 14.6: Statistical parameters for the linear QSPR model for topological index M1(G)
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14.3.5 Regression models for hyper Zagreb index HM(G)

Boiling Point = 352.877 + .373 [HM(G)]

Refractive index = 1.576 + (9.946E-5) [HM(G)]

Flash Point = 219.250 + .105 [HM(G)]

Molar volume = 73.491 + .252 [HM(G)]

Complexity = -18.361 + .834 [HM(G)]

Enthalpy = 60.540 + .047 [HM(G)]

Molar refractivity = 17.525 + .104 [HM(G)]

Physiochemical property N A b r r2 F P

BP 8 352.877 .373 .668 .447 4.846 .070

Refractive index 8 1.576 9.946E-5 .439 .193 1.434 .276

FP 7 219.250 .105 .376 .141 .824 .406

Molar Volume 8 73.491 .252 .870 .756 18.633 .005

Complexity 8 -18.361 .834 .992 .984 366.980 .000

Enthalpy 7 60.540 .047 .664 .440 3.932 .104

Molar Refractivity 8 17.525 .104 .929 .862 37.592 .001

Table 14.7: {Statistical parameters for the linear QSPR model for topological index HM(G)

14.3.6 Regression models for Harmonic index H(G)

Boiling Point = 371.141 + 21.166 [H(G)]

Refractive index = 1.589 + .005 [HM(G)]

Flash Point = 245.049 + 4.368 [HM(G)]

Molar volume=41.630 + 17.792 [HM(G)]

Complexity = -53.607 + 53.365 [HM(G)]

Enthalpy = 66.663 + 2.374 [HM(G)]

Molar refractivity = 6.896 + 7.168 [HM(G)]

14.3.7 Regression models for sum Connectivity index SCI(G)

Boiling Point = 367.232 + 19.716 [SCI(G)]

Refractive index = 1.586 + .005 [SCI(G)]

Flash Point = 240.750 + 4.327 [SCI(G)]
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Physiochemical property N A b r r2 F P

Boiling point 8 371.141 21.166 .584 .341 3.099 .129

Refractive index 8 1.589 .005 .340 .116 .786 .409

Flash point 7 245.049 4.368 .237 .056 .298 .609

Molar Volume 8 41.630 17.792 .946 .895 51.168 .000

Complexity 8 -53.607 53.365 .977 .954 124.254 .000

Enthalpy 7 66.663 2.374 .512 .262 1.776 .240

Molar Refractivity 8 6.896 7.168 .982 .965 163.278 .000

Table 14.8: Statistical parameters for the linear QSPR model for topological index H(G)

Molar volume = 47.680 + 15.892 [SCI(G)]

Complexity = -46.102 + 48.444 [SCI(G)]

Enthalpy = 65.669 + 2.251 [SCI(G)]

Molar Refractivity = 8.871 + 6.436 [SCI(G)]

Physiochemical property N A b r r2 F P

Boiling point 8 367.232 19.716 .602 .363 3.413 .114

Refractive index 8 1.586 .005 .363 .132 .910 .377

Flash point 7 240.750 4.327 .261 .068 .364 .572

Molar Volume 8 47.680 15.892 .936 .876 42.412 .001

Complexity 8 -46.102 48.444 .982 .964 162.391 .000

Enthalpy 7 65.669 2.251 .539 .290 2.045 .212

Molar Refractivity 8 8.871 6.436 .977 .954 124.675 .000

Table 14.9: Statistical parameters for the linear QSPR model for topological index SCI(G)

14.3.8 Regression models for forgotten index F(G)

Boiling Point = 332.127 + .752 [F(G)]

Refractive index = 1.568 + .000 [F(G)]

Flash Point = 208.495 + .224 [F(G)]

Molar volume = 67.734 + .487 [F(G)]

Complexity = -46.029 + 1.635 [F(G)]

Enthalpy = 57.886 + .094 [F(G)]

Molar refractivity = 14.599 + .203 [F(G)]
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Physiochemical property N A b r r2 F P

Boiling point 8 332.127 .752 .686 .471 5.346 .060

Refractive index 8 1.568 .000 .466 .218 1.668 .244

Flash point 7 208.495 .224 .409 .167 1.002 .363

Molar Volume 8 67.734 .487 .857 .735 16.650 .006

Complexity 8 -46.029 1.635 .991 .981 316.792 .000

Enthalpy 7 57.886 .094 .683 .466 4.362 .091

Molar Refractivity 8 14.599 .203 .921 .849 33.770 .001

Table 14.10: Statistical parameters for the linear QSPR model for topological index F(G)

14.3.9 Regression models for Arithmetic-geometric index GA(G)

Boiling Point = 376.743 + 9.033 [GA(G)]

Refractive index = 1.588 + .002 [GA(G)]

Flash Point = 242.979 + 1.972 [GA(G)]

Molar volume = 57.548 + 7.205 [GA(G)]

Complexity = -21.014 + 22.135 [GA(G)]

Enthalpy = 66.247 + 1.047 [GA(G)]

Molar refractivity = 12.813 + 2.920 [GA(G)]

Physiochemical property N A b r r2 F P

Boiling point 8 376.743 9.033 .605 .366 3.462 .112

Refractive index 8 1.588 .002 .363 .131 .908 .377

Flash point 7 242.979 1.972 .261 .068 .366 .571

Molar Volume 8 57.548 7.205 .930 .866 38.660 .001

Complexity 8 -21.014 22.135 .984 .968 181.381 .000

Enthalpy 7 66.247 1.047 .551 .304 2.179 .200

Molar Refractivity 8 12.813 2.920 .972 .944 101.093 .000

Table 14.11: Statistical parameters for the linear QSPR model for topological index GA(G)

Table 14.2 lists the physicochemical properties associated with nine anti-bone-cancer drugs. On the

other hand, the TI (Topological index) values reported in Table 14.1 are derived from their molecular

structure. A standard error of estimate is the measure of variation for an observation calculated around

the computed regression line is assesses the degree of correctness of predictions computed around the

regression line as shown in Table 14.12. Table 14.13 shows the correlation coefficients between physico-

chemical properties and TIs. Figure 14.3 depicts a graph of the correlation coefficient of anti-bone cancer

drugs. Figure 14.3 depicts the correlation of topological indices to the properties under stydy.
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Figure 14.3: Correlation coefficient graphs of physiochemical properties with topological indices.
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Topological
Index

Boiling
point

Refractive
index

Flash
Point
Molar
Volume

Complexity Enthalpy Molar
refrac-
tivity

P

ABC(G) 155.045 .0743 104.355 40.668 48.471 22.564 9.896
RA(G) 160.135 .0756 105.663 35.447 59.125 23.399 7.856
SCI(G) 159.862 .0757 105.795 36.552 56.941 23.232 8.634
GA(G) 159.446 .0757 105.777 38.055 53.978 23.015 9.537
M1(G) 152.973 .0740 103.506 45.059 37.776 21.777 12.193
M2(G) 152.439 .0741 102.986 49.199 40.255 21.137 14.396
F(G) 145.609 .0719 100.016 53.437 41.126 20.154 15.651
H(G) 162.593 .0764 106.458 33.636 64.743 23.689 7.5859
HM(G) 148.924 .0730 101.535 51.242 38.259 20.633 14.948

Table 14.12: Std. error of the estimate for physical properties of the drugs.

Topological
index

Correlation
coeffi-
cient of
Boiling
Point

Correlation
coeffi-
cient
of Re-
fractive
index

Correlation
coeffi-
cient of
Flash
point

Correlation
coeffi-
cient of
Molar
Volume

Correlation
coeffi-
cient of
complex-
ity

Correlation
coeffi-
cient of
Enthalpy

Correlation
coefficient
of Molar
refractiv-
ity

ABC(G) .633 .405 .305 .920 .987 .575 .969
RA(G) .600 .365 .265 .940 .981 .529 .981
M1(G) .645 .413 .328 .901 .992 .614 .953
M2(G) .648 .410 .342 .881 .991 .642 .934
HM(G) .668 .439 .376 .870 .992 .664 .929
H(G) .584 .340 .237 .946 .977 .512 .982
SCI(G) .602 .363 .261 .936 .982 .539 .977
F(G) .686 .466 .409 .857 .991 .683 .921
GA(G) .605 .363 .261 .930 .984 .551 .972

Table 14.13: Correlation coefficients between physicochemical properties and Tis.

14.4 Conclusions

In this research, we constructed a QSPR model for bone cancer medications using topological indices

generated from medicinal chemical structures. The QSPR prediction model identified a link between the

chosen topological indices and the drug’s physical properties. According to the statistical and topological

index used in the linear QSPR model, ABC index, Randic index, first Zagreb index, second Zagreb

index, hyper Zagreb index, harmonic index, sum Connectivity, forgetting index and arithmetic geometry

index give the highest correlation values for complexity are r = 0.987, 0.981, 0.992, 0.991, 0.992, 0.977,

0.982, 0.991, and 0.984, respectively. The Randic index defines the highest correlation value for a molar

refractivity of r = 0.981. Topological indices of drug chemistry were calculated and correlated with linear

QSPR models of drugs used to treat bone cancer. The results thus obtained provide a cost-effective and

theoretical basis for the development of new drugs with similar patterns for effective and therapeutic

results. Correlation coefficients of regression models can be useful in examining the properties of newly
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developed drugs. The results presented in the paper may be useful to researchers in drug research and

may help influence the phsico-chemical properties of new drugs designed to treat other specific diseases.
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Abstract: The main objective of this research is to examine a specific sufficiency criterion

for strongly starlikeness, strongly convexity for q-Bessel functions. In particular, we provide

sufficient conditions for Jackson’s second and third q-Bessel functions to be strongly starlike

and strongly convex functions of order κ.

Keywords: q-Bessel functions; Jackson q Bessel functions, strongly starlike functions, strongly

convex functions

15.1 Introduction

Bessel functions are used in physics to solve problems with cylindrical or circular symmetry, such as wave

motion, heat conduction, and vibrations. In applied mathematics and engineering disciplines, Bessel

functions of the first kind are frequently utilized. Many publications and scientific investigations have

examined the properties of Bessel functions. It is particular solution of the differential equation

z2w′′(z) + zw′(z) + (z2 − p2)w(z) = 0.

The series form representtion of this function is given by

Jp (z) =

∞∑
n=0

(−1)n
(
z
2

)2n+p

n!Γ(n+ p+ 1)
. (15.1)
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The symbol Γ represents the Euler gamma function. For detailed information about this function, we

refer [15]. The modified Bessel function of the first kind which is denoted by Ip is the solution of the

equation

z2w′′(z) + zw′(z)− (z2 + p2)w(z) = 0.

Its series representation is given by

Ip (z) =
∞∑

n=0

(
z
2

)2n+p

n!Γ(n+ p+ 1)
. (15.2)

Another crucial aspect is the inherent generalizations of the Bessel functions. The Bessel functions have

various generalizations. However, the literature has a few q-analogues of the Bessel functions. Jackson’s

q-Bessel functions were defined by the renowned English mathematician Frank Hilton Jackson at the

start of the 19th century, using the q-calculus. The Jackson’s second and third q-Bessel functions are

defined as

J (2)
p (z; q) =

(
qp+1; q

)
∞

(q; q)∞

∞∑
n=0

(−1)n
(
z
2

)2n+p

n! (q; q)n (q
p+1; q)n

qn(n+p), (15.3)

and

J (3)
p (z; q) =

(
qp+1; q

)
∞

(q; q)∞

∞∑
n=0

(−1)n (z)
2n+p

n! (q; q)n (q
p+1; q)n

q
n
2 (n+p), (15.4)

where z ∈ C, p > −1, q ∈ (0, 1) and

(a; q)0 = 1, (a; q)n =

n∏
m=1

(
1− aqm−1

)
, (a; q)∞ =

∞∏
m=1

(
1− aqm−1

)
.

For details, see [4, 10, 12, 13, 14]. The Jackson’s third q-Bessel function J (3)
p is also known as the Hahn-

Exton q-Bessel function because of their contributions to the theory of q-Bessel functions. It can also be

seen that these q-analogues satisfy the following limit relations:

lim
q→1−

J (2)
p ((1− q)z; q) = Jp(z), lim

q→1−
J (3)
p p((1− q)z; q) = Jp(2z).

The geometric properties of Jackson’s second and third q-Bessel functions can be found in [1, 2, 3] and

the references therein.

Because of its strong ties to mathematical physics, differential equations, and complex analysis, the

theory of univalent functions has long been a key subject in geometric function theory. It is a study of

analytic functions fsuch that f(0) = f ′(0)− 1 = 0 in D = {z ∈ C : |z| < 1}. The class of such functions

is denoted by A. The Maclaurin series of functions f in A has the form

f(z) = z +
∑
n=2

anz
n, z ∈ D. (15.5)

Let S denote the class of functions in A that are univalent in D. Starlike and convex functions are two
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of the numerous subclasses of univalent functions that have garnered a lot of attention due to their

analytical richness and geometric interpretability. A significant portion of these classes can be found in

geometric function theory. These univalent functions captivated mathematicians around the world and

laid the groundwork for future research in this area.

Let the classes of strongly starlike and convex functions of order κ be represented by S̃∗(κ) and C̃(κ),

respectively. The following is an analytical definition of these classes:

Definition 15.1: A function f in A is said to be in the class S̃∗(κ), if and only if

∣∣∣∣arg(zf ′(z)f(z)

)∣∣∣∣ < κπ

2
, κ ∈ (0, 1].

Definition 15.2: A function f in A is said to be in the class C̃(κ), if and only if

∣∣∣∣arg(1 + zf ′′(z)

f ′ (z)

)∣∣∣∣ < κπ

2
, κ ∈ (0, 1].

We see that S̃∗(1) = S∗ and C̃(1) = C.

It is evident that the functions J (2)
p (z; q) and J (3)

p (z; q) given in (15.3) and (15.4) do not belong to

the class A. Thus, we take into account the normalization H(2)
p (z; q) and H(3)

p (z; q) with

H(2)
p (0; q) = H(3)

p (0; q) =
(
H(2)

p (0; q)
)′

− 1 =
(
H(3)

p (0; q)
)′

− 1 = 0

such that

H(2)
p (z; q) = 2pCp (q) z

1− p
2J (2)

p (
√
z; q) = z +

∞∑
n=2

(−1)nq(n−1)(n−1+p)

4n−1 (q; q)n−1 (q
p+1; q)n−1

zn, (15.6)

and

H(3)
p (z; q) = Cp (q) z

1− p
2J (3)

p (
√
z; q) = z +

∞∑
n=2

(−1)nq
1
2 (n−1)n

(q; q)n−1 (q
p+1; q)n−1

zn, (15.7)

where Cp (q) = (q; q)∞ /
(
qp+1; q

)
∞. Recently, some radius problems and geometric properties of certain

normalizations of the generalized q-Bessel functions have been studied in [1, 2, 3, 5, 6]. We also refer to

[7, 8, 9, 16] for some recent work on Bessel functions.

In this paper, we study strongly starlikeness and convexity of functions H(2)
p (z; q) and H(3)

p (z; q) in

D.

15.2 Relevant Lemmas

This section contains a few lemmas that support the main conclusions.
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Lemma 15.1: [11] Consider two analytic functions in D, g and f , such that g(0) = f(0) = 1. Assume

that f ≺ g in D and that g is univalent and convex in D. Then,

(n+ 1)z−1−n

z∫
0

υnf(υ)dυ ≺ (n+ 1)z−1−n

z∫
0

υng(υ)dυ, ∀n ∈ N ∪ {0} .

15.3 Main Results

Theorem 15.1: Let p > −1, q ∈ (0, 1) and κ ∈ (0, 1]. Also suppose that

(i) (1− q) (1− qp) >
√
q,

(ii) (4 (1− q) (1− qp)− qp)
2 ≥ qp (8 (1− q) (1− qp)− qp) .

Then H(2)
p (z; q) ∈ S̃∗(κ), where

κ =

2 sin−1

(
a
√
1− a2

4 + a
2

√
1− a2

)
π

with

a =
qp (8 (1− q) (1− qp)− qp)

(4 (1− q) (1− qp)− qp)
2 .

Proof: From

∣∣∣∣(H(2)
p (z; q)

)′
− 1

∣∣∣∣ =

∣∣∣∣∣1 +
∞∑

n=2

n(−1)nq(n−1)(n−1+p)

4n−1 (q; q)n−1 (q
p+1; q)n−1

zn−1 − 1

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

n=2

n(−1)nq(n−1)(n−1+p)

4n−1 (q; q)n−1 (q
p+1; q)n−1

zn−1

∣∣∣∣∣
≤

∞∑
n=2

nq(n−1)(n−1+p)

4n−1 (q; q)n−1 (q
p+1; q)n−1

.

By using the inequalityq(n−1)(n−1+p) ≤ q(n−1)p, (q; q)n−1 > (1 − q)n−1 and
(
qp+1; q

)
n−1

> (1 − qp)n−1,

we get

∣∣∣∣(H(2)
p (z; q)

)′
− 1

∣∣∣∣ < ∞∑
n=2

n

(
qp

4 (1− q) (1− qp)

)n−1

=
qp (8 (1− q) (1− qp)− qp)

(4 (1− q) (1− qp)− qp)
2 = a ≤ 1.

Hence, we get ∣∣∣∣(H(2)
p (z; q)

)′
− 1

∣∣∣∣ < qp (8 (1− q) (1− qp)− qp)

(4 (1− q) (1− qp)− qp)
2 = a ≤ 1. (15.8)

Now for a ∈ (0, 1] and from (15.8), we conclude that

(
H(2)

p (z; q)
)′

− 1 ≺ az + 1 ⇒
∣∣∣∣arg((H(2)

p (z; q)
)′)∣∣∣∣ < sin−1(a). (15.9)
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By using Lemma 15.1 for n = 0 with

f(z) =
(
H(2)

p (z; q)
)′

along with h(z) = az + 1,

we have

H(2)
p (z; q)

z
≺ a

2
z + 1. (15.10)

Consequently, ∣∣∣∣∣arg
(
H(2)

p (z; q)

z

)∣∣∣∣∣ < sin−1 a

2
.

Now, using (15.9) and (15.10), we get

∣∣∣∣∣∣∣arg
z

(
H(2)

p (z; q)
)′

H(2)
p (z; q)


∣∣∣∣∣∣∣ =

∣∣∣∣∣arg
(

z

H(2)
p (z; q)

)
+ arg

((
H(2)

p (z; q)
)′)∣∣∣∣∣

<

∣∣∣∣∣arg
(

z

H(2)
p (z; q)

)∣∣∣∣∣+
∣∣∣∣arg((H(2)

p (z; q
)′)∣∣∣∣

< sin−1 a

2
+ sin−1 a

= sin−1

(
a

√
1− a2

4
+
a

2

√
1− a2

)
.

Therefore, we conclude that (
H(2)

p (z; q)
)
∈ S̃∗(κ),

where

κ =

2 sin−1

(
a
√

1− a2

4 + a
2

√
1− a2

)
π

.

The proof of Theorem 15.1 is complete.

Theorem 15.2: Let p > −1, q ∈ (0, 1) and κ ∈ (0, 1]. Also suppose that

(i) (1− q) (1− qp) >
√
q,

(ii)
(
(1− q) (1− qp)−√

q
)2 ≥ √

q
(
2 (1− q) (1− qp)−√

q
)
.

Then H(3)
p (z; q) ∈ S̃∗(κ), where

κ =

2 sin−1

(
a
√
1− a2

4 + a
2

√
1− a2

)
π

and

a =

√
q
(
2 (1− q) (1− qp)−√

q
)(

(1− q) (1− qp)−√
q
)2 .
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Proof: From

∣∣∣∣(H(3)
p (z; q)

)′
− 1

∣∣∣∣ =

∣∣∣∣∣1 +
∞∑

n=2

n(−1)nq
1
2 (n−1)n

(q; q)n−1 (q
p+1; q)n−1

zn−1 − 1

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

n=2

n(−1)nq
1
2 (n−1)n

(q; q)n−1 (q
p+1; q)n−1

zn−1

∣∣∣∣∣
≤

∞∑
n=2

nq
1
2 (n−1)n

(q; q)n−1 (q
p+1; q)n−1

.

By using the inequalities q
1
2 (n−1)n ≤ q

1
2 (n−1), (q; q)n−1 > (1− q)n−1 and

(
qp+1; q

)
n−1

> (1− qp)n−1, we

obtain

∣∣∣∣(H(3)
p (z; q)

)′
− 1

∣∣∣∣ < ∞∑
n=2

n

( √
q

(1− q) (1− qp)

)n−1

=

√
q
(
2 (1− q) (1− qp)−√

q
)(

(1− q) (1− qp)−√
q
)2 = a ≤ 1.

Therefore ∣∣∣∣(H(3)
p (z; q)

)′
− 1

∣∣∣∣ < √
q
(
2 (1− q) (1− qp)−√

q
)(

(1− q) (1− qp)−√
q
)2 = a ≤ 1. (15.11)

Now for κ ∈ (0, 1] and from (15.11), we conclude that

(
H(3)

p (z; q)
)′

− 1 ≺ az + 1 ⇒
∣∣∣∣arg((H(3)

p (z; q)
)′)∣∣∣∣ < sin−1(a). (15.12)

By using Lemma 15.1 for n = 0 with

f(z) =
(
H(3)

p (z; q)
)′

along with h(z) = az + 1,

we have

H(3)
p (z; q)

z
≺ a

2
z + 1. (15.13)

Consequently, ∣∣∣∣∣arg
(
H(3)

p (z; q)

z

)∣∣∣∣∣ < sin−1 a

2
.

Now, using (15.12) and (15.13), we have

∣∣∣∣∣∣∣arg
z

(
H(3)

p (z; q)
)′

H(3)
p (z; q)


∣∣∣∣∣∣∣ =

∣∣∣∣∣arg
(

z

H(3)
p (z; q)

)
+ arg

((
H(3)

p (z; q)
)′)∣∣∣∣∣

<

∣∣∣∣∣arg
(

z

H(3)
p (z; q)

)∣∣∣∣∣+
∣∣∣∣arg((H(3)

p (z; q
)′)∣∣∣∣

< sin−1 a

2
+ sin−1 a
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= sin−1

(
a

√
1− a2

4
+
a

2

√
1− a2

)
.

Hence (
H(3)

p (z; q)
)
∈ S̃∗(κ),

where

κ =

2 sin−1

(
a
√

1− a2

4 + a
2

√
1− a2

)
π

.

This complete the proof.

Theorem 15.3: Let p > −1, q ∈ (0, 1) and κ ∈ (0, 1]. Also suppose that

(i) 4(1− q)(1− qp) > qp,

(ii) (4 (1− q) (1− qp)− qp)
3 ≥ q3p − 12(1− q)(1− qp)q2p + 64(1− q)2(1− qp)2qp.

Then H(2)
p (z; q) ∈ C̃(κ), where

κ =

2 sin−1

(
a
√
1− a2

4 + a
2

√
1− a2

)
π

and

a =
q3p − 12(1− q)(1− qp)q2p + 64(1− q)2(1− qp)2qp

(4 (1− q) (1− qp)− qp)
3 .

Proof: We have∣∣∣∣∣
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z
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.

We obtain ∣∣∣∣∣
(
z
(
H(2)

p (z; q)
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− 1
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∞∑

n=2
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4n−1 (q; q)n−1 (q
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.

By using the inequalities q(n−1)(n−1+p) ≤ q(n−1)p, (q; q)n−1 > (1− q)n−1 and
(
qp+1; q

)
n−1

> (1− qp)n−1,

we have ∣∣∣∣∣
(
z
(
H(2)

p (z; q)
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− 1
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(

qp
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=
q3p − 12(1− q)(1− qp)q2p + 64(1− q)2(1− qp)2qp

(4 (1− q) (1− qp)− qp)
3

= a ≤ 1,

so,

∣∣∣∣∣
(
z
(
H(2)

p (z; q)
)′)′

− 1

∣∣∣∣∣ < q3p − 12(1− q)(1− qp)q2p + 64(1− q)2(1− qp)2qp

(4 (1− q) (1− qp)− qp)
3 = a ≤ 1. (15.14)

Now for 0 < a ≤ 1 and from (15.14), we get

(
z
(
H(2)

p (z; q)
)′)′

≺ 1 + az ⇒

∣∣∣∣∣arg
(
z
(
H(2)

p (z; q)
)′)′

∣∣∣∣∣ < sin−1 a. (15.15)

By applying Lemma 15.1 for n = 0 with

g(z) =

(
z
(
H(2)

p (z; q)
)′)′

along with h(z) = 1 + az,

we get (
H(2)

p (z; q)
)′

≺ a

2
z + 1.

Hence ∣∣∣∣arg((H(2)
p (z; q)

)′)∣∣∣∣ < sin−1 a

2
. (15.16)

Now, using (15.15) and (15.16), we obtain

∣∣∣∣∣∣∣∣∣arg

(
z
(
H(2)

p (z; q)
)′)′

(
H(2)

p (z; q)
)′


∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣arg
((

z
(
H(2)

p (z; q)
)′)′

)
− arg

((
H(2)

p (z; q)
)′)∣∣∣∣∣

<

∣∣∣∣∣arg
((

z
(
H(2)

p (z; q)
)′)′

)∣∣∣∣∣+
∣∣∣∣arg((H(2)

p (z; q)
)′)∣∣∣∣

< sin−1 a+ sin−1 a

2

= sin−1

(
a

√
1− a2

4
+
a

2

√
1− a2

)
.

Hence
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p (z; q) ∈ C̃(κ),

where

κ =
2
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sin−1

(
a

√
1− a2

4
+
a

2

√
1− a2

)
.

The proof of the theorem is complete.

15.3 Main Results 287



Ptolemy Scientific Research Press https://pisrt.org/

Theorem 15.4: Let p > −1, q ∈ (0, 1) and κ ∈ (0, 1]. Also suppose that

(i) (1− q) (1− qp) >
√
q,

(ii)
(√
q − (1− q) (1− qp)

)3 ≥ √
q
(
−q + 3
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)
.
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We obtain ∣∣∣∣∣
(
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(
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.

By using the inequalities q
1
2 (n−1)n ≤ q

1
2 (n−1), (q; q)n−1 > (1− q)n−1 and

(
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Now for 0 < a ≤ 1 and from (15.17), we get

(
z
(
H(3)

p (z; q)
)′)′

≺ 1 + az ⇒

∣∣∣∣∣arg
(
z
(
H(3)

p (z; q)
)′)′

∣∣∣∣∣ < sin−1 a. (15.18)
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By applying Lemma 15.1 for n = 0 with

g(z) =

(
z
(
H(3)

p (z; q)
)′)′

along with h(z) = 1 + az,

we have (
H(3)

p (z; q)
)′

≺ a

2
z + 1.

Consequently, ∣∣∣∣arg((H(3)
p (z; q)

)′)∣∣∣∣ < sin−1 a

2
. (15.19)

Now, using (15.18) and (15.19), we get
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Hence
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4
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.

The proof is complete.
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