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Preface

The present work concerns the study of the controllability problem for the linear heat equation,
posed in a bounded domain.

Nowadays, the problem of control occupies an important place in the general theory of partial
differential equations, in particular because of its many physical applications (fluid mechanics,
thermodynamics, propagation phenomena, engineering). Generically, it is a question of intervening
on a given evolution system (E) in order to control its solution, i.e. to bring it from an initial
(arbitrary) state to a prescribed final state . The system (E) is, depending on the case, hyperbolic
(vibratory phenomena), parabolic (heat equation), or of a more complex type. We can also ask
the control vector (function) to verify a constraint, such as, to minimize a certain functional. In
recent years, the study of this (these) problem (s) has required the implementation of fairly complex
theoretical and numerical tools.

Control theory took off at the end of the 70s◦ with the H.U.M (Hilbert Uniqueness Method)
method of J.L. Lions. The years 90◦ are marked by two strong points. First, by the arrival of
microlocal techniques by C. Bardos, G. Lebeau and J. Rauch. Then, the proof and the use of global
Carleman inequalities by Fursikov [17] (and also, for the heat equation in particular, by Lebeau and
Robbiano [20]) for the trajectory controllability of second order parabolic equations.

A large number of related mathematical problems are equally relevant: stabilization of solutions,
problem of uniqueness and unique extension.

6



1. Introduction

The field of control theory is attracting more and more researchers for its application in several
areas of everyday life.

In mathematics, control refers to the theory that aims to understand how a command allows
humans to act on a system they want to control. This definition naturally covers a large number of
fields of application; an engineer may want to control a mechanical system by applying forces to it,
an economist may want to act on a financial equilibrium by modifying a rate, a chemist may want
to improve his process by regulating the temperature, etc..

It is interesting to note that, despite the diversity of concrete situations that can be understood
in this way, “control theory” provides a framework common to all these universes. It is therefore
remarkable that one achieves general results, which can be used in many fields.

In our study, we focus on the case of PDE control theory. Partial differential equations allow
mathematicians to describe the behavior of a quantity that depends on several variables. For
example, the temperature of the ocean depends on both where and when it is measured. To describe
its evolution, the equations which occur naturally are called EDP because they involve variations
compared to the various variables.

PDEs are omnipresent in physics: especially in fluid mechanics or in quantum mechanics.
Let us quote as examples the Navier-Stokes equation to describe the motion of a liquid and the
Schrodinger equation to describe a quantum particle. These two examples describe systems which
at the same time have a so-called "free" evolution when one does not act on them, but which can
also have a continuous evolution, when one tries to exert forces on them. This is where control
comes in.

Take a fluid (typically water) and fill a basin with it. The movement of the water is then
governed by an EDP. Suppose that we can exert a force at a place in the basin (thanks to the
presence of dams, valves and propeller, etc.). In control theory, mathematicians seek to determine
whether this action located at a specific spot in the basin may be sufficient to "control" all of the
liquid. We can ask ourselves a multitude of questions about the scope of possible actions.

• If the pelvis is initially agitated by an external cause, can we guide it towards dead calm?

7
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This is the question of returning to rest.
• If so, can this objective be achieved in as short a time as desired, or is there a minimum time

to get there below which is impossible?
• And if we want to spend less energy, is there one action that is more economical than the

others? This is the question of optimal cost, crucial in engineering or economics.
• Finally, let’s talk about stabilization: is it possible to design a mechanism that regulates the

water level at the surface of the basin despite external disturbances (rains, evaporation, etc.)?
The controllability of systems of parabolic partial differential equations has undergone an

important development since the 90◦ in particular thanks to the contributions of [20] and [17]:
the obtaining of so-called Carleman inequalities and their use in this framework have led to new
controllability results called trajectory controllability.
This notion is relevant for dissipative systems such as heat equations or Navier-Stokes equations or
related systems.

Indeed, for these equations one cannot expect to obtain exact controllability in the usual sense.
The notion of approximate controllability, which has been extensively studied and which will be
very useful in a first step here, is not really satisfactory for real applications. The exact control
on the trajectories corresponds to real objectives. In our study, we focus on the case of the heat
equation.

Let Ω be a regular and bounded open set of Rn et O ⊂⊂Ω. Let T > 0.
We pose Q = Ω× (0,T ) et Σ = ∂Ω× (0,T ). In order to explain the methodology that we follow,
we first place ourselves in the simple case of the following equation


∂ty−∆y = v1O in Ω× (0,T )

y = 0 sur ∂Ω× (0,T )
y(x, t = 0) = y0(x) dans Ω

(1.0.1)

The function v is called control. This control is distributed here because it applies in a non-zero
measurement subdomain of Ω. Controllability exact in L2(Ω) at time T of such an equation would
be

∀yT ,y0 ∈ L2(Ω),∃v ∈ L2(Q) such that y(T ) = yT . (1.0.2)

It is well known that in the case of parabolic equations, in particular in the case of the heat
equation that we have written, the exact controllability is wrong because of the regularizing
character of the heat semigroup. The exact controllability is equivalent to the following observability
inequality [28]

||q(T )||2L2(Ω) ≤C
∫ ∫

(0,T )×O
|q|2dxdt, (1.0.3)

for the dual system


−∂tq−∆q = 0 dans Q = Ω× (0,T )

q = 0 sur ∂Ω× (0,T )
q(x, t = T ) = qT (x) dans Ω

(1.0.4)

By considering an orthonormal basis of Laplacian eigenfunctions on Ω we indeed note that such an
inequality is impossible.

8 Chapter 1. Introduction



Ptolemy Scientific Research Press https://pisrt.org/

A second notion often approached in the theory of control of partial differential equations is
that of approximate controllability. We then want to demonstrate that

∀ε > 0,∀yT ,y0 ∈ L2(Ω),∃v ∈ L2(Q) such that ||y(T )− yT ||L2 ≤ ε. (1.0.5)

In the case of parabolic equations such as the heat equation that we have written the approximate
controllability is true. As it corresponds to the density of the image of the heat semi-group, it is
equivalent to the following uniqueness problem for the dual system [11]

q = 0 sur (0;T )×O ⇒ q = 0 sur Q. (1.0.6)

The notion that interests us here is that of zero controllability. It is expressed as follows:

∀y0 ∈ L2(Ω),∃v ∈ L2(Q) such that y(T ) = 0. (1.0.7)

This notion is equivalent to that of trajectory controllability in the case of linear equations:

∀y0 ∈ L2(Ω),∃v ∈ L2(Q) such that y(T ) = z(T ), (1.0.8)

where z(t) is a solution of (1.0.1) without control for an initial data z0 ∈ L2(Ω). The controllability
at zero is also equivalent to the following observability inequality for the dual system (1.0.3)

||q(0)||2L2(Ω) ≤Cabc

∫ ∫
(0,T )×O

|q|2dxdt, (1.0.9)

(compare (1.0.3) with (1.0.9)). It is this last type of inequality that we will call in the following
observability inequality.

In 1996, Fursikov and Imanuvilov showed how obtaining global Carleman inequalities for
parabolic operators made it possible to prove observability inequalities of the type of (1.0.9) and to
understand the dependence of Cabc depending on the terms of zero order and first order in variables
space of the time-dependent parabolic operator [17]. This approach allowed the demonstration of
null controllability results for semi-linear parabolic equations [29].

For the the numerical solution, we have considered an inverse source problem to study nu-
merically the null controllability of a class of degenerate and singular parabolic equations. The
solvability of the regularized inverse problem of determining the source term to obtain final tem-
perature identically null, that was formulated as the minimizer of a least squares functional with
the Tikhonov regularization, is studied. It is proved the Lipschitz continuity of the input-output
operator F : h−→ u. Lipschitz continuity of the gradient functional was also proved, which implies
the convergence of the descent method. Some numerical simulations are presented to validate the
results of [14] .

1.1 Plan of the book
This document is made up of three chapters. Each chapter is made up of several sections in which
we develop the different aspects of the chapter topic, and preceded by a detailed introduction.

After the introduction, we will find, in chapter II, the main results of the control for the linear
heat equation.

The chapter III concerns the numerical study of the null controllability for the linear heat
equation.

1.1 Plan of the book 9



2. Reminders and preliminaries

The lemmas, as well as the mathematical tools that follow, will be used constantly in the chapters
to come.

2.1 Functional spaces

In this chapter we group together the main properties and functional spaces that we will use.
Most of the content of this paragraph is taken from the citeHB references.

In the following, Ω denotes an open bounded of Rn endowed with the Lebesgue measure dx,
and of sufficiently regular border ∂Ω. X and Y are two Banach spaces of respective norms |. |X,
|. |Y.

2.1.1 Lp(Ω) spaces - Sobolev spaces .
We denote by L1(Ω) the space (of classes of equivalences) of integrable functions in the sense of
Lebesgue on Ω has values in R. That is, as we usually do, we confuse two functions that coincide
almost everywhere (p.p for short).
For u ∈ L1(Ω), we denote

∥u∥L1(Ω) =
∫

Ω

|u(x)|dx.

When there is no confusion, we will write
∫

Ω
|u| au lieu de

∫
Ω
|u(x)|dx.

Definition 2.1.1 Let p ∈ R with 1≤ p < ∞, we pose :

Lp(Ω) = {u : Ω→ R;u mesurable and |u|p ∈ L1(Ω)}

We note

∥u∥Lp(Ω) = (
∫

Ω

|u(x)|pdx)
1
p (2.1.1)

10 Chapter 2. Reminders and preliminaries
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Definition 2.1.2 We pose

L∞(Ω) = {u : Ω→ R;mesurable and ∃ a constant C such that |u(x)| ≤C p.p sur Ω.}

on note
∥u∥L∞(Ω) = inf{C; |u(x)| ≤C p.p on Ω}

R If u ∈ L∞ we have
|u(x)| ≤ ∥u∥L∞ p.p on Ω

Notation: Let 1≤ p≤ ∞; the conjugate exponent of p i.e is denoted by p′ 1
p +

1
p′ = 1.

Theorem 2.1.1 (Hölder inequality ). Let u ∈ Lp et v ∈ Lp′ with 1≤ p≤ ∞. Then u.v ∈ L1 et∫
|uv| ≤ ∥u∥Lp∥v∥Lp′

Theorem 2.1.2 Lp is a vector space and ∥.∥Lp is a standard for everything 1≤ p≤ ∞.

Theorem 2.1.3 (Fischer-Riesz ) Lp is a Banach space for everything 1≤ p≤ ∞.

In the particular case p = 2, the relation

(u,v) =
∫

Ω

u(x)v(x)dx ∀u, v ∈ L2(Ω), (2.1.2)

define a dot product in L2(Ω), whose associated norm is none other than the norm ∥.∥L2 defined in
(2.1.1), and we have:

Proposition 2.1.4 Space L2(Ω) endowed with the dot product (2.1.2) is a Hilbert space.

Definition 2.1.3 H1(Ω) is the space of functions which belong to L2(Ω) and whose derivatives
in the sense of distributions belong to L2(Ω)

H1(Ω) = {u ∈ L2(Ω);
∂u
∂xi
∈ L2(Ω),1≤ i≤ n}.

H1(Ω) is the Sobolev space of order 1.

We endow H1(Ω) with the dot product

(u,v)1,Ω =
∫

Ω

(uv+
n

∑
i=1

∂u
∂xi

∂v
∂xi

)dx = (u,v)+(∇u,∇v), (2.1.3)

And we note:

∥u∥1,Ω = (u,u)
1
2
1,Ω = (

∫
Ω

(u2 +
n

∑
i=1

(
∂u
∂xi

)2)dx)
1
2 = (∥u∥2 +∥∇u∥2)

1
2 . (2.1.4)

the corresponding standard.

Proposition 2.1.5 The space H1(Ω) is a Hilbert space for the dot product (2.1.3).

Let us denote by D(Ω) the vector space of infinitely differentiable functions on Ω with compact
support in Ω.

2.1 Functional spaces 11
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Definition 2.1.4 We define H1
0(Ω) as being the adhesion of D(Ω) in H1(Ω), i.e

H1
0(Ω) = D(Ω)

R Si Ω est borné, D(Ω) is not dense in H1(Ω) so that H1
0(Ω)⊂ H1(Ω) with strict inclusion and

H1
0(Ω) ̸= H1(Ω) ; However , if Ω = Rn, D(Rn) is dense in H1(Rn), i.e H1

0(Rn) = H1(Rn).

Proposition 2.1.6 H1
0(Ω) endowed with the norm induced by H1(Ω) is a Hilbert space.

Theorem 2.1.7 (Trace theorem) Let Ω be a bounded open of class C1, there exists a continuous
linear operator γ0 ∈ L(H1(Ω),L2(∂Ω)) such as

γ0u = u |∂Ω,∀u ∈ C1(Ω).

L2(∂Ω) is the space of (class of) real functions, integral square over ∂Ω.
From the trace theorem, we can give the following characterization of the functions of H1

0(Ω)
which explains the important role played by the latter in the resolution of partial differential
equations coupled with boundary conditions, i.e. when the value u is prescribed on the ∂Ω

border.
Definition 2.1.5 The functions of H1

0(Ω) are the functions of H1(Ω) which vanish on the
boundary Γ = ∂Ω,

H1
0(Ω) = {u/u ∈ H1(Ω);u = 0 on Γ}= the core o f γ0.

R We denote the dual space of H1
0(Ω) par H−1(Ω).

2.1.2 The space Lp(a,b;X)

We give a brief introduction of integrability in the Bochner sense of functions defined over an
interval, with vector value. For a complete and detailed study, we refer to J. Diestel and J. J. Uhl Jr.
[DU]

Let X be a Banach space and −∞ < a < b <+∞.
A function f : [a,b]→ X is said to be simple if there exists E1, ......,Em measurable sets of [a,b]
and x1, ......,xm ∈ X such that:

f (t) =
m

∑
i=1

χEi(t)xi.

We will say that f : [a,b]→ X is measurable if there is a sequence of simple functions fk, fk :
[a,b]→ X, such that

fk→ f pp on [a,b].

A function f : [a,b]→ X measurable is said to be integral (in the Bochner sense) if there exists a
sequence of simple functions fk, fk : [a,b]→ X, such as

lim
k

∫ b

a
∥ f − fk∥X = 0

In this case,
∫ b

a f (t)dt is defined by∫ b

a
f (t)dt = lim

k

∫ b

a
fk(t)dt,

12 Chapter 2. Reminders and preliminaries
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where
∫ b

a fk(t)dt is naturally defined.

Theorem 2.1.8 (Bochner) f : [a,b]→X measurable is integrable if and only if ∥ f∥X ∈ L1(a,b).

For 1≤ p≤ ∞, we set

Lp(a,b;X) = { f : [a,b]→ X integrable such that ∥ f∥X ∈ Lp(a,b).}

As in the scalar case, we do not distinguish between two almost everywhere equal functions.
Equipped with the norm

∥ f∥Lp(a,b,X) =
(∫ b

a
∥ f∥p

X

) 1
p

i f p < ∞

and
∥ f∥L∞(a,b,X) = inf{C;∥ f (t)∥X ≤C a.e on [a,b]} i f p = ∞,

Lp(a,b;X) is a Banach space. If X is Hilbert for the dot product (., .)X, L2(a,b;X) is a Hilbert
space for the dot product:

(u,v)L2(a,b;X) =
∫ b

a
(u(t),v(t))Xdt.

Definition 2.1.6
• We call a vector field an application v : Rn→ Rn, which with x = (x1, .....,xn) associates

v(x) = (v1(x), ......,vn(x)).
• For a function u : Rn→ R, its gradient is the vector field defined by

∇u(x) = (
∂u
∂x1

(x), ......,
∂u
∂xn

(x)).

• For a vector field v : Rn→ Rn, we call divergence the function

div v(x) =
∂v1

∂x1
(x)+ ......+

∂vn

∂xn
(x).

• We call Laplacian of a function u : Rn→ R the function

∆u(x) = div(∇u(x)) =
∂ 2u
∂x2

1
(x)+ ......+

∂ 2u
∂x2

n
(x).

R Let ψ and φ be scalar fields and ϑ represents a vector field. We have the following relations:
• ∇(ψφ) = (∇ψ)φ +(∇φ)ψ, this formula follows immediately from the product rule.
• div(ψϑ) = (∇ψ).ϑ +(div(ϑ))ψ .
• ∆(ψφ) = ∆(ψ)φ +2∇(ψ)∇(φ)+ψ∆(φ).

Definition 2.1.7
• We call normal to the domain Ω a vector field ν(x) defined on the edge ∂Ω of Ω and such

that at any point x ∈ ∂Ω where the edge is regular, nu(x) is orthogonal to the edge and
unitary ( |ν(x) |= 1).

• We call external normal a normal which points towards the outside of the domain at any
point.

• We call the normal derivative of a regular function u on the edge of a domain Ω the
function defined on the regular points of ∂Ω by ∂u

∂ν
(x) = ∇u(x).ν(x) (dot product of

2.1 Functional spaces 13
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vector ∇u(x) with the vector ν(x)).

2.1.3 Green and Stocks formulas
A first classical formula of integration by parts is∫

Ω

∂iuv =−
∫

Ω

u∂iv+
∫

Γ

uvνi, u,v ∈ H1(Ω)

From this formula can easily be deduced the following:∫
Ω

∆uv =−
∫

Ω

∇u.∇v+
∫

Γ

∂νuv, u ∈ H2(Ω) et v ∈ H1(Ω). Formula o f Green

∫
Ω

divϒΦ =−
∫

Ω

ϒ.∇Φ+
∫

Γ

ϒ.νΦ, StokesFormula

where Φ is a scalar function of H1(Ω) and ϒ a vector-valued function of H1(Ω).

2.2 Study of a functional resulting from the control problem
First, we will study a functional that we will often encounter during this work, and for that, introduce
a general formalism to describe its properties, and which will be specified later.

We denote by Ω is an open bounded of RN and of border ∂Ω = Γ of class C2.
We consider a time interval [0;T ] with T > 0. We denote by Q the cylinder open with base Ω and
height T :

Q = Ω× (0,T ).

We denote by |θ |p the norm Lp of a function θ with 1 < p < ∞ and by p′ the conjugate of p
( 1

p +
1
p′ = 1). We denote by ( f ,g) the integral

∫
Q f (x, t)g(x, t)dxdt.

For 0 < t1 < t2, we denote by X p(t1, t2) the following Banach space:

X p(t1, t2) = LP(t1, t2;W 1,p
0 (Ω))∩W 1,p(t1, t2;Lp(Ω)), (2.2.1)

provided with the natural norm

||.||X p(t1,t2) = ||.||LP(t1,t2;W 1,p
0 (Ω))

+ ||.||W 1,p(t1,t2;Lp(Ω)).

Let a = a(x, t) ∈ L∞(Q). We recall that there exists (see [22] and [19]) a constant C > 0 (which
depends on a,Ω and T ) and Ct1,t2 (which depends on a,Ω, t1 and t2) such that, for all k ∈ Lp(Q) and
w0 ∈ Lp(Ω), the solution w of

∂tw−∆w+aw = k in Ω× (0,T )
w = 0 sur ∂Ω× (0,T )

w(x, t = 0) = w0(x) in Ω

(2.2.2)

satisfied{
||w||L∞(0,T ;Lp(Ω)) ≤C(|w0|p + ||k||Lp(Q))

||w||X p(t1,t2) ≤Ct1,t2(|w0|p + ||k||Lp(Q)).
(2.2.3)

Moreover, if w0 = 0, we have (see [19]) for all k ∈ Lp(Q), the solution w of
∂tw−∆w = k in Ω× (0,T )

w = 0 on ∂Ω× (0,T )
w(x, t = 0) = 0 in Ω

(2.2.4)

14 Chapter 2. Reminders and preliminaries
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satisfied{
w ∈ X p(0,T )

the operator k ∈ Lp(Q)→ w inX p(0,T ) is linear continuous.
(2.2.5)

By (2.2.5) and using Gronwall’s lemma, we find that for all k ∈ Lp(Q), the solution of
∂tw−∆w+aw = k in Ω× (0,T )

w = 0 on ∂Ω× (0,T )
w(x, t = 0) = 0 in Ω

(2.2.6)

satisfied{
w ∈ X p(0,T )

||w||X p(0,T ) ≤ Ca(||k||Lp(Q)) with Ca = O(1+ |a|∞ exp(|a|∞)).
(2.2.7)

We consider a set q of the form: q = O× (0,T ) where O ⊂Ω is open nonempty of Ω

We introduce an operator of Lp′(Ω)×L∞(Q) in L1(q) which satisfies the following assumptions:
H1

∀a ∈ L∞(Q), L(.,a) is linear continuous o f Lp′(Ω) dans L1(q)

and if ϕ is solution of
∂tϕ−∆ϕ +aϕ = 0 in Ω× (0,T )

ϕ = 0 on ∂Ω× (0,T )
ϕ(x, t = 0) = ϕ0 ∈ Lp′(Ω) in Ω,

(2.2.8)

then
H2

L(ϕ0,a) = 0 almost everywhere in q⇒ ϕ = 0 almost everywhere in Q;

H3 {
ϕ0

n ⇀ ϕ0 weakly in Lp′(Ω)
an ⇀ a weakly−∗ in L∞(Q)

⇒ L(ϕ0
n ,an)⇀ L(ϕ0,a) weakly in L1(q);

H4

∀ϕ0 ∈ Lp′(Ω), L(ϕ0, .) is compact o f L∞(Q) in L1(q).

We will often write La(ϕ
0) instead of L(ϕ0,a).

R The hypothesis H2 is none other than the unique continuation property for the solutions
of (2.2.8). We will see later that the operator L that we are going to consider satisfies this
property thanks to a result of C.Fabre [10].

Let α > 0 and y1 ∈ Lp(Ω). For ϕ0 ∈ Lp′(Ω) and the solution ϕ of (2.2.8) with ϕ(T ) = ϕ0, we
introduce the functional

J(ϕ0;a,y1) =
1
2

∫
q
|La(ϕ

0)(x, t)|2dxdt +α|ϕ0|p′−
∫

Ω

y1
ϕ

0dx. (2.2.9)

2.2 Study of a functional resulting from the control problem 15
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Proposition 2.2.1 [11] For all α > 0, y1 ∈ Lp(Ω) and a∈ L∞(Q), J(.;A,y1) is a continuous function
over Lp′ , strictly convex and satisfies

liminf
|ϕ0|p′→∞

J(ϕ0;a,y1)

|ϕ0|p′
≥ α. (2.2.10)

The functional J(.;A,y1) reaches its minimum at a single point ϕ̂0 ∈ Lp′(Ω). Moreover,

ϕ̂
0 = 0⇔ |y1|p ≤ α.

Proof. Since the norm Lp′(Ω) is strictly convex and La is linear, it is clear that J(.;A,y1) is strictly
convex .
On the other hand, (2.2.3) and the continuity of La imply the continuity of J(.;A,y1). Now in order
to show (2.2.10), we assume that there exists a sequence ϕ0

n in Lp′(Ω) such that:

|ϕ0
n |p′ →+∞ (2.2.11)

and

liminf
n→∞

J(ϕ0
n ;a,y1)

|ϕ0
n |p′

≤ α. (2.2.12)

For ϕ̃0
n = ϕ0

n
|ϕ0

n |p′
we denote by ϕ̃n the solution of (2.2.8) with ϕ̃n(T ) = ϕ̃0

n .

Since |ϕ̃0
n |p′ = 1, we can extract a subsequence (still noted ϕ̃0

n by abuse of language), which
converges weakly in Lp′(Ω) towards an element ϕ̃0 ∈ Lp′(Ω). According to (2.2.3), (ϕ̃n)n weakly
converges in Lp′(Q) towards ϕ̃ solution of (2.2.8) with ϕ̃(T ) = ϕ̃0.
According to (H1), La(ϕ̃

0
n ) converges weakly in L1(q) to La(ϕ̃

0). However (2.2.11) and (2.2.12)
imply that there exists a subsequence (always denoted by (ϕ̃n)n) such that∫

q
|La(ϕ̃

0
n )|2dxdt→ 0 i f n→+∞. (2.2.13)

Hence La(ϕ̃
0) = 0 in q.

From (H2) we deduce that ϕ̃0 = 0 in Q and

ϕ̃
0 = 0. (2.2.14)

Then we find that

J(ϕ0
n ;a,y1)≥ |ϕ0

n |p′(α−
∫

Ω

y1
ϕ̃

0
n dx), (2.2.15)

and since ϕ̃0
n weakly converges to 0 in Lp′(Ω), it follows that

liminf
n→∞

J(ϕ0
n ;a,y1)

|ϕ0
n |p′

≥ α,

which in contradiction with (2.2.12).
Hence (2.2.10).

Now, if |y1|p ≤ α , we have J(ϕ0;a,y1)≥ 0 for all ϕ0 ∈ Lp′(Ω) and therefore ϕ̂0 = 0.
If ϕ̂0 = 0, then

∀ϕ0 ∈ Lp′(Ω), ∀t > 0, lim
t→0+

J(tϕ0;a,y1)

t
≥ 0.

and we easily find that |y1|p ≤ α . ■
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In order to study the nonlinear case, we need to specify the dependence between the minimums
with the potential. More precisely we have the

Proposition 2.2.2 [11]
If we denote by M the operator

M : L∞(Q)×Lp(Ω) → Lp′(Ω) (2.2.16)

(a,y1) → ϕ̂
0

and if K is a compact subset of Lp(Ω) and B a bounded subset of L∞(Q), then M(B×K) is a
bounded subset of Lp′(Ω).

Proof. We will first show that (2.2.10) is uniform in (a,y1) ∈ B×K. We reason absurdly by
following the same arguments as in the previous proof. Suppose there is a sequence of functions
(an)n of L∞(Q), (y1

n)n from Lp(Ω) and (ϕ0
n )n from Lp′(Ω) such that (we denote by ϕn the solution

of (2.2.8) associated with the function an checking ϕn(T ) = ϕ0
n and by Ln(.) the function Lan(.))

∃a ∈ L∞(Q), an ⇀ a weakly∗ in L∞(Q) (2.2.17)

and

∃y1 ∈ Lp(Ω), y1
n→ y1 strongly in Lp(Ω), (2.2.18)

such that (2.2.11) occurs and

liminf
n→∞

J(ϕ0
n ;an,y1

n)

|ϕ0
n |p′

< α. (2.2.19)

we designate by ϕ̃0
n = ϕ0

n
|ϕ0

n |p′
et ϕ̃n the solution of (2.2.8) associated with an and with the initial data

ϕ̃n(T ) = ϕ̃0
n .

As |ϕ̃0
n |p′ = 1, we can extract a subsequence, again denoted by ϕ̃0

n , which weakly converges in
Lp′(Ω) to an element ϕ̃0 ∈ Lp′(Ω). Now (From (H3)) Ln(ϕ̃

0
n ) weakly converges in L1(q) towards

La(ϕ̃
0). We denote by ϕ̃ the weak limit of ϕ̃n in Lp′(Q). Using (2.2.3) and passing to the limit in

the equation satisfied by ϕn, we can show that ϕ̃ is the solution of (2.2.8) associated with a and
initial data ϕ̃(T ) = ϕ̃0. From (2.2.11) and (2.2.19), we deduce (after extracting a subsequence)∫

q
|Ln(ϕ̃

0
n )|dxdt→ 0 i f n→+∞. (2.2.20)

Using (H3) and (H2), we get

ϕ̃ = 0. (2.2.21)

Let us now show that if Jn =
J(ϕ0

n ;an,y1
n)

|ϕ0
n |p′

, then liminfn→∞ Jn ≥ α.

For this we notice that

Jn ≥ (α−
∫

Ω

y1
nϕ̃

0
n dx), (2.2.22)

and since ϕ̃0
n weakly converges to 0 in Lp′(Ω) and y1

n strongly converges in Lp(Ω), then

liminf
n→∞

Jn ≥ α,

2.2 Study of a functional resulting from the control problem 17
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which contradicts (2.2.19).
Now, noticing that J(0;a,y1) = 0, it comes that

J(ϕ̂0;a,y1)≤ 0,

and we can deduce that the image of M is bounded in Lp′(Ω).
which ends the demonstration.

■
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3. Control of the linear heat equation

In this chapter we study the problem of internal controllability of the heat equation. The control is
supposed to act on a subset of the domain where the solutions are defined.

3.1 Introduction

We consider the equation of inhomogeneous heat in Ω× (0,T ) with a control acting on O× (0,T )


∂ty−∆y+ay = v1O in Ω× (0,T )

y = 0 on ∂Ω× (0,T )
y(x, t = 0) = y0 in Ω

(3.1.1)

We aim to change the dynamics of the system by acting on the O subset of the domain Ω.

R Physical interpretation: The problem (3.1.1) is not only a model of heat propagation. For
example, (3.1.1) is also known as the diffusion equation, and models the diffusion or migration
of a concentration or density through the Ω domain.

The interest of the above heat equation analysis is based not only on the fact that it is a model
for a large class of physical phenomena, but also one of the most important parabolic type partial
differential equations.

R The following properties have very important consequences on control problems.

1. Irreversibility: With a datum at time t = 0 the solution is well defined for any positive
time. It is even very regular (analytical compared to the space and time variables).

2. The propagation speed is infinite: More precisely for any y(x,0)≥ 0 with support in an
arbitrarily small ball we have, for all t > 0 and all x ∈Ω , y(x, t)> 0.

19
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Existence and Uniqueness
Proposition 3.1.1 Given y0 ∈ L2(Ω) and v ∈ L2(O× (0,T )) there exists a unique solution yv of
(3.1.1) with

yv ∈ C([0,T ];L2(Ω))∩L2(0,T ;H1
0(Ω)).

Moreover, ∃C =C(Ω,T, ||a||∞)> 0, such that

||yv||C([0,T ];L2(Ω))+ ||yv||L2(0,T ;H1
0(Ω)) ≤C

(
||y0||L2(Ω)+ ||v||L2(Q)

)
.

Definition 3.1.1

1. We say that the equation (3.1.1) is exactly controllable at time T if,

∀yT ,y0 ∈ L2(Ω),∃v ∈ L2(Q) such that yv(T ) = yT .

2. The system (3.1.1) is said to be approximately controllable at time T if,

∀ε > 0,∀yT ,y0 ∈ L2(Ω),∃v ∈ L2(Q) such that ||yv(T )− yT ||L2 ≤ ε.

3. We say that the system (3.1.1) is controllable at zero if,

∀y0 ∈ L2(Ω),∃v ∈ L2(Q) such that yv(T ) = 0.

We introduce the space of reachable states at time T starting from y0 given by:

R(T,y0) = {yv(T ), yv solution o f (3.1.1) with v ∈ L2(Q)} ⊆ L2(Ω).

R From the regularizing properties of the heat equation we know that if θ ⊂Ω\O , the solution
y is of class C∞ on θ×]0,T [. It is not possible to characterize the regularity class of y(T )
using classical spaces.
Therefore (3.1.1) is not exactly controllable.

Definition 3.1.2 We say that the system (3.1.1) is controllable at trajectories at time T if,

∀y0 ∈ L2(Ω),∃v ∈ L2(Q) such that yv(T ) = z(T ),

where z(t) is a solution of (3.1.1) without control for an initial data z0 ∈ L2(Ω).

R

1. Linearity: The system (3.1.1) which is considered here to be linear, the concepts of
controllability at trajectories and of controllability at zero are equivalent.

2. The speed of propagation is infinite: In particular, we will see that the heat equation is
controllable in an approximate way for any arbitrary time T and with a control in any
subset of Ω.

3. The heat equation (3.1.1) has a strong regularizing effect on the initial data y0. Note
that the solution y(x, t) is C∞ in x for each t > 0, even if the initial data is discontinuous.
It follows in particular that the heat equation is irreversible. In general the problem

∂ty−∆y+ay = v1O in Ω× (0,T )
y = 0 on ∂Ω× (0,T )

y(x, t = T ) = y0 in Ω

is not well put, and does not admit a solution.

20 Chapter 3. Control of the linear heat equation
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3.2 Approximate controllability of the heat equation
There are several possible proofs for the property of approximate controllability. Here we present
two of them. One is presented below and uses the Hahn-Banach theorem, the second is constructive
and uses a variational technique.
We give it in the next subsection.

3.2.1 Topological approach for approximate controllability
Definition 3.2.1 The system (3.1.1) is approximately controllable at time T if, for any initial
data y0 ∈ L2(Ω), R(T,y0) = L2(Ω).

Considering the linearity of the system that we have considered, it is easy to see that the
following propositions are verified:

1. ∀y0 ∈ L2(Ω), R(T,y0) = R(T,0)+ y(v = 0,y0)(T ).
2. ∀y0 ∈ L2(Ω), R(T,y0) = L2(Ω)⇔ R(T,0) = L2(Ω).
3. The system (3.1.1) is controllable exactly if and only if R(T,0) = L2(Ω) and in an approxi-

mate way if and only if R(T,0) = L2(Ω).
We assume that y0 = 0, i.e., we consider

∂ty−∆y+ay = v1O in Ω× (0,T )
y = 0 on ∂Ω× (0,T )

y(x, t = 0) = 0 in Ω

(3.2.1)

We introduce the linear operator

AT : v ∈ L2(Q)→AT v = yv(.,T ) ∈ L2(Ω)

with yv the solution of (3.2.1) associated with v. According to the proposition 3.1.1, we have

AT ∈L (L2(Q),L2(Ω)).

The system (3.2.1) is controllable in an approximate way to time T ⇔ R(AT ) is dense in
L2(Ω).

Or,
R(AT ) = ker(A ∗

T )
⊥.

Où A ∗
T is the assistant operator of AT .

Objective: Show that
ker(A ∗

T ) = 0.

Let’s fix ϕ0 ∈ L2(Ω), and consider the following adjunct problem:
−∂tϕ−∆ϕ +aϕ = 0 in Q = Ω× (0,T )

ϕ = 0 on ∂Ω× (0,T )
ϕ(x, t = T ) = ϕ0(x) in Ω

(3.2.2)

It is a retrograde problem and it is well posed.

Theorem 3.2.1 Given a∈L∞(Q), then ∀ϕ0 ∈L2(Ω), the system (3.2.2) admits a unique solution
ϕ verifying:

ϕ ∈ L2(0,T ;H1
0(Ω))∩C0([0,T ];L2(Ω)), ∂tϕ ∈ L2(0,T ;H−1(Ω))

||ϕ||C([0,T ];L2(Ω))+ ||ϕ||L2(0,T ;H1
0(Ω))+ ||∂tϕ||L2(0,T ;H−1(Ω)) ≤C||ϕ0||L2(Ω)

3.2 Approximate controllability of the heat equation 21
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for a positive constant C.

Proposition 3.2.2 Let’s fix y0,ϕ0 ∈ L2(Ω) et v ∈ L2(Q). Then∫
Ω

yv(x,T )ϕ0dx−
∫

Ω

y0(x)ϕ(x,0)dx =
∫ T

0

∫
O

vϕdxdt.

yv and ϕ are respectively the solutions of (3.1.1) and (3.2.2) for y0,v et ϕ0.

Indeed,
We multiply the equation satisfied by ϕ by y and then the equation of y by ϕ . After integrations

by parts and taking into account the conditions on board it comes:

∫ T

0

∫
O

vϕdxdt =
∫∫

Ω×(0,T )
(yt −∆y+ay)ϕdxdt

= −
∫∫

Ω×(0,T )
(ϕt +∆ϕ−aϕ)yvdxdt +

∫
Ω

yvϕdx|T0

+
∫ T

0

∫
∂Ω

(−∂y
∂n

ϕ + y
∂ϕ

∂n
)dσdt.

=
∫

Ω

yv(x,T )ϕ(T,x)dx−
∫

Ω

y0(x)ϕ(x,0)dx.

When y0 = 0, the previous Proposition provides the equality

(AT v,ϕ0)L2(Ω) = (v,ϕ1O) ∀ϕ0 ∈ L2(Ω),

ie,
A ∗

T : ϕ
0 ∈ L2(Ω)→ ϕ1O ∈ L2(Q) and A ∗

T ∈L (L2(Ω),L2(Q)).

It follows that the study of the approximate controllability for the problem (3.1.1) is equivalent
to the following uniqueness problem for the adjoint system (3.2.2) :

Theorem 3.2.3 (Continuation unique) [10]
Suppose a ∈ L∞(Q). Let ϕ solution of (3.2.2), checking ϕ = 0 on O× (0,T ), then ϕ0 = 0 and
therefore ϕ = 0 on Ω× (0,T ).

Theorem 3.2.4 Let O be a nonempty open such that O ⊂Ω.
Then (3.1.1) is approximate controllable for all T > 0.

It is easy to see that the method used above has a character general and that, for a linear problem,
the study of the controllability approach comes down to the study of a single continuation question
for the assistant problem.

3.2.2 Variational approach for approximate controllability
In this section, we give a new proof for the result of the approximate controllability. The main
ingredients that we will develop are variational in nature.
This proof has the advantage of being constructive and it allows to calculate the approximate
controls explicitly.

We introduce,

Uad(y1,ε) = {v ∈ L2(Q) : ||yv(T )− y1||L2(Ω) ≤ ε, yv the solution o f (3.2.1)}
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This set contain infinity of elements. In addition, it is convex, closed in L2(Ω) :

Uad(y1,ε) = A −1
T (B(y1;ε)).

Question:
Given y1 ∈ L2(Ω) and ε > 0, can we give a constructive method which computes v ∈ L2(Q)

than

||yv(T )− y1||L2(Ω) ≤ ε? (3.2.3)

Answer: Yes
We then consider the following problem:{

minimize 1
2 ||v||

2
L2(Q) =

1
2
∫∫

Q |v(x, t|2dxdt
v ∈ Uad(y1,ε)

(3.2.4)

which admits a unique solution v̂ ∈ L2(Q).
Objective: To build this minimum standard control.
We can write

Uad(y1,ε) = {v ∈ L2(Q) : AT (v) ∈ B(y1,ε)}.

We introduce

F(v) =
1
2

∫ ∫
Q
|v(x, t|2dxdt et G(z) =

{
0 i f z ∈ B(y1,ε)

+∞ sinon

Note that F : L2(Q)→ R et G : L2(Ω)→ R∪{+∞} are convex and proper functions.
We can then reformulate our problem (3.2.4) as follows:

inf
v∈L2(Q)

[F(v)+G(AT (v))].

We will now use the Fenchel-Rockafellar duality theorem:
Let X , Y be two Hilbert spaces, A ∈ L (X ,Y ) a continuous linear operator, and F : X →

R∪{+∞} and G : Y → R∪{+∞} two convex functions scb (semi continuous below) and clean.
We consider the following minimization problems:

(P) : α = inf
x∈X

[F(x)+G(Ax)] et (P′) : α
∗ = inf

y∈Y
[F∗(A∗y)+G∗(−y)]

où F∗ et G∗ are the conjugate functions of F et G :

F∗(z) = sup
x∈X

[< z,x >X −F(x)] et G∗(w) = sup
y∈Y

[< w,y >Y −G(y)].

Suppose also that there is x ∈ X et y ∈ Y such as

F(x)+G(Ax)< ∞, F∗(A∗y)+G∗(−y)< ∞.

Then :

Theorem 3.2.5 [8] Under the previous assumptions :
1. Suppose 0 ∈ int(DomG−ADomF), then α +α∗ = 0 et ∃ŷ ∈ Y such that α∗ = F∗(A∗ŷ)+

G∗(−ŷ).
2. Suppose 0 ∈ int(A∗DomG∗+DomF∗), then α +α∗ = 0 et ∃x̂ ∈ X such that α = F(x̂)+

G(Ax̂).

3.2 Approximate controllability of the heat equation 23
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3. Suppose that the problems (p) and (p ’) admit a solution x̂ ∈ X et ŷ ∈ Y respectively. Then

α +α
∗ = 0⇔ A∗ŷ ∈ ∂F(x̂) and − ŷ ∈ ∂G(Ax̂).

Let’s use the Fenchel-Rockafellar duality theorem:
The (3.2.4) problem is equivalent to the dual problem

inf
ϕ0∈L2(Ω)

[F∗(A ∗
T ϕ

0)+G∗(−ϕ
0)].

Où F∗ et G∗ are the conjugate functions of F et G :

F∗(v) = sup
w∈L2(Q)

[(v,w)L2(Q)−F(w)] =
1
2

∫ ∫
Q
|v(x, t|2dxdt,

G∗(ϕ0) = sup
ψ0∈L2(Ω)

[(ϕ0,ψ0)L2(Ω)−G(ψ0)] = (ϕ0,y1)L2(Ω)+ ε||ϕ0||L2(Ω).

The dual problem is then the following{
minimize Jε(ϕ

0,y1) = 1
2
∫∫

O×(0,T ) |ϕ(x, t)|2dxdt + ε||ϕ0||L2(Ω)− (ϕ0,y1)L2(Ω)

ϕ0 ∈ L2(Ω),
(3.2.5)

From the Fenchel-Rockafellar theorem (3.2.5), we deduce that

min
v∈Uad(y1,ε)

1
2

∫ ∫
Q
|v(x, t|2dxdt =− inf

ϕ0∈L2(Ω)
Jε(ϕ

0,y1).

The following lemma guarantees that the minimum of Jε gives a control for our problem.

Lemma 1. If ϕ̂0 is a minimum of Jε in L2(Ω) and ϕ̂ is the solution of (3.2.2) with the initial data
ϕ̂0, then v̂ = ϕ̂1O is the solution of the problem (3.2.4).

Proof. In the following, we simply denote Jε by J.
assuming that J reaches its minimum in ϕ̂0 ∈ L2(Ω). So for everything ψ0 ∈ L2(Ω) et h ∈ R we
have

J(ϕ̂0)≤ J(ϕ̂0 +hψ
0).

On the other hand,

J(ϕ̂0 +hψ
0) =

1
2

∫ T

0

∫
O
|ϕ̂ +hψ|2dxdt + ε||ϕ̂0 +hψ

0||L2(Ω)

−
∫

Ω

y1(ϕ̂0 +hψ
0)dx

=
1
2

∫ T

0

∫
O
|ϕ̂|2dxdt +

h2

2

∫ T

0

∫
O
|ψ|2dxdt +h

∫ T

0

∫
O

ϕ̂ψdxdt

+ε||ϕ̂0 +hψ
0||L2(Ω)−

∫
Ω

y1(ϕ̂0 +hψ
0)dx.

Thus

0 ≤ ε[||ϕ̂0 +hψ
0||L2(Ω)−||ϕ̂0||L2(Ω)]+

h2

2

∫
(0,T )×O

ψ
2dxdt

+h
[∫ T

0

∫
O

ϕ̂ψdxdt−
∫

Ω

y1
ψ

0dx
]
.

24 Chapter 3. Control of the linear heat equation



Ptolemy Scientific Research Press https://pisrt.org/

Since
||ϕ̂0 +hψ

0||L2(Ω)−||ϕ̂0||L2(Ω) ≤ |h|||ψ0||L2(Ω)

we get

0≤ ε|h|||ψ0||L2(Ω)+
h2

2

∫ T

0

∫
O

ψ
2dxdt +h

∫ T

0

∫
O

ϕ̂ψdxdt−h
∫

Ω

y1
ψ

0dx

pour tout h ∈ R et ψ0 ∈ L2(Ω).
Dividing by h > 0 and passing to the limit h→ 0 we get

0≤ ε||ψ0||L2(Ω)+
∫ T

0

∫
O

ϕ̂ψdxdt−
∫

Ω

y1
ψ

0dx.

The same calculation with h < 0 gives

∣∣∣∫ T

0

∫
O

ϕ̂ψdxdt−
∫

Ω

y1
ψ

0dx
∣∣∣≤ ε||ψ0||L2(Ω) ∀ψ0 ∈ L2(Ω).

On the other hand, If we take control v = ϕ̂ in (3.1.1), and by multiplying (3.1.1) by ψ solution
of (3.2.2) and by integrating by parts we obtain that

∫ T

0

∫
O

ϕ̂ψdxdt =
∫

Ω

y(T )ψ0dx.

From the last two relationships, it follows that

∣∣∣∫
Ω

(y(T )− y1)ψ0dx
∣∣∣≤ ε||ψ0||L2(Ω) ∀ψ0 ∈ L2(Ω).

which equals
||y(T )− y1||L2(Ω) ≤ ε.

Which ends the proof of the lemma. ■

Let us now show that J reaches its minimum in L2(Ω). But first of all we recall an essential
theorem in calculus of variations, optimal control, etc.

Theorem 3.2.6 [5]
Let E be a reflexive Banach space, A⊂ E a closed, non-empty convex and ϕ : A→]−∞,+∞] a
convex function, sci, ϕ ̸=+∞ such that

lim
x inA, ||x||→∞

ϕ(x) = +∞.

Then ϕ reaches its minimum on A, i.e. There exists x0 ∈ A such that

ϕ(x0) = min
A

ϕ.
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Theorem 3.2.7 [11] Let y1 ∈ L2(Ω) the desired final state, a ∈ L∞(Q) and ε > 0 . Then
1. J(.,y1) is strictly convex, continues in L2(Ω).
2.

liminf
||ϕ0||L2(Ω)→∞

J(ϕ0,y1)

||ϕ0||L2(Ω)

≥ ε. (3.2.6)

3. There exists ϕ̂0 ∈ L2(Ω) such that

J(ϕ̂0,y1) = min
ϕ0∈L2(Ω)

J(ϕ0,y1). (3.2.7)

Proof. It is easy to see that J is strictly convex and continues in L2(Ω). According to the theorem
3.2.6, the existence of the minimum is assured if J is coercive, i.e.

J(ϕ0)→ ∞ when ||ϕ0||L2(Ω)→ ∞. (3.2.8)

In fact, we will prove that

liminf
||ϕ0||L2(Ω)→∞

J(ϕ0)

||ϕ0||L2(Ω)

≥ ε. (3.2.9)

Obviously, (3.2.9) implies (3.2.8) and the proof of the lemma is complete. In order to prove
(3.2.9) let (ϕ0

n )⊂ L2(Ω) be an initial data sequence for the adjoining system with ||ϕ0
n ||L2(Ω)→ ∞.

We normalize them

ϕ̃
0
n =

ϕ0
n

||ϕ0
n ||L2(Ω)

,

so what ||ϕ̃0
n ||L2(Ω) = 1.

On the other hand, either ϕ̃n the solution of (3.2.2) with the initial data ϕ̃0
n . Then

J(ϕ0
n )

||ϕ0
n ||L2(Ω)

=
1
2
||ϕ0

n ||L2(Ω)

∫ T

0

∫
O
|ϕ̃n|2dxdt + ε−

∫
Ω

y1
ϕ̃

0
n dx.

A distinction is made between the following two cases:
1. liminfn→∞

∫ T
0
∫
O |ϕ̃n|2 > 0. In this case we immediately obtain that

liminf
n→∞

J(ϕ0
n )

||ϕ0
n ||L2(Ω)

= ∞.

2. liminfn→∞

∫ T
0
∫
O |ϕ̃n|2 = 0. In this case since ϕ̃0

n is bounded in L2(Ω), we can extract a
subsequence (always denoted by ϕ̃0

n ) such that ϕ̃0
n ⇀ ψ0 weakly in L2(Ω) and ϕ̃n ⇀ ψ

weakly in L2(0,T ;H1
0(Ω))∩H1(0,T ;H−1(Ω)), where ψ is the solution of (3.2.1) with the

initial data ψ0 en t = T.
Moreover, according to the lower semi-continuity,∫ T

0

∫
O

ψ
2dxdt ≤ liminf

n→∞

∫ T

0

∫
O
|ϕ̃n|2dxdt = 0

and so ψ = 0 in O× (0,T ).
The result of single continuation implies that ψ = 0 in Ω× (0,T ) and hence ψ0 = 0.
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therefore, ϕ̃0
n ⇀ 0 weakly in L2(Ω).

Hence
∫

Ω
y1ϕ̃0

n dx tends to 0.
Thus,

liminf
n→∞

J(ϕ0
n )

||ϕ0
n ||L2(Ω)

≥ liminf
n→∞

[ε−
∫

Ω

y1
ϕ̃

0
n dx] = ε,

which give (3.2.6).
■

R This proposition and the lemma 1 give a second proof of the theorem 3.2.4. This approach
not only guarantees the existence of control, but also provides a method to achieve control by
minimizing a convex, continuous and coercive functional in L2(Ω).

In the proof of coercivity, the relevance of the term ε||ϕ0||L2(Ω)is clear.
Indeed, the coercivity of J strongly depends on this term. It’s not just for technical reasons.
The existence of a minimum of J with ε = 0 implies the existence of a check which verifies
y(T ) = y1. But that’s not true, unless y1 is very regular in Ω \O . Therefore, for a general
y1 ∈ L2(Ω), the term ε||ϕ0||L2(Ω) is required.

Note that the two tests are based on the unique continuation property which guarantees that if
ϕ is a solution of (3.2.2), checking

ϕ = 0 on O× (0,T ),

then

ϕ
0 = 0 and there f ore ϕ = 0 on Ω× (0,T ).

3.3 Null controllability of the heat equation
Our next goal is to show null controllability or zero controllability for the problem (3.1.1)
Question: Given y0 ∈ L2(Ω), Ccan we find v ∈ L2(Q) such that the solution yv of the system

∂ty−∆y+ay = v1O in Ω× (0,T )
y = 0 on ∂Ω× (0,T )

y(x, t = 0) = y0 in Ω

check yv(T ) = 0 in Ω.

Theorem 3.3.1 The following conditions are equivalent:
1. There is a constant C > 0, such that ∀y0 ∈ L2(Ω), ∃v ∈ L2(Q), with

||v||2L2(Q) ≤C||y0||2L2(Ω) (3.3.1)

such as the solution yv ∈ C([0,T ];L2(Ω))∩L2(0,T ;H1
0(Ω)) of the system (3.1.1) corre-

sponding to y0 and v satisfied yv(T ) = 0 in L2(Ω).
2. There exists a constant C > 0, such that the following observability inequality

||ϕ(0)||2L2(Ω) ≤C
∫ ∫

O×(0,T )
|ϕ(x, t)|2dxdt, (3.3.2)
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takes place, for any solution ϕ ∈ C([0,T ];L2(Ω))∩ L2(0,T ;H1
0(Ω)) of the adjoining

system (3.2.2) with the initial data ϕ0 ∈ L2(Ω).

Proof. 1⇒ 2 : Take y0 ∈ L2(Ω) and consider a v̂ ∈ L2(Q) which satisfies (3.3.1) and yv̂(T ) = 0 in
Ω. (yv̂, solution of the system (3.1.1) associated with v̂ with the initial data y0.)

For ϕ0 ∈ L2(Ω), let ϕ be the solution of the assistant system (3.2.2) with the initial data ϕ0 .
From the proposition 3.2.2 we deduce

(ϕ(0),y0) =
∫

Ω

ϕ(x,0)y0(x)dx = −
∫ ∫

O×(0,T )
v̂(x, t)ϕ(x, t)dxdt

≤ ||ϕ1O ||L2(Q)||v̂||L2(Q)

≤
√

C||ϕ1O ||L2(Q)||y0||L2(Ω), ∀y0 ∈ L2(Ω).

From this last inequality we get the observability inequality (3.3.2) for the aide system.
2⇒ 1 : We divide the proof into two stages. First, we construct a series of controls vε ∈ L2(Q)

with ε > 0 which provide the approximate controllability of (3.1.1). Second, we go to the limit as ε

approaches zero and we conclude. Step 1: Let y0 ∈ L2(Ω) and ε > 0. We introduce the functional
Jε defined by

Jε(ϕ
0) =

1
2

∫ ∫
O×(0,T )

|ϕ|2dxdt + ε||ϕ0||L2(Ω)+(ϕ(0),y0)L2(Ω), ∀ϕ0 ∈ L2(Ω).

Here ϕ is the solution of the system (3.2.2) with the initial data ϕ0.
It is not difficult to verify that Jε is strictly convex, continuous and coercive in L2(Ω). It

therefore admits a unique minimum ϕ0
ε , whose associated solution is denoted by ϕε . Let us now

introduce the control vε = ϕε1O and denote by yε the solution of the system (3.1.1) associated with
vε .

Since Jε reaches its minimum in ϕ0
ε , then for each ϕ0 inL2(Ω), the function

g : h 7→ Jε(ϕ
0
ε +hϕ

0) =
1
2

∫ ∫
O×(0,T )

(ϕ2
ε +2hϕεϕ +h2

ϕ
2)dxdt

+ε

√∫
Ω

(
(ϕ0

ε )2 +2hϕ0
ε ϕ0 +h2(ϕ0)2

)
dxdt

+
∫

Ω

(y0
ϕε(0)+hy0

ϕ(0))dx

reaches its minimum in 0.
Hence g′(0) = 0.

i.e. ∫ ∫
O×(0,T )

ϕεϕdxdt + ε(
ϕ0

ε

||ϕ0
ε ||L2(Ω)

,ϕ0)+
∫

Ω

y0
ϕ(0)dx = 0, ∀ϕ0 ∈ L2(Ω). (3.3.3)

For ϕ0 = ϕ0
ε , we get∫ ∫

O×(0,T )
|ϕε |2dxdt + ε||ϕ0

ε ||L2(Ω)+
∫

Ω

ϕε(0)y0dx = 0.

Or,
vε = ϕε1O .
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Hence

||vε ||2L2(Q) =
∫ ∫

O×(0,T )
|ϕε |2dxdt ≤ −

∫
Ω

ϕε(0)y0dx

≤ ||y0||L2(Ω)||ϕε(0)||L2(Ω)

≤ C
2
||y0||2L2(Ω)+

1
2C
||ϕε(0)||2L2(Ω)

≤ C
2
||y0||2L2(Ω)+

1
2

∫ ∫
O×(O,T )

|ϕε |2dxdt.

From where finally

||vε ||2L2(Q) ≤C||y0||2L2(Ω), (3.3.4)

where C is the observability constant in (3.3.2).
On the other hand, we have According to the proposition 3.2.2 :

∫ ∫
O×(0,T )

ϕεϕdxdt = (yε(T ),ϕ0)L2(Ω)− (y0,ϕ(0))L2(Ω).

This equation combined with (3.3.3), results in

(yε(T ),ϕ0)L2(Ω) = −ε(
ϕ0

ε

||ϕ0
ε ||L2(Ω)

,ϕ0)

≤ ε||ϕ0||L2(Ω).

Hence

||yε(T )||L2(Ω)≤ ε. (3.3.5)

Step 2: Since the sequence vε is bounded in L2(Q), we can extract a subsequence, again
denoted vε by abuse of language, which converges weakly in L2(Q) to an element v. From there,
we deduce from the classical results on the heat equation, that yε = yvε

converges to y = yv in
L2(0,T ;H1

0 (Ω))∩H1(0,T ;H−1(Ω)). In particular, this gives weak convergence for {yε(t)}(t ∈
[0,T ]) in L2(Ω). In particular, one can pass to the limit under the boundary conditions, and one
obtains:

y(T ) = 0.

■

Proposition 3.3.2 Suppose that y0 ∈ L2(Ω) and a ∈ L∞(Q). Then there exists a control v ∈
L2(O× (0,T )) such that the solution y of associated (3.1.1) satisfies

y(.,T ) = 0 in Ω.

Moreover

||v||2L2(O×(0,T )) ≤ exp{C(1+
1
T
+T ||a||∞ + ||a||

2
3
∞}||y0||2L2(Ω) (3.3.6)
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4. Null controllability of degenerate/singular parabolic equations

In the recent years, an increasing interest has been devoted to the study of the controllability for
parabolic equations and has become an active research area. After the pioneering works [7, 18, 23,
24, 25]. Indeed many problems coming from physics, biology and economics are described by
degenerate/singular parabolic equations, whose linear prototype is

ut − (aux)x−
λ

b(x)
u = h(t,x), (t,x) ∈ (0,T )× (0,1), (4.0.1)

More recently, several works were done in the controllability of purely (λ = 0) degenerate
equations in divergence or in non divergence form with boundary degeneracy, see [Alabau, 12, 21].
The results on Carleman estimates for purely degenerate problems with an interior degenerate point
are obtained in [13], for a regular degeneracy, and in [15], for a globally non smooth degeneracy.
The case of parabolic operators with singular lower order terms. is treated in [2, 3]. And the
parabolic problem with singular potential is considered, in [9, 27].

Furthermore, in numerical aspects, very few results are known regarding study of the null
controllability in degenerate/singular parabolic equations, even though this class of operators occurs
in interesting theoretical and applied problems. As far as we know, [1] is the unique published work
on this subject; it concerns the numerical study of null controllability of the heat distribution in
a degenerate/singular parabolic equation with degeneracy and singularity at the boundary of the
domain.

In particular, our results complements the ones of [14] and [16], In fact we validate numerically
the results obtained by [14], we consider the numerical reconstruction of the source term h(t,x) to
obtain u(T, .) = 0. To this end, we adopt the classical Tikhonov regularization to reformulate the
inverse problem into a related optimization problem, for which we develop an iterative thresholding
algorithm by using the corresponding adjoint system.
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Consider the following problem
ut − (aux)x−

λ

b(x)
u = h(t,x), (t,x) ∈ Q,

u(0) = u(1) = 0, t ∈ (0,T ),
u(0,x) = u0(x), x ∈ (0,1),

(4.0.2)

where u0 ∈ L2(0,1), T > 0 fixed and Q := (0,T )× (0,1). Moreover, we assume that the constant
λ satisfy suitable assumptions described below and the functions a and b degenerate at the same
interior point x0 of the spatial domain (0,1) (for the precise assumptions we refer to section 4.1).

Let us recall that in inverse source problems, the source term has to satisfy some condition
otherwise uniqueness may be false, see [26]. Let C0 > 0 be given and for t0 ∈ (0,T ) given, let
T ′ := T+t0

2 . In [6, 18], the authors make the assumption that source terms h satisfy the condition

|ht(t,x)| ≤C0|h(T ′,x)|, for almost all(t,x) ∈ Q. (4.0.3)

Therefore they define the set S (C0) of admissible source terms as

S (C0) := {h ∈ H1(0,T ;L2(0,1)) : hsatisfies(4.0.3)}.

The rest of this article is organized as follows. In Section 4.1, we recall the well-posedness of
the problem (4.0.2). Then Section 4.1, we study numerically the null controllability of 4.0.2. To
this end, we reformulate our inverse source problem as a minimization problem with the Tikhonov
regularization and provide several numerical examples.

Throughout the paper, C denotes a generic positive constant, which may vary from line to line.

4.1 Well-posedness
The ways in which a and b degenerate at x0 can be quite different, and for this reason, following
[16], to establish our results, we give the following definitions and assumptions:

Hypothesis 1. Double weakly degenerate case (WWD) There exists x0 ∈ (0,1) such that a(x0) =
b(x0) = 0, a,b > 0 in [0,1]\{x0}, a,b ∈C1([0,1]\{x0}) and there exists α,β ∈ (0,1) such that
(x− x0)a′ ≤ αa and (x− x0)b′ ≤ βb a.e. in [0,1].

Hypothesis 2. Weakly strongly degenerate case (WSD) There exists x0 ∈ (0,1) such that a(x0) =
b(x0) = 0, a,b > 0 in [0,1]\{x0}, a ∈C1([0,1]\{x0}), b ∈C1([0,1]\{x0})∩W 1,∞(0,1) ,∃ α ∈
(0,1),β ∈ [1,2) such that (x− x0)a′ ≤ αa and (x− x0)b′ ≤ βb a.e. in [0,1].

Hypothesis 3. Strongly weakly degenerate case (SWD) There exists x0 ∈ (0,1) such that a(x0) =
b(x0) = 0, a,b > 0 in [0,1] \ {x0}, a ∈ C1([0,1] \ {x0})∩W 1,∞(0,1), b ∈C1([0,1] \ {x0}), ∃α ∈
[1,2), β ∈ (0,1) such that (x− x0)a′ ≤ αa and (x− x0)b′ ≤ βb a.e. in [0,1].

Hypothesis 4. Double strongly degenerate case (SSD). There exists x0 ∈ (0,1) such that a(x0) =
b(x0) = 0, a,b > 0 in [0,1] \ {x0}, a,b ∈ C1([0,1] \ {x0})∩W 1,∞(0,1), there exists α,β ∈ [1,2)
such that (x− x0)a′ ≤ αa and (x− x0)b′ ≤ βb a.e. in [0,1].

Typical examples for the previous degeneracies and singularities are a(x) =| x− x0 |α and
b(x) =| x− x0 |β .

For the well–posedness of the problem (4.0.2), as in [16], we consider different classes of
weighted Hilbert spaces, which are suitable to study the four different situations given above,
namely the (WWD), (WSD), (SWD) and (SSD) cases. Thus, we consider the Hilbert spaces

H1
a (0,1) :=

{
u ∈W 1,1

0 (0,1) :
√

aux ∈ L2(0,1)
}
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and
H1

a,b(0,1) :=
{

u ∈ H1
a (0,1) :

u√
b
∈ L2(0,1)

}
endowed with the inner products

⟨u,v⟩H1
a

:=
∫ 1

0
au′v′ dx+

∫ 1

0
uvdx,

and

⟨u,v⟩H1
a,b

:=
∫ 1

0
au′v′ dx+

∫ 1

0
uvdx+

∫ 1

0

uv
b

dx,

respectively.
In order to deal with the singularity of b we need the following inequality proved in [16,

Proposition 2.14].

Lemma 2. If one among Hypotheses 1-3 holds with α +β ≤ 2, then there exists a constant C > 0
such that for all u ∈ H1

a,b(0,1) we have

∫ 1

0

u2

b(x)
dx≤C

∫ 1

0
a(x)|u′|2 dx. (4.1.1)

In order to study well-posedness of problem (4.0.2) and in view of Lemma 2 , we consider the
space

H := H1
a,b(0,1),

where the Hardy-Poincaré inequality (4.1.1) holds.
We underline that, from Lemma 2, the standard norm ∥.∥2

H is equivalent to

∥.∥2
∼ :=

∫ 1

0
a(u′)2dx.

From now on, we make the following assumptions on a, b and λ :

Hypothesis 5. 1. One among the Hypothesis 1, 2 or 3 holds true with α +β ≤ 2 and we assume
that

λ ∈
(

0,
1

C⋆

)
. (4.1.2)

2. Hypotheses 1, 2, 3 or 4 hold with λ < 0.

Using the lemma 2, the next inequality is proved in [16, Proposition 2.18], which is crucial not
only to obtain the well-posedness of the problem (4.0.2), but also to prove that the inverse problem
posed as weak solution minimization problem has a solution.

Proposition 4.1.1 Assume Hypothesis 5. Then there exist a positive constant Λ ∈ (0,1] such that
for all u ∈H , there holds∫ 1

0
a(u′)2 dx−λ

∫ 1

0

u2

b
dx≥ Λ

∫ 1

0
a(u′)2 dx. (4.1.3)

Now, let us go back to problem (4.0.2), recalling the following definition:
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Definition 4.1.1 Let u0 ∈ L2(0,1) and h ∈ L2(Q). A function u is said to be a (weak) solution
of (4.0.2) if

u ∈C([0,T ];L2(0,1))∩L2(0,T ;H )

and satisfies the following differential equation∫ 1

0
u(T,x)ϕ(T,x)dx−

∫ 1

0
u0(x)ϕ(0,x)dx−

∫ ∫
Q

u(t,x)ϕt(t,x)dxdt

=−
∫ ∫

Q
a(x)ux(t,x)ϕx(t,x)dxdt +λ

∫ ∫
Q

u(t,x)ϕ(t,x)
b

dxdt

+
∫ ∫

Q
h(t,x)ϕ(t,x)dxdt

for all ϕ ∈ H1(0,T ;L2(0,1))∩L2(0,T ;H ).

Finally, we introduce the Hilbert space

H2
a,b(0,1) := {u ∈ H1

a (0,1) : au′ ∈ H1(0,1)andAu ∈ L2(0,1)},

where

Au := (au′)′+
λ

b
u,

with domain

D(A) := H2
a,b(0,1).

R Observe that if u ∈ D(A), then u√
b
∈ L2(0,1), so that u ∈H and inequality (2) holds.

Hence, the next result holds thanks to the theory of semigroups.

Proposition 4.1.2 The following assertions hold.

(i) The operator (A,D(A)), is the infinitesimal generator of a strongly continuous semigroup of
contractions on L2(0,1). Moreover, the semigroup is analytic.

(ii) For all u0 ∈ D(A) and h ∈ H1(0,T ;L2(0,1)), the problem (4.0.2) admits a unique strict
solution belonging to the class

u ∈C
(
[0,T ];D(A)

)
∩C1([0,T ];L2(0,1))

and there exists a positive constant C such that

sup
t∈[0,T ]

(
∥u(t)∥2

H1
a (0,1)

)
+

∫ T

0

(
∥ut∥2

L2(0,1)+∥(aux)x∥2
L2(0,1)

)
dt

≤C
(
∥u0∥2

H1
a (0,1)

+∥h∥2
L2(Q)

)
.

(4.1.4)

If moreover u0 ∈ L2(0,1), then for all ε ∈ (0,T ) there holds

u ∈C
(
[ε,T ];D(A)

)
∩C1([ε,T ];L2(0,1)).
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(iii) For all u0 ∈ L2(0,1) and for all h ∈ L2(0,T ;L2(0,1)), problem (4.0.2) has a unique weak
solution u ∈C

(
[0,T ];L2(0,1)

)
∩L2(0,T ;H ) such that

sup
t∈[0,T ]

∥u(t)∥2
L2(0,1)+

∫ T

0
∥u(t)∥2

H dt ≤CT

(
∥u0∥2

L2(0,1)+∥h∥
2
L2(Q)

)
, (4.1.5)

for some positive constant CT . Further, for all ε ∈ (0,T ) there holds

u ∈ L2(
ε,T ;D(A)

)
∩H1(

ε,T ;L2(0,1)
)
.

If moreover h ∈ H1(0,T ;L2(0,1)) and ε ∈ (0,T ), we have

u ∈ H1([ε,T ];D(A)
)
∩H2([ε,T ];L2(0,1))

.

Proof. The proof of statement (i) can be found in [16], whereas statements (ii) and (iii) are a
consequence of (i) and [4, Proposition 3.3 and Proposition 3.8]. ■

4.2 The null controllability

In this section, we develop a numerical approach to study the null controllability of 4.0.2, with
a(x) =| x− x0 |α and b(x) =| x− x0 |β . α and β two real constants and x0 ∈ (0,1).

4.2.1 Theory
We recall the following result which shows theoretically the null controllability of problem
4.0.2

Theorem 4.2.1 — [14]. Assume Hypotheses 5 Then, given u0 ∈ L2(0,1), there exists h ∈ L2(Q)
such that the solution u of 4.0.2 satisfies

u(T,x) = 0 for every x ∈ [0,1]

Moreover,∫
Q

h2dxdt ≤C
∫ 1

0
u0

2(x)dx

for some positive constant C.

4.2.2 Numerical approach
In this subsection we study null controllability from the numerical viewpoint. To this end, let us
define our inverse problem which we use in computations.

Inverse Source Problem (ISP). Let u be the solution to (4.0.2). Determine the source term h(t,x)
to obtain u(T, .) = 0.

Numerically, we treat Problem (ISP) by interpreting its solution as a minimizer of the following
least squares functional with the Tikhonov regularization

min
h∈U

J(h), J(h) =
1
2
∥u(T, .)∥2

L2(0,1)+
ε

2
∥h∥2

L2(Q), (4.2.1)
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where ε > 0 stands for the regularization parameter and U is the set of admissible unknown sources
defined in the following way

U := {h ∈ H1(0,T ;L2(0,1)) : ∥h∥H1(0,T ;L2(0,1)) ≤ r,r > 0}. (4.2.2)

Evidently, the set U is a bounded, closed, and convex subset of H1(0,T ;L2(0,1)).

In this section, we focus on the determination of an unknown source term h to obtain u(T, .) = 0
in a one dimensional parabolic equation which is not only degenerate but also singular at the same
interior point, this inverse problem can be formulate as a minimization problem of the functional
J. To show that the minimization problem and the direct problem are well-posed, we prove that
the solution’s behavior changes continuously with the source term, for this we prove the Lipschitz
continuity of the input-output operator F : h −→ u, where u is the weak solution of (4.0.2) with
term source h. And, we prove the differentiability of the functional J, which gives the existence of
the gradient of J, that is computed using the adjoint state method. Finally, to show the convergence
of the descent method, we prove that the gradient of J is Lipschitz continuous, this gives that
lim
k→∞

∥ ∇J(hk) ∥L2(Ω)= 0 and
(
J(hk)

)
k is a monotone decreasing sequence , where (hk)k is the

sequence of iterations obtained by the Landweber iteration algorithm hk+1 = hk− tk∇J(hk) and tk
is chosen by the inaccurate linear search by the Armijo-Goldstein Rule. Also we provide several
numerical examples to validate the work of [14].

We are now going to show the existence of minimizers to the problem (4.2.1). To do so, we
need the following lemma.

Lemma 3. Assume Hypothesis 5. Let u be the weak solution of (4.0.2) corresponding to a
given source term h. Then, the input-output operator F : H1(0,T ;L2(0,1))→C([0,T ];L2(0,1))∩
L2(0,T ;H ) defined as F(h) := u is Lipschitz continuous.

Proof. First, take u0 ∈ D(A). Then, let the source term h be perturbed by a small amount δh such
that h+δh ∈U . Consider δu = uδ −u, where uδ is the weak solution of (4.0.2) with source term
hδ := h+ δh. Then δu ∈ C1

(
[0,T ];L2(0,1)

)
∩C

(
0,T ;D(A)

)
satisfies the following sensitivity

problem:
∂tδu−∂x

(
a∂xδu

)
− λ

b
δu = δh(t,x), (t,x) ∈ Q,

δu(0) = δu(1) = 0, t ∈ (0,T ),
δu(0,x) = 0, x ∈ (0,1).

(4.2.3)

Let v(t,x) be a smooth function. From equation (4.2.3) and by the Gauss Green identity [16,
Lemma 2.21], we have∫ 1

0
∂tδuvdx+

∫ 1

0

(
a∂xδuvx−

λ

b
δuv

)
dx =

∫ 1

0
δhvdx.

We take δu as a mutual test function for v to deduce

1
2

d
dt

∫ 1

0
(δu)2 dx+

∫ 1

0

(
a(∂xδu)2− λ

b
(δu)2

)
dx =

∫ 1

0
δhδudx.

Then, using Lemma 4.1.1, by the Cauchy-Schwarz inequality we obtain

1
2

d
dt
∥δu(t)∥2

L2(0,1)+Λ

∫ 1

0
a(∂xδu(t))2 dx≤ 1

2
∥δu(t)∥2

L2(0,1)+
1
2
∥δh(t)∥2

L2(0,1), (4.2.4)
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for every t ≤ T , from which

d
dt
∥δu(t)∥2

L2(0,1) ≤ ∥δu(t)∥2
L2(0,1)+∥δh(t)∥2

L2(0,1).

Applying Gronwall’s inequality, we obtain

∥δu(t)∥2
L2(0,1) ≤ eT

(
∥δu(0)∥2

L2(0,1)+∥δh∥2
L2(Q)

)
= eT∥δh∥2

L2(Q), (4.2.5)

for every t ≤ T . From (4.2.4) and (4.2.5), we immediately get∫ T

0
∥
√

aδux(t)∥2
L2(0,1)dt ≤CT∥δh∥2

L2(Q), (4.2.6)

for every t ≤ T and some universal constant CT > 0. Thus, by (4.2.5) and (4.2.6), we obtain

sup
t∈[0,T ]

∥δu(t)∥2
L2(0,1)+

∫ T

0
∥δu(t)∥2

H dt ≤CT∥δh∥2
L2(Q),

from which it follows that

∥δu∥2
C([0,T ];L2(0,1))+∥δu∥2

L2(0,T ;H ) ≤C∥δh∥2
H1(0,T ;L2(0,1)),

if u0 ∈ D(A). Since D(A) is dense in L2(0,1), the same inequality holds if u0 ∈ L2(0,1). This
completes the proof Lemma 3. ■

An immediate consequence of Lemma 3 is the following result

Proposition 4.2.2 Assume Hypothesis 5. Then, the functional J is continuous on U and there
exists a minimizer h⋆ ∈U of J(h), i.e.

J(h⋆) = min
h∈U

J(h).

Proposition 4.2.3 . Let u the weak solution of (4.0.2) with source term h. The input-output operator
F : H1(0,T ;L2(0,1))→C([0,T ];L2(0,1))∩L2(0,T ;H ), F(h) = u is G-derivable.

The most important issue in numerical solutions of inverse problems is the Lipschitz continuity
of the gradient, which ensures the convergence of the method of descent, for that we have the
follows result

Proposition 4.2.4 Let h and δh, such that h+δh ∈U , than ∇J is Lipschitz continuous

∥ ∇J(h+δh)−∇J(h) ∥L2(Q)⩽ L1 ∥ δh ∥H1(0,T ;L2(0,1)) (4.2.7)

with the Lipschitz constant L1 > 0.

Proof of Proposition 4.2.3. Let δh be a small variation such that h + δh ∈ U , we define the
function

F ′(h) : δh ∈U → δu, (4.2.8)

where δu is the solution of the variational problem∫
Ω

∂t(δu)vdx+
∫

Ω

(a(x)∂x(δu)∂xv− λ

b(x)
δuv)dx =

∫
Ω

δhvdx ∀v ∈ H1
0 (Ω)

δu(0, t) = δu(1, t) = 0 ∀t ∈]0,T [
δu(x,0) = 0 ∀x ∈Ω.

(4.2.9)
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We set

φ(h) = F(h+δh)−F(h)−F ′(h)δh. (4.2.10)

We want to show that

φ(h) = o(δh). (4.2.11)

We easily verify that the function φ is the solution of variational problem∫
Ω

∂tφvdx+
∫

Ω

(
a(x)∂xφ∂xv− λ

b(x)
φv

)
dx =

∫
Ω

(δh− (δh)2)vdx ∀v ∈ H1
0 (Ω)

φ(0, t) = φ(1, t) = 0 ∀t ∈]0,T [
φ(x,0) = 0 ∀x ∈Ω.

(4.2.12)

In the same way as that used in the proof of continuity, we deduce

∥φ∥2
C([0,T ];L2(0,1))+∥φ∥

2
L2(0,T ;H ) ≤C∥δh− (δh)2∥2

H1(0,T ;L2(0,1)),

Hence, the function F(h) = u is G-derivable and we deduce the existence of the gradient of the
functional J. ■

Before starting the demonstration of Proposition 4.2.4, we compute the gradient of J using the
adjoint state method.

We define the Gâteaux derivative of u at h in the direction f ∈ L2(Ω×]0,T [), by

û = lim
s→0

u(h+ s f )−u(h)
s

, (4.2.13)

u(h+ s f ) is the weak solution of (4.0.2) with source term h+ s f , and u(h) is the weak solution of
(4.0.2) with source term h.

We compute the Gâteaux (directional) derivative of (4.0.2) at h in some direction f ∈L2(Ω×]0,T [),
and we get the so-called tangent linear model:

∂t û−Aû = f

û(0, t) = û(1, t) = 0 ∀t ∈]0,T [
û(x,0) = 0 ∀x ∈Ω.

(4.2.14)

We introduce the adjoint variable P, and we integrate,∫ 1

0

∫ T

0
∂t ûPdt dx−

∫ 1

0

∫ T

0
AûPdx =

∫ 1

0

∫ T

0
f Pdt dx, (4.2.15)∫ 1

0

(
[ûP]T0 −

∫ T

0
û∂tPdt

)
dx−

∫ T

0
⟨Aû,P⟩L2(Ω)dt = ⟨ f ,P⟩L2(Ω×]0,T [), (4.2.16)∫ 1

0
[û(T )P(T )− û(0)P(0)]dx−

∫ T

0
⟨û,∂tP⟩L2(Ω)dt−

∫ T

0
⟨Aû,P⟩L2(Ω)dt

= ⟨ f ,P⟩L2(Ω×]0,T [).

(4.2.17)

Let us take P(x = 0) = P(x = 1) = 0, then we may write ⟨û,AP⟩L2(Ω) = ⟨Aû,P⟩L2(Ω). With
P(T ) = 0 we may now rewrite (4.2.17) as∫ T

0
⟨û,∂tP+AP⟩L2(Ω)dt =−⟨ f ,P⟩L2(Ω×]0,T [)
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this gives∫ T

0
⟨û,∂tP+AP⟩L2(Ω)dt =−⟨ f ,P⟩L2(Ω×]0,T [)

P(x = 0) = P(x = 1) = 0, P(T ) = 0.
(4.2.18)

The discretization in time of (4.2.18), using the Rectangular integration method, gives

M+1

∑
j=0
⟨û(t j),∂tP(t j)+AP(t j)⟩L2(Ω)∆t = ⟨−P, f ⟩L2(Ω×]0,T [)

P(x = 0) = P(x = 1) = 0, P(T ) = 0.

(4.2.19)

With

t j = j∆t, j ∈ {0,1,2, . . . ,M+1},

where ∆t is the step in time and T = (M+1)∆t.
The Gâteaux derivative of J at h in the direction f ∈ L2(Ω) is given by

Ĵ( f ) = lim
s→0

J(h+ s f )− J(h)
s

.

After some computations, we arrive at

Ĵ( f ) = ⟨u(T ), û(T )⟩L2(Ω)+ ⟨εh, f ⟩L2(Ω×]0,T [). (4.2.20)

The adjoint model is

∂tP(T )+AP(T ) =
1
∆t

u(T ), ∂tP(t j)+AP(t j) = 0 ∀t j ̸= T

P(x = 0) = P(x = 1) = 0 ∀t j ∈]0;T [

P(T ) = 0.

(4.2.21)

From equations (4.2.19), (4.2.20) and (4.2.21), the gradient of J is given by

∂J
∂h

=−P+ εh. (4.2.22)

Problem (4.2.21) is retrograde, we make the change of variable t←→ T − t.

Proof of Proposition 4.2.4. We have ∇J(h) =−P1+εh with P1 is the solution of the adjoint model(
with change of variable t j←→ T − t j)

{
∂tP1(0)−AP1(0) =

1
∆t

u1(T )

∂tP1(t j)−AP1(t j) = 0 ∀t j ̸= 0
P1(x, t) = 0 ∀x ∈ ∂Ω, ∀t ∈]0;T [
P1(x,0) = 0.

where u1 is the weak solution of (4.0.2) with source term h, and ∇J(h+δh) =−P2(T )+ε(h+δh)
with P2 is the solution of the adjoint model ( with change of variable t j←→ T − t j)

{
∂tP2(0)−AP2(0) =

1
∆t

u2(T )

∂tP2(t j)−AP2(t j) = 0 ∀t j ̸= 0
P2(x, t) = 0 ∀x ∈ ∂Ω, ∀t ∈]0;T [
P2(x,0) = 0.
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where u2 is the weak solution of (4.0.2) with source term h+δh.
Let δP = P1−P2, we easily verify that δP is the solution of the variational problem
Hence, δP is weak solution of (4.0.2) with h = (u2(T )u1(T ))10. We apply the estimate in

proposition 4.1.2, we obtain and there exists a positive constant C such that

sup
t∈[0,T ]

∥δP(t)∥2
L2(0,1)+

∫ T

0
∥δP(t)∥2

H dt ≤C∥(u2(T )−u1(T ))10∥2
L2(Q), (4.2.23)

then

∥ δP ∥2
L2(0,T ;H )⩽C

(
∥ (u2(T )−u1(T ))10 ∥2

L2(Q)

)
, (4.2.24)

and

∥ δP ∥2
C([0,T ];L2(0,1))⩽C

(
∥ (u2(T )−u1(T ))10 ∥2

L2(Q)

)
, (4.2.25)

the constant C depending only on Ω and T.
we showed above the Lipschitz continuity of the input-output operator

F : H1(0,T ;L2(0,1))−→C([0,T ];L2(0,1))∩L2(0,T ;H )
h 7−→ u

(4.2.26)

from where

∥ (u2(T )−u1(T ))10 ∥2
L2(Q)⩽C ∥ δh ∥2

H1(0,T ;L2(0,1)) (4.2.27)

therefore

∥ δP ∥2
L2(0,T ;H )⩽C ∥ δh ∥2

H1(0,T ;L2(0,1)), (4.2.28)

and

∥ δP ∥2
C([0,T ];L2(0,1))⩽C ∥ δh ∥2

H1(0,T ;L2(0,1)), (4.2.29)

We have

∥ ∇J(u0 +δu0)−∇J(u0) ∥L2(Q)=∥ δP+ εδh ∥L2(Q)

⩽∥ δP ∥L2(Q) + ∥ εδh ∥L2(Q) .
(4.2.30)

therefore

∥ ∇J(h+δh)−∇J(h) ∥L2(Q)⩽ (
√

C+ ε) ∥ δh ∥H1(0,T ;L2(0,1)) . (4.2.31)

This completes the proof of the theorem. ■
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4.2.3 Algorithm and simulations

In this subsection, a numerical algorithm on the basis of the conjugate gradient method is designed
to treat the inverse problem and some numerical experiments are also performed.

The main steps for descent method at each iteration are:

• Calculate uk solution of (4.0.2) with source term hk

• Calculate Pk solution of the adjoint problem
• Calculate the descent direction dk =−∇J(hk)
• Find tk = argmin

t>0
J(hk + tdk)

• Update the variable hk+1 = hk + tkdk.

The algorithm ends when
∣∣∇J(h)

∣∣< µ , where µ is a given small precision.
The value tk is chosen by the inaccurate linear search by the Armijo-Goldstein Rule as follows:
Let αi,β ∈ [0,1[ and α > 0
if J(hk +αidk)≤ J(hk)+βαidT

k dk, tk = αi and stop.
if not, αi = ααi.

Now, we are going to reconstruct the solution of problem 4.0.2 in all three cases : the purely
singular case α = 0, purely degenerate case λ = 0, and degenerate-singular case.

For the simulations, in all the tests below we take x0 = 0.5, u0(x) =
x(x−1)

T
, step in space

N = 100 and step in time M = 100.
In the figures below, u0 is drawn red and the rebuilt function u in blue.

1. The purely singular case α = 0, with β < 2 and λ < 0 (example β =
1
2

and λ =−1

Figure 01. Temperature at t = t1 (left), at t = t15 (in the midst). Final temperature showing
that u(T )≃ 0 (right).

2. The purely degenerate case λ = 0, with 0 < α < 2 (example α =
1
2

Figure 02. Temperature at t = t1 (left), at t = t15 (in the midst). Final temperature showing
that u(T )≃ 0 (right).

3. The degenerate and singular case
Double weakly degenerate case (WWD) in this case we have α,β ∈ (0,1), for our tests we
take for example α = 1

2 , β = 1
2 , λ =−1.

40 Chapter 4. Null controllability



Ptolemy Scientific Research Press https://pisrt.org/

Figure 03. Temperature at t = t1 (left), at t = t15 (in the midst). Final temperature showing
that u(T )≃ 0 (right).
Weakly strongly degenerate case (WSD) in this case we have α ∈ (0,1), β ∈ [1,2), for our
tests we take for example α = 1

4 , β = 4
3 , λ =−1.

Figure 04. Temperature at t = t1 (left), at t = t15 (in the midst). Final temperature showing
that u(T )≃ 0 (right).
For case α +β = 2 example α = 1

2 , β = 3
2 , λ =−1.

Figure 05. Temperature at t = t1 (left), at t = t15 (in the midst). Final temperature showing
that u(T )≃ 0 (right).
Strongly weakly degenerate case (SWD) in this case we have α ∈ [1,2), β ∈ (0,1), for our
tests we take for example α = 4

3 , β = 1
2 , λ =−1.

Figure 06. Temperature at t = t1 (left), at t = t15 (in the midst). Final temperature showing
that u(T )≃ 0 (right).
Double strongly degenerate case (SSD) in this case we have α,β ∈ [1,2), for our tests we
take for example α = 5

4 , β = 5
4 , λ =−1.

4.2 The null controllability 41



Ptolemy Scientific Research Press https://pisrt.org/

Figure 07. Temperature at t = t1 (left), at t = t15 (in the midst). Final temperature showing
that u(T )≃ 0 (right).

In all case (purely singular case α = 0, purely degenerate case λ = 0), (Fig. 01- Fig 02) show
that our problem 4.0.2 is null controllable, witch valid the results obtained by [Alabau, 9, 12, 13,
21, 27].

In degenerate and singular case, (Fig. 03- Fig 07) show that we can rebuild the source term h to
obtain u(T, .) = 0. This valid numerically the results of [14].
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This  work  summarizes  the  different  mathematical  methods  allowing  the  approx-
imate  zero  control  of  the  linear  heat  equation.  In  the  frist  chapter  we  give 
a  general  introduction  to  the  control  theory.  In  the  2nd  chapter  we  group 
together  the  main  properties  and  functional  spaces  that  we  will  use.  For  the 
third  chapter  we  study  the  problem  of  internal  controllability  of  the  heat  
equation.  The  control  is  supposed  to  act  on  a  subset  of  the  domain  where 
the  solutions  are  defined.  To  study  the  practical  part  we  end  with  the  fourth 
chapter  which  consists  in  studying  the  null  controllability  for  a  degenerate 
singular  unidimensional  problem.
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