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COMPLETE MONOTONICITY PROPERTIES OF A

FUNCTION INVOLVING THE POLYGAMMA FUNCTION

KWARA NANTOMAH1

Abstract. In this paper, we study completete monotonicity properties of
certain functions associated with the polygamma functions. Subsequently,

we deduce some inequalities involving difference of polygamma functions.

Index Terms: Polygamma function; complete monotonicity; inequality.

1. Introduction

The classical Gamma function, which is an extension of the factorial notation
to noninteger values is usually defined as

Γ(x) =

∫ ∞
0

tx−1e−t dt, x > 0,

and satisfying the basic property

Γ(x+ 1) = xΓ(x), x > 0.

Its logarithmic derivative, which is called the Psi or digamma function is defined
as (see [1] and [2])

ψ(x) =
d

dx
ln Γ(x) = −γ +

∫ ∞
0

e−t − e−xt

1− e−t
dt, x > 0, (1)

= −γ − 1

x
+

∞∑
k=1

x

k(k + x)
, x > 0,
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where γ = limn→∞
(∑n

k=1
1
k − lnn

)
= 0.577215664... is the Euler-Mascheroni’s

constant. Derivatives of the Psi function, which are called polygamma functions
are given as [1]

ψ(n)(x) = (−1)n+1

∫ ∞
0

tne−xt

1− e−t
dt, x > 0, (2)

= (−1)n+1n!

∞∑
k=0

1

(k + x)n+1
, x > 0,

satisfying the functional equation [1]

ψ(n)(x+ 1) = ψ(n)(x) +
(−1)nn!

xn+1
, x > 0, (3)

where n ∈ N0 and ψ(0)(x) ≡ ψ(x). Here, and for the rest of this paper, we use
the notations: N = {1, 2, 3, 4, . . . }, N0 = N ∪ {0} and R = (−∞,∞). Also, it is
well known in the literature that the integral

n!

xn+1
=

∫ ∞
0

tne−xt dt, (4)

holds for x > 0 and n ∈ N0. See for instance [1]. In [3], Qiu and Vuorinen
established among other things that the function

h1 = ψ

(
x+

1

2

)
− ψ (x)− 1

2x
, (5)

is strictly decreasing and convex on (0,∞). Motivated by this result, Mortici [4]
proved a more generalized and deeper result which states that, the function

fa = ψ(x+ a)− ψ(x)− a

x
, a ∈ (0, 1), (6)

is strictly completely monotonic on (0,∞). Recall that a function f : (0,∞)→ R
is said to be completely monotonic on (0,∞) if f has derivatives of all order and
(−1)nf (n)(x) ≥ 0 for all x ∈ (0,∞) and n ∈ N0.
In this paper, the objective is to extend Mortici’s results to the polygamma
functions.

2. Some Lemmas

In order to establish our main results, we need the following lemmas.

Lemma 2.1. Let a function qα,β(t) be defined as

qα,β(t) =

{
e−αt−e−βt

1−e−t , t 6= 0,

β − α, t = 0,
(7)

where α, β are real numbers such that α 6= β and (α, β) /∈ {(0, 1), (1, 0)}. Then
qα,β(t) is increasing on (0,∞) if and only if (β − α)(1 − α − β) ≥ 0 and (β −
α)(|α− β| − α− β) ≥ 0.

Proof. See [5], [6] or [7]. �
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Lemma 2.2. Let a ∈ (0, 1). Then the inequality

a <
1− e−at

1− e−t
< 1, (8)

holds for t ∈ (0,∞).

Proof. Note that the function h(t) = 1−e−at
1−e−t which is obtained from Lemma 2.1

by letting α = 0 and β = a ∈ (0, 1) is increasing on (0,∞). Also,

lim
t→0+

h(t) = a and lim
t→∞

h(t) = 1.

Then for t ∈ (0,∞), we have

a = lim
t→0+

h(t) = h(0) < h(t) < h(∞) = lim
t→∞

h(t) = 1,

which gives inequality (8). �

3. Main Results

We now present our results in this section.

Theorem 3.1. Let fa,k(x) and ha,r(x) be defined for a ∈ (0, 1), k ∈ {2s : s ∈
N0}, r ∈ {2s+ 1 : s ∈ N0} and x ∈ (0,∞) as

fa,k(x) = ψ(k)(x+ a)− ψ(k)(x)− ak!

xk+1
, (9)

and

ha,r(x) = ψ(r)(x+ a)− ψ(r)(x)− ar!

xr+1
. (10)

Then fa,k(x) and −ha,r(x) are strictly completely monotonic on (0,∞).

Proof. By repeated differentiations with respect to x, and by using (2) and (4),
we obtain

f
(n)
a,k (x) = ψ(k+n)(x+ a)− ψ(k+n)(x)− (−1)na(k + n)!

xk+n+1

= (−1)k+n+1

∫ ∞
0

tk+ne−(x+a)t

1− e−t
dt− (−1)k+n+1

∫ ∞
0

tk+ne−xt

1− e−t
dt

− (−1)na

∫ ∞
0

tk+ne−xt dt.

This implies that

(−1)nf
(n)
a,k (x) = −

∫ ∞
0

tk+ne−xte−at

1− e−t
dt+

∫ ∞
0

tk+ne−xt

1− e−t
dt− a

∫ ∞
0

tk+ne−xt dt

=

∫ ∞
0

[
1− e−at

1− e−t
− a
]
tk+ne−xt dt

> 0,
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which is as a result of Lemma 2.2. Alternatively, we could proceed as follows.

(−1)nf
(n)
a,k (x) =

∫ ∞
0

[
1− e−at

1− e−t
− a
]
tk+ne−xt dt

= a

∫ ∞
0

[
1− e−at

at
− 1− e−t

t

]
tk+n+1e−xt

1− e−t
dt

> 0.

Notice that, since the function 1−e−t
t is strictly decreasing on (0,∞), then for a ∈

(0, 1), we have 1−e−at
at > 1−e−t

t . Hence fa,k(x) is strictly completely monotonic
on (0,∞). Similarly, we have

−h(n)a,r (x) =
(−1)na(r + n)!

xr+n+1
+ ψ(r+n)(x)− ψ(r+n)(x+ a)

= (−1)na

∫ ∞
0

tr+ne−xt dt+ (−1)r+n+1

∫ ∞
0

tr+ne−xt

1− e−t
dt

− (−1)r+n+1

∫ ∞
0

tr+ne−(x+a)t

1− e−t
dt,

which implies that

(−1)n (−ha,r)(n) (x) = a

∫ ∞
0

tr+ne−xt dt+

∫ ∞
0

tr+ne−xt

1− e−t
dt−

∫ ∞
0

tr+ne−xte−at

1− e−t
dt

=

∫ ∞
0

[
a+

1− e−at

1− e−t

]
tr+ne−xt dt

> 0.

Hence −ha,r(x) is strictly completely monotonic on (0,∞). �

Remark 3.2. Since every completely monotonic function is convex and decreas-
ing, it follows that fa,k(x) is strictly convex and strictly decreasing on (0,∞).
In this way, ha,r(x) is strictly concave and strictly increasing on (0,∞).

Corollary 3.3. The inequality

ak!

xk+1
< ψ(k)(x+a)−ψ(k)(x) < ψ(k)(a)−ψ(k)(1)+k!

(
a

xk+1
+

1

ak+1
− a
)
, (11)

holds for a ∈ (0, 1), k ∈ {2s : s ∈ N0} and x ∈ (1,∞).

Proof. Since fa,k(x) is decreasing, then for x ∈ (1,∞) and by applying (3), we
obtain

0 = lim
x→∞

fa,k(x) < fa,k(x) < fa,k(1) = ψ(k)(a+ 1)− ψ(k)(1)− ak!

= ψ(k)(a)− ψ(k)(1) +
k!

ak+1
− ak!,

which completes the proof. �
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Remark 3.4. In particular, if a = 1
2 and k = 0 in Corollary 3.3, then we obtain

1

2x
< ψ

(
x+

1

2

)
− ψ(x) <

1

2x
+

3

2
− 2 ln 2, x ∈ (1,∞). (12)

Also, if a = 1
2 and k = 2 in Corollary 3.3, then we obtain

1

x3
< ψ′′

(
x+

1

2

)
− ψ′′(x) <

1

x3
+ 15− 12ζ(3), x ∈ (1,∞), (13)

where ζ(x) is the Riemann zeta function.

Corollary 3.5. The inequality

ψ(r)(a)−ψ(r)(1)+r!

(
a

xr+1
− 1

ar+1
− a
)
< ψ(r)(x+a)−ψ(r)(x) <

ar!

xr+1
, (14)

holds for a ∈ (0, 1), r ∈ {2s+ 1 : s ∈ N0} and x ∈ (1,∞).

Proof. Likewise, since ha,r(x) is increasing, then for x ∈ (1,∞), we obtain

ψ(r)(a)− ψ(r)(1)− r!

ar+1
− ar! = ha,r(1) < ha,r(x) < lim

x→∞
ha,r(x) = 0,

which yields (14). �

Remark 3.6. If a = 1
2 and r = 1 in Corollary 3.5, then we obtain

1

2x2
+
π2

3
− 9

2
< ψ′

(
x+

1

2

)
− ψ′(x) <

1

2x2
, x ∈ (1,∞). (15)

Furthermore, if a = 1
2 and r = 3 in Corollary 3.5, then we obtain

3

x4
+

14π4

15
− 99 < ψ′′′

(
x+

1

2

)
− ψ′′′(x) <

3

x4
, x ∈ (1,∞). (16)

Remark 3.7. If k = 0 in Theorem 3.1, then we obtain the main results of [4]
as a special case of the present results.

Remark 3.8. This paper is a modified version of the preprint [8].
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