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DIRECTED PATHOS TOTAL DIGRAPH OF AN

ARBORESCENCE

M. C. MAHESH KUMAR, H. M. NAGESH1

Abstract. For an arborescence Ar, a directed pathos total digraph Q =
DPT (Ar) has vertex set V (Q) = V (Ar) ∪ A(Ar) ∪ P (Ar), where V (Ar)
is the vertex set, A(Ar) is the arc set, and P (Ar) is a directed pathos
set of Ar . The arc set A(Q) consists of the following arcs: ab such that
a, b ∈ A(Ar) and the head of a coincides with the tail of b; uv such that
u, v ∈ V (Ar) and u is adjacent to v; au (ua) such that a ∈ A(Ar) and
u ∈ V (Ar) and the head (tail) of a is u; Pa such that a ∈ A(Ar) and
P ∈ P (Ar) and the arc a lies on the directed path P ; PiPj such that
Pi, Pj ∈ P (Ar) and it is possible to reach the head of Pj from the tail of Pi

through a common vertex, but it is possible to reach the head of Pi from
the tail of Pj . For this class of digraphs we discuss the planarity; outerpla-
narity; maximal outerplanarity; minimally nonouterplanarity; and crossing
number one properties of these digraphs. The problem of reconstructing
an arborescence from its directed pathos total digraph is also presented.

Index Terms: Line digraph; directed path number; crossing number; inner
vertex number.

1. Introduction

Notations and definitions not introduced here can be found in [1]. There are
many graph valued functions (or graph operators) with which one can construct
a new graph from a given graph, such as the line graphs, the total graphs, and
their generalizations. The line graph of a graph G, written L(G), is the graph
whose vertices are the edges of G, with two vertices of L(G) adjacent whenever
the corresponding edges ofG have a common vertex. This concept was originated
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with Whitney [2]. Harary and Norman [3] extended the concept of line graph
of a graph and introduced the concept of line digraph of a directed graph. The
line digraph L(D) of a digraph D has the arcs of D as vertices. There is an arc
from D-arc pq towards D-arc uv if and only if q = u.
Behzad [4] introduced the concept of total graph of a graph. The total graph of
a graph G, written T (G), is the graph whose vertices can be put in one-to-one
correspondence with the vertices and edges of G in such a way that two vertices
of T (G) are adjacent if and only if the corresponding elements of G are adjacent,
where the vertices and edges of G are called its members. Gary Chatrand and
James Stewart [5] extended the concept of total graph of a graph to the directed
case there by introducing the total digraph.
The total digraph of a directed graph D, written T (D), is the digraph whose
vertices are in one-to-one correspondence with the vertices and arcs of D and
such that the vertex u is adjacent to the vertex v in T (D) if and only if the
element corresponding to u is adjacent to the element corresponding to v in D.
The concept of pathos of a graph G was introduced by Harary [6] as a collection
of minimum number of edge disjoint open paths whose union is G. The path
number of a graph G is the number of paths in any pathos. The path number of
a tree T equals k, where 2k is the number of odd degree vertices of T . Stanton
and Cowan [7] calculated the path number of certain classes of graphs like trees
and complete graphs. Gudagudi [8] extended the concept of pathos of graphs
to trees there by introducing the concept called pathos line graph of a tree. A
pathos line graph of a tree T , written PL(T ), is a graph whose vertices are the
edges and paths of a pathos of T , with two vertices of PL(T ) adjacent whenever
the corresponding edges of T are adjacent or the edge lies on the corresponding
path of the pathos.
Since the pattern of pathos for a tree is not unique, the corresponding pathos
line graph is also not unique. See Figure 1 for an example of a tree and its
pathos line graph.
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Figure 1.

It is the object of this paper to extend the concept of pathos of a tree to the
directed case by introducing the concept called directed pathos total digraph of
an arborescence and to develop some of its properties.

2. Preliminaries

We need some concepts and notations on graphs and directed graphs. A graph

G = (V,E) is a pair, consisting of some set V , the so-called vertex set, and some
subset E of the set of all 2-element subsets of V , the edge set. If a path starts
at one vertex and ends at a different vertex, then it is called an open path.
A graph G is planar if it has a drawing without crossings. For a planar graph G,
the inner vertex number i(G) is the minimum number of vertices not belonging
to the boundary of the exterior region in any embedding of G in the plane. If
a planar graph G is embeddable in the plane so that all the vertices are on the
boundary of the exterior region, then G is said to be outerplanar, i.e., i(G) = 0.
An outerplanar graph G is maximal outerplanar if no edge can be added without
losing outerplanarity. A graph G is said to be minimally nonouterplanar if
i(G)=1. The least number of edge crossings of a graph G, among all planar
embeddings of G, is called the crossing number of G and is denoted by cr(G).
A directed graph (or just digraph) D consists of a finite non-empty set V (D) of
elements called vertices and a finite set A(D) of ordered pairs of distinct vertices
called arcs. Here V (D) is the vertex set and A(D) is the arc set of D. For an
arc (u, v) or uv in D, the first vertex u is its tail and the second vertex v is its
head. The head and tail of an arc are its end-vertices. For an arc e = (u, v),
we say that u is a neighbor of v; and u is adjacent to e and e is adjacent to
v. A vertex u is adjacent to v if the arc uv is in D; u is adjacent from v if vu
is in D. A digraph without any arcs is said to be totally disconnected. For a
digraph D = (V,A), the out-neighbourhood N+(v) of a vertex v is the set of all
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vertices w with vw ∈ A. The in-neighbourhood N−(v) of a vertex v is the set of
all vertices w with wv ∈ A.
The out-degree d+(v) or in-degree d−(v) of a vertex v is the cardinality of the
out-neighbourhood or in-neighbourhood of v, respectively. The total degree td(v)
of a vertex v is the number of arcs incident with v, that is, td(v) = d−(v)+d+(v).
A source is any vertex of in-degree zero and a sink is a vertex of out-degree zero.
A vertex is isolated if both out-degree and in-degree are zero.
A semi-directed path joining v1 and vn is a collection of distinct vertices v1, v2, ...
, vn together with n− 1 vertices, one from each pair of arcs, v1v2 or v2v1; v2v3
or v3v2, . . . , vn−1vn or vnvn−1. A semi-directed cycle is obtained from a semi
directed path on adding an arc joining the terminal vertex and the initial vertex
of the semi-directed path.
A digraph is strongly connected (or just strong) if every two vertices are mutu-
ally reachable. A digraph is unilaterally connected or unilateral if for any two
vertices, at least one is reachable from the other; it is strictly unilateral if it is
unilateral but not strong.
A digraph is weakly connected or weak if every two vertices are joined by a
semi-directed path; it is strictly weak if it is weak but not unilateral. A block

B of a digraph D is a maximal weak subgraph of D, which has no cut-vertex v
such that B − v is disconnected. An entire digraph is a block if it has only one
block. There are exactly three categories of blocks: strong, strictly unilateral,
and strictly weak.
Digraphs that can be drawn without crossings between arcs (except at end ver-
tices) are called planar digraphs. Clearly this property does not depend on the
orientation of the arcs and hence we ignore the orientation while defining the
planarity; outerplanarity; maximal outerplanarity; and minimally nonouterpla-
narity of a digraph. Furthermore, since most of the results and definitions of
undirected graphs are valid for planar digraphs as far as their underlying graphs
are concerned, the following definitions hold good for planar digraphs. A di-
graph D is said to be outerplanar if i(D) = 0 and minimally nonouterplanar if
i(D) = 1.
The following result characterizes maximal outerplanar graphs, and the same
can be used to check the maximal outerplanar property of a digraph.

Theorem 2.1. [9] Every maximal outerplanar graph G with n vertices has 2n−3
edges.

3. Definition of DPT (Ar)

Definition 3.1. An arborescence is a directed graph in which, for a vertex u
called the root and any other vertex v, there is exactly one directed path from
u to v.

We shall use Ar to denote an arborescence.
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Definition 3.2. A root arc of an arborescence Ar is an arc which is directed
out of the root of Ar, i.e., a root arc of Ar an arc whose tail is the root of Ar.

Definition 3.3. If a directed path ~Pn of order n (n ≥ 2) starts at one vertex

and ends at a different vertex, then ~Pn is called an open directed path.

Definition 3.4. The directed pathos of an arborescence Ar is defined as a col-
lection of minimum number of arc disjoint open directed paths whose union is
Ar.

Definition 3.5. The directed path number k
′

of an arborescence Ar is the num-
ber of directed paths in any directed pathos of Ar, and is equal to the number
of sinks in Ar, i.e., k

′

= number of sinks in Ar.

Note that the directed path number k
′

of an arborescence Ar is minimum only
when the out-degree of the root of Ar is exactly one. Therefore, unless otherwise
specified, the out-degree of the root of every arborescence is exactly one. Finally,
we assume that the direction of the directed pathos is along the direction of the
arcs in Ar.

Definition 3.6. For an arborescence Ar, a directed pathos total digraph Q =
DPT (Ar) has vertex set V (Q) = V (Ar) ∪ A(Ar) ∪ P (Ar), where V (Ar) is the
vertex set, A(Ar) is the arc set, and P (Ar) is a directed pathos set of Ar. The
arc set A(Q) consists of the following arcs: ab such that a, b ∈ A(Ar) and the
head of a coincides with the tail of b; uv such that u, v ∈ V (Ar) and u is adjacent
to v; au (ua) such that a ∈ A(Ar) and u ∈ V (Ar) and the head (tail) of a is u;
Pa such that a ∈ A(Ar) and P ∈ P (Ar) and the arc a lies on the directed path
P ; PiPj such that Pi, Pj ∈ P (Ar) and it is possible to reach the head of Pj from
the tail of Pi through a common vertex, but it is possible to reach the head of
Pi from the tail of Pj .

Since the pattern of directed pathos for an arborescence is not unique, the corre-
sponding directed pathos total digraph is also not unique. But it is cleared from
the definition of the directed path number k

′

and DPT (Ar) that, for a directed

path ~Pn of order n (n ≥ 2), the corresponding directed pathos total digraph
is unique. Furthermore, one can observe easily that, for different pattern of di-
rected pathos of an arborescence whose underlying graph is a star graphK1,n on
n ≥ 3 vertices, the corresponding directed pathos total digraphs are isomorphic.
A digraph A

′

r is a directed pathos total digraph if there exists an arborescence

Ar such that A
′

r = DPT (Ar). See Figure 2 for an example of an arborescence
and its directed pathos total digraph.
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Figure 2.

4. A criterion for directed pathos total digraphs

The main objective is to determine a necessary and sufficient condition that a
digraph be a directed pathos total digraph.
A complete bipartite digraph is a directed graph D whose vertices can be par-
titioned into non-empty disjoint sets A and B such that each vertex of A has
exactly one arc directed towards each vertex of B and such that D contains no
other arc.
Let Ar be an arborescence with vertex set V (Ar) = {v1, v2, . . . , vn} and a di-
rected pathos set P (Ar) = {P1, P2, . . . , Pt}. We consider the following cases.
Case 1. Let v be a vertex of Ar with d−(v) = α and d+(v) = β. Then α arcs
coming into v and the β arcs going out of v give rise to a complete bipartite sub-
digraph with α tails and β heads and α ·β arcs joining each tail with each head.
This is the decomposition of L(Ar) (i.e., the line digraph of Ar) into mutually
arc disjoint complete bipartite subdigraphs.
Case 2. An arc e = (u, v) with d+(u) = d−(v) = 1 give rise to a complete
bipartite subdigraph with u as the tail and v head. This contributes n− 1 arcs
to DPT (Ar).
Case 3. An arc e = (u, v) with d+(u) = d−(v) = 1 give rise to a complete
bipartite subdigraph with u as the tail and e head. This contributes n− 1 arcs
to DPT (Ar).
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Case 4. An arc e = (u, v) with d+(u) = d−(v) = 1 give rise to a complete
bipartite subdigraph with e as the tail and v head. This also contributes n− 1
arcs to DPT (Ar).

Case 5. Let Pj be a directed path which lies on α
′

arcs in Ar. Then α
′

arcs give

rise to a complete bipartite subdigraph with a single tail Pj and α
′

heads and α
′

arcs joining Pj with each head. This again contributes n− 1 arcs to DPT (Ar).

Case 6. Let Pj be a directed path and let β
′

be the number of directed paths
whose head is reachable from the tail of Pj through a common vertex in Ar.

Then β
′

arcs give rise to a complete bipartite subdigraph with a single tail Pj

and β
′

heads and β
′

arcs joining Pj with each head. This contributes k
′

− 1 arcs
to DPT (Ar).
Hence by all the cases above, Q = DPT (Ar) is decomposed into mutually arc-
disjoint complete bipartite subdigraphs with V (Q) = V (Ar) ∪ A(Ar) ∪ P (Ar)
and arc sets, (i) ∪n

i=1Xi×Yi, where Xi and Yi are the sets of in-coming and out-
going arcs at vi of Ar, respectively; (ii) four times the size of Ar, i.e., 4(n− 1);

and (iii) k
′

− 1.

Conversely, let A
′

r be a digraph of the type described above. Let t1, t2, . . . , tl
be the vertices corresponding to complete bipartite subdigraphs T1, T2, . . . , Tl
of Case 1, respectively; and let w1, w2, . . . , wt be the vertices corresponding to
complete bipartite subdigraphs P

′

1, P
′

2, . . . , P
′

t of Case 5, respectively. Finally,
let t0 be a vertex chosen arbitrarily.
For each vertex v of the complete bipartite subdigraphs T1, T2, . . . , Tl, we draw
an arc av as follows:

• If d+(v) = 1, d−(v) = 0, then av := (t0, ti), where i is the base (or index)
of Ti such that v ∈ Yi.

• If d+(v) > 0, d−(v) > 0, then av := (ti, tj), where i and j are the indices
of Ti and Tj such that v ∈ Xj ∩ Yi.

• If d+(v) = 0, d−(v) = 1, then av := (tj , w
n) for 1 ≤ n ≤ t, where j is

the base of Tj such that v ∈ Xj .

Note that, in (tj , w
n) no matter what the value of j is, n varies from 1 to t such

that the number of arcs of the form (tj , w
n) is exactly t.

We now mark the directed pathos as follows. It is easy to observe that the
directed path number k

′

equals the number of subdigraphs of Case 5. Let
ψ1, ψ2, . . . , ψt be the number of heads of subdigraphs P

′

1, P
′

2, . . . , P
′

t , respectively.
Suppose we mark the directed path P1. For this we choose any ψ1 number of arcs
and mark P1 on ψ1 arcs. Similarly, we choose ψ2 number of arcs and mark P2 on
ψ2 arcs. This process is repeated until all the directed paths of a directed pathos
are marked. The digraph Ar with directed pathos thus constructed apparently
has A

′

r as directed pathos total digraph. Thus we have,

Theorem 4.1. A digraph A
′

r is a directed pathos total digraph of an arborescence

Ar if and only if V (A
′

r) = V (Ar) ∪ A(Ar) ∪ P (Ar) and arc sets, (i) ∪n
i=1Xi ×
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Yi, where Xi and Yi are the sets of in-coming and out-going arcs at vi of Ar,
respectively; (ii) four times the size of Ar, i.e., 4(n− 1); and (iii) k

′

− 1.

Given a directed pathos total digraph Q, the proof of the sufficiency of Theorem
above shows how to find an arborescence Ar such that DPT (Ar) = Q. This
obviously raises the question of whether Q determines Ar uniquely. Although
the answer to this in general is no, the extent to which Ar is determined is given
as follows.
One can check easily that using reconstruction procedure of the sufficiency of
Theorem above, any arborescence (without directed pathos) is uniquely recon-
structed from its directed pathos total digraph. Since the pattern of directed
pathos for an arborescence is not unique, there is freedom in marking directed
pathos for an arborescence in different ways. This clearly shows that if the di-
rected path number is one, any arborescence with directed pathos is uniquely
reconstructed from its directed pathos total digraph. It is known that a directed
path is a special case of an arborescence. Since the directed path number k

′

of a

directed path ~Pn of order n (n ≥ 2) is exactly one, a directed path with directed
pathos is uniquely reconstructed from its directed pathos total digraph.

5. Properties of DPT (Ar)

In this section we present some of the properties of DPT (Ar).

Property 5.1. For an arborescence Ar, L(Ar) ⊆ T (Ar) ⊆ DPT (Ar), where ⊆
is the subdigraph notation.

Property 5.2. If the in-degree (out-degree) of a vertex v in Ar is n, then the
in-degree (out-degree) of the corresponding vertex v in DPT (Ar) is 2n.

Property 5.3. The in-degree of the vertex v in DPT (Ar) corresponding to the
root arc of Ar is two.

Property 5.4. The in-degree of the vertex v in DPT (Ar) corresponding to a
pendant arc of Ar is two.

Property 5.5. A directed pathos total digraph DPT (Ar) of an arborescence
Ar does not contain any vertex v such that DPT (Ar) is disconnected. Hence
DPT (Ar) is a block.

Property 5.6. Every pair of vertices and arcs of DPT (Ar) lie on a semi-
directed cycle.

Property 5.7. For any three distinct vertices u, v, and w, there is a semi-
directed path joining u and w which contains v.

Property 5.8. For any three distinct vertices u, v, and w, there is a semi-
directed path joining u and w which does not contains v.

Property 5.9. Every DPT (Ar) is either strictly unilateral or strictly weak.
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In order to prove the next property, we need the following Theorem and defini-
tions.

Theorem 5.10. [10] Let D be an acyclic digraph with precisely one source x in
D. Then for every v ∈ V (D), there is an (x, v)−directed path in D.

Definition 5.11. A transmitter is a vertex v whose out-degree is positive and
whose in-degree is zero, i.e., d+(v) > 0 and d−(v) = 0.

Definition 5.12. A carrier is a vertex v whose out-degree and in-degree are
both one, i.e., d+(v) = d−(v) = 1.

Definition 5.13. A receiver is a vertex v whose out-degree is zero and whose
in-degree is positive, i.e., d+(v) = 0 and d−(v) > 0.

Definition 5.14. A vertex v is said to be ordinary if d+(v) > 0 and d−(v) > 0.

Definition 5.15. A directed pathos vertex is a vertex corresponding to the
directed path of a directed pathos of Ar.

Proposition 5.16. Let Ar be an arborescence of order n (n ≥ 2) with v1 and
e1 = (v1, v2) as the root and root arc of Ar, respectively. Then there exists exactly
one vertex v with d+(v) > 0 and d−(v) = 0 (i.e., transmitter), and for every
vertex w ∈ DPT (Ar) (except for the vertex v1), there is an (v, w)− directed path
in DPT (Ar).

Proof. Let Ar be an arborescence with vertex set V (Ar) = {v1, v1, . . . , vn} and
arc set A(Ar) = {e1, e2, . . . , en−1} such that v1 and e1 = (v1, v2) are the root
and root arc of Ar, respectively. Then the vertices e2, e3, . . . , en−1 are reachable
from e1 by a unique directed path in L(Ar). Let P (Ar) = {P1, P2, . . . , Pk

′ } be a
directed pathos set of Ar such that P1 lies on the arc e1. Since the direction of the
directed pathos is along the direction of the arcs in Ar, d

+(v1) = 2, d−(v1) = 0;
d+(P1) > 0, d−(P1) = 0; and the remaining vertices are either receiver or carrier
or ordinary, in DPT (Ar). Clearly, DPT (Ar) is acyclic. By Theorem 5.10, for
every (except v1) vertex w ∈ DPT (Ar), there is an (P1, w)− directed path in
DPT (Ar). This completes the proof. �

When defining any class of digraphs, it is desirable to know the order and size
of each; it is easy to determine for DPT (Ar).

Proposition 5.17. Let Ar be an arborescence with n vertices v1, v2, . . . , vn and

k
′

sinks. Then the order and size of DPT (Ar) are 2n+k
′

−1 and 4n+

n∑

i=1

d−(vi)·

d+(vi) + k
′

− 5, respectively.

Proof. IfAr has n vertices and k
′

sinks, then it follows immediately thatDPT (Ar)

contains n + n − 1 + k
′

= 2n + k
′

− 1 vertices. Furthermore, every arc of
DPT (Ar) corresponds to an arc in Ar (there are n − 1 arcs); adjacent arcs



38 M. C. Mahesh Kumar, H. M. Nagesh

in Ar (this is given by

n∑

i=1

d−(vi) · d
+(vi)); an arc adjacent to a vertex in

Ar (there are n − 1 of these); a vertex adjacent to an arc in Ar (there are
n − 1 of these); the arcs lie on the directed paths of a directed pathos of
Ar (there are also n − 1 of these); and the arcs whose end-vertices are the

directed pathos vertices (this is given by k
′

− 1). Therefore, DPT (Ar) has

(n− 1)+

n∑

i=1

d−(vi) · d
+(vi)+ 3(n− 1)+ k

′

− 1 = 4n+

n∑

i=1

d−(vi) · d
+(vi)+ k

′

− 5

arcs. �

6. Characterization of DPT (Ar)

6.1. Planar directed pathos total digraphs. We now characterize the di-
graphs whose DPT (Ar) is planar.

Theorem 6.1. A directed pathos total digraph DPT (Ar) of an arborescence Ar

is planar if and only if the underlying graph of Ar is a star graph K1,n on n ≤ 3
vertices.

Proof. Suppose DPT (Ar) is planar. Assume that the underlying graph of
Ar is a star graph K1,n on n ≥ 4 vertices. Suppose that Ar = K1,4. Let
V (Ar) = {v1, v2, v3, v4, v5} be the vertex set and A(Ar) = {e1, e2, e3, e4} be the
arc set of Ar such that v1 and e1 = (v1, v2) are the root and root arc of Ar,
respectively; and ei = (v2, vi+1) for 2 ≤ i ≤ 4. Then (e1, ei+1) for 1 ≤ i ≤ 3;
(v1, v2); (v2, vi+1) for 2 ≤ i ≤ 4; (ei, vi+1) for 1 ≤ i ≤ 4; (v1, e1); and (v2, ei) for
2 ≤ i ≤ 4 are the arcs of T (Ar). Let P (Ar) = {P1, P2, P3} be a directed pathos
set of Ar such that P1 lies on the arcs (v1, v2), (v2, v3); P2 lies on (v2, v4); and P3

lies on (v2, v5). Then the directed pathos vertex P1 is a neighbor of the vertices
v1v2, v2v3, P2, P3; P2 is a neighbor of v2v4; and P3 is a neighbor of v2v5. This
shows that the crossing number of DPT (Ar) is one, i.e., cr(DPT (Ar)) = 1, a
contradiction (see Figure 3).
Conversely, suppose that the underlying graph of Ar is a star graph K1,n on
n ≤ 3 vertices. We consider the following three cases.

Case 1. Suppose that the underlying graph of Ar is K1,1, i.e., ~P2. Then the
underlying graph of DPT (Ar) is K1,3+e, i.e., the kite graph. Clearly DPT (Ar)
is planar.

Case 2. Suppose that the underlying graph of Ar is K1,2, i.e., ~P3. Let

V ( ~P3) = {v1, v2, v3} and the arcs of ~P3 be ei = (vi, vi+1) for 1 ≤ i ≤ 2. Then
(e1, e2); (vi, vi+1) for 1 ≤ i ≤ 2; (ei, vi+1) for 1 ≤ i ≤ 2; and (vi, ei) for 1 ≤ i ≤ 2

are the arcs of T (Ar). The directed path number of ~P3 is one, say P . Then the
directed pathos vertex P is a neighbor of the vertices e1 and e2. This shows that
the crossing number of DPT (Ar) is zero, i.e., cr(DPT (Ar)) = 0 (see Figure 4).
Hence DPT (Ar) is planar.
Case 3. Suppose that the underlying graph of Ar is K1,3. Let V (Ar) =
{v1, v2, v3, v4} and A(Ar) = {e1, e2, e3} such that v1 and e1 = (v1, v2) are the
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root and root arc of Ar, respectively, and ei = (v2, vi+1) for 2 ≤ i ≤ 3. Then
(e1, e2); (e1, e3); (v1, v2); (v2, vi+1) for 2 ≤ i ≤ 3; (ei, vi+1) for 1 ≤ i ≤ 3; (v2, e2);
and (v2, e3) are the arcs of T (Ar). Let P (Ar) = {P1, P2} be a directed pathos
set of Ar such that P1 lies on the arcs (v1, v2), (v2, v3) and P2 lies on (v2, v4).
Then the directed pathos vertex P1 is a neighbor of the vertices v1v2, v2v3, P2

and P2 is a neighbor of v2v4. This shows that the crossing number of DPT (Ar)
is zero (see Figure 3). Thus DPT (Ar) is planar. This completes the proof. �

Figure 3.

Figure 4.

We now establish a characterization of digraphs whose DPT (Ar) are outerpla-
nar; maximal outerplanar; and minimally nonouterplanar.

Theorem 6.2. A directed pathos total digraph DPT (Ar) of an arborescence Ar

is outerplanar if and only if Ar is either ~P2 or ~P3.

Proof. Suppose that DPT (Ar) is outerplanar. Assume that Ar = ~P4. Let

V ( ~P4) = {v1, v2, v3, v4} and the arcs of ~P4 be ei = (vi, vi+1) for 1 ≤ i ≤ 3.
Then (e1, e2); (e2, e3); (vi, vi+1) for 1 ≤ i ≤ 3; (ei, vi+1) for 1 ≤ i ≤ 3; and

(vi, ei) for 1 ≤ i ≤ 3 are the arcs of T (Ar). The directed path number of ~P4

is one, say P . Then the directed pathos vertex P is a neighbor of the vertices
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e1, e2, and e3. This shows that the inner vertex number of DPT (Ar) is one, i.e.,
i(DPT (Ar)) = 1 (see Figure 5), a contradiction.

Conversely, suppose that Ar is either ~P2 or ~P3. If Ar is ~P2, then the underlying
graph of DPT (Ar) is K1,3 + e. Clearly i(DPT (Ar)) = 0. Thus DPT (Ar)

is outerplanar. On the other hand, if Ar is ~P3, then Case 2 of sufficiency of
Theorem 6.1 implies that the crossing number of DPT (Ar) is zero. This also
shows that the inner vertex number of DPT (Ar) is zero, i.e., i(DPT (Ar)) = 0
(see Figure 4). Hence DPT (Ar) is outerplanar. This completes the proof. �

Figure 5.

Theorem 6.3. A directed pathos total digraph DPT (Ar) of an arborescence Ar

is maximal outerplanar if and only if Ar is ~P3.

Proof. Suppose that DPT (Ar) is maximal outerplanar. We consider the follow-
ing cases.
Case 1. Assume that the total degree of each vertex of Ar is at least four, i.e.,
td(v) ≥ 4, for every vertex v ∈ Ar. By Theorem 6.1, DPT (Ar) is nonplanar, a
contradiction.
Case 2. If there exists a vertex of total degree three in Ar. By Theorem 6.2,
DPT (Ar) is nonouterplanar, a contradiction.

Case 3. If Ar = ~P2, then the underlying graph of DPT (Ar) is K1,3+e. Clearly
i(DPT (Ar)) = 0. Thus DPT (Ar) is outerplanar. Furthermore, since the ad-
dition of an arc does not alter the outerplanarity of DPT (Ar), it follows that
DPT (Ar) is not maximal outerplanar, a contradiction.

Case 4. If Ar = ~Pn+3 (n ≥ 1), then the inner vertex number of the cor-
responding DPT (Ar) equals n. Clearly, DPT (Ar) is nonouterplanar, again a
contradiction.
Conversely, suppose that Ar = ~P3. By Proposition 5.12, the order and size of
DPT (Ar) are n = 6 and m = 9, respectively. But m = 9 = 2n − 3. Since
the size of DPT (Ar) is nine, Theorem 2.1 implies that DPT (Ar) is maximal
outerplanar. This completes the proof. �

Theorem 6.4. A directed pathos total digraph DPT (Ar) of an arborescence Ar

is minimally nonouterplanar if and only if Ar is ~P4.
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Proof. Suppose that DPT (Ar) is minimally nonouterplanar. Assume that Ar =
~P5. By Case 4 of necessity of Theorem 6.3, i(DPT (Ar)) = 2 (see Figure.2), a
contradiction.
Conversely, suppose that Ar = ~P4. By Case 4 of necessity of Theorem 6.3,
i(DPT (Ar)) = 1 (see Figure 5). Hence DPT (Ar) is minimally nonouterplanar.
This completes the proof. �

Theorem 6.5. A directed pathos total digraph DPT (Ar) of an arborescence Ar

has crossing number one if and only if the underlying graph of Ar is K1,4.

Proof. Suppose DPT (Ar) has crossing number one. Assume that the underlying
graph of Ar is K1,n (n ≥ 5). Suppose Ar = K1,5. Let V (Ar) = {v1, v2, v3, v4, v5,
v6} and A(Ar) = {e1, e2, e3, e4, e5} such that v1 and e1 = (v1, v2) are the root
and root arc of Ar, respectively; and ei = (v2, vi+1) for 2 ≤ i ≤ 5. Then (e1, ei)
for 2 ≤ i ≤ 5; (v1, v2); (v2, vi) for 3 ≤ i ≤ 6; (ei, vi+1) for 1 ≤ i ≤ 5; (v1, e1); and
(v2, ei) for 2 ≤ i ≤ 5 are the arcs of T (Ar). Let P (Ar) = {P1, P2, P3, P4} be a
directed pathos set of Ar such that P1 lies on the arcs (v1, v2), (v2, v3); P2 lies
on (v2, v4); P3 lies on (v2, v5); and P4 lies on (v2, v6). Then the directed pathos
vertex P1 is a neighbor of the vertices v1v2, v2v3, P2, P3, P4; P2 is a neighbor of
v2v4; P3 is a neighbor of v2v5; and P4 is a neighbor of v2v6. This shows that
the crossing number of DPT (Ar) is more than one, i.e., cr(DPT (Ar)) > 1 (see
Figure 6), a contradiction.
Conversely, suppose that the underlying graph of Ar is K1,4. By necessity of
Theorem 6.1, the crossing number of DPT (Ar) is one. This completes the
proof. �

Figure 6.
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