BOUNDEDNESS OF LITTLEWOOD–PALEY OPERATORS WITH VARIABLE KERNEL ON WEIGHTED HERZ SPACES WITH VARIABLE EXPONENT

AFIF ABDALMONEM 1, OMER ABDALRHMAN, SHUANGPING TAO

Abstract. Let $\Omega \in L^\infty(\mathbb{R}^n) \times L^2(S^{n-1})$ be a homogeneous function of degree zero. In this article, we obtain some boundedness of the parameterized Littlewood–Paley operators with variable kernels on weighted Herz spaces with variable exponent.

Index Terms: Parameterized Littlewood-Paley operators; variable kernel; weighted Herz spaces; Muckenhoupt; variable exponents.

1. Introduction

The boundedness of Littlewood-Paley operators on function spaces are one of the very important tools, not only in harmonic analysis, but also in potential theory and in partial differential equations (see [1, 2, 3, 4, 5, 6], for details).

In 2004, Ding, Lin and Shao [7] investigated the L^2-boundedness for a class of Marcinkiewicz integral operators with variable kernels μ_Ω and μ_Ω,s, related to the Littlewood-Paley function $\mu_{\Omega,\lambda}^*$ and the area integral g_{λ}^*. In 2006, the authors [8] proved the L^p-boundedness of the Littlewood-Paley operators with variable kernels. In 2009, Xue and Ding [9] established the weighted estimate for Littlewood-Paley operators and their commutators.

In 1960, Hörmander [10] introduced the parameterized Littlewood-Paley operators for the first time. Now, let us recall the definitions of the parameterized Lusin area integral and Littlewood-Paley g_{λ}^* function.

Let $S^{n-1}(n \geq 2)$ be the unit sphere in \mathbb{R}^n with normalized Lebesgue measure $d\sigma(x')$. Take $\Omega(x, z) \in L^\infty(\mathbb{R}^n) \times L^r(S^{n-1})(r \geq 1)$ to be a homogeneous function

Received 20-11-2018. Revised 16-12-2018.

1 Corresponding Author

© 2018 Afif Abdalmonem, Omer Abdalrhman, Shuangping Tao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Parameterized Littlewood-Paley operators with variable kernels

of degree zero and

\[
\int_{\mathbb{R}^{n-1}} \Omega(x, z') d\sigma(z') = 0, \quad \text{for all } x \in \mathbb{R}^n,
\]

(1)

where \(\Omega \) satisfies the following conditions:

1. For any \(x, z \in \mathbb{R}^n \) and any \(\lambda > 0 \), we have \(\Omega(x, \lambda z) = \Omega(x, z) \);
2. \(\|\Omega\|_{L^\infty(\mathbb{R}^n) \times L^r(S^{n-1})} := \sup_{r \geq 0, y \in \mathbb{R}^n} \left(\int_{\mathbb{R}^{n-1}} |\Omega(rz' + y, z')|^r d\sigma(z') \right)^{\frac{1}{r}} < \infty \).

The parameterized Littlewood-Paley operators \(\mu_{\Omega, s}^\rho \) and \(\mu_{\Omega, \lambda}^{\ast, \rho} \) with variable kernels, which are related to the Lusin area integral and the Littlewood-Paley \(g^\ast \lambda \) function are defined by

\[
\mu_{\Omega, s}^\rho(f)(x) = \left(\int \int_{\Gamma(x)} \left| \frac{1}{t^\rho} \int_{|y-z| \leq t} \frac{\Omega(y, y-z)}{|y-z|^{n-\rho}} f(z) dz \right|^2 \frac{dy dt}{t^{n+1}} \right)^{\frac{1}{2}}
\]

and

\[
\mu_{\Omega, \lambda}^{\ast, \rho}(f)(x) = \left(\int_{\mathbb{R}^{n+1}} \left(\frac{t}{t + |x-y|} \right)^{\lambda n} \left| \frac{1}{t^\rho} \int_{|y-z| \leq t} \frac{\Omega(y, y-z)}{|y-z|^{n-\rho}} f(z) dz \right|^2 \frac{dy dt}{t^{n+1}} \right)^{\frac{1}{2}},
\]

where \(\Gamma(x) = \{(y, t) \in \mathbb{R}^{n+1} : |x - y| < t \text{ and } \lambda > 1\} \).

In 2013, Wei and Tao [11] investigated the boundedness of parameterized Littlewood-Paley operators on weighted weak Hardy spaces. Lin and Xuan [12] established the boundedness for commutators of parameterized Littlewood-Paley operators and area integrals on weighted Lebesgue spaces \(L^p(w) \).

The theory of the variable exponent function spaces has been rapidly developed after the work [13], where Kováčik and Rákosník have clarified fundamental properties of Lebesgue spaces with variable exponent. After that, many researchers have been interested in the theory of the variable exponent spaces (see [14, 15, 16, 17, 18, 19, 20]).

The generalization of the Muckenhoupt weights with variable exponent \(A_{p(\cdot)} \) has been considered in [21, 22, 23, 24]. The equivalence between the Muckenhoupt condition and the boundedness of the Hardy-Littlewood maximal operator on weighted Lebesgue spaces with variable exponent were discussed in [21, 22]. After that, Cruz-Uribe and Wang [25] proved the boundedness of some classical operators on weighted Lebesgue spaces with variable exponent \(L^{p(\cdot)}(w) \).

Recently, Izuki and Noi [26] introduced the weighted Herz spaces with variable exponent, and also studied the boundedness of fractional integrals on those spaces.

In this paper, we establish the boundedness of parameterized Littlewood-Paley operators with variable kernels on weighted Herz spaces with variable exponent.
Definition 1.1. Let \(p(\cdot) : E \to [1, \infty) \) be a measurable function. The variable exponent Lebesgue space is defined as

\[
L^{p(\cdot)}(E) = \left\{ f \text{ measurable} : \int_E \left(\frac{|f(x)|}{\eta} \right)^{p(x)} \, dx < \infty \text{ for some constant } \eta > 0 \right\}.
\]

The space \(L^{p(\cdot)}_{\text{loc}}(E) \) is defined as

\[
L^{p(\cdot)}_{\text{loc}}(E) = \left\{ f \text{ measurable} : f \in L^{p(\cdot)}(K) \text{ for all compact } K \subset E \right\}.
\]

The Lebesgue spaces \(L^{p(\cdot)}(E) \) is a Banach spaces with the norm defined as

\[
\|f\|_{L^{p(\cdot)}(E)} = \inf \left\{ \eta > 0 : \int_E \left(\frac{|f(x)|}{\eta} \right)^{p(x)} \, dx \leq 1 \right\}.
\]

We denote \(p_- = \text{ess inf}\{p(x) : x \in E\} \), \(p_+ = \text{ess sup}\{p(x) : x \in E\} \), then \(P(E) \) consists of all \(p(\cdot) \) satisfying \(p_- > 1 \) and \(p_+ < \infty \).

Definition 1.2. [27] Let \(p(\cdot) : \mathbb{R}^n \to [1, \infty) \). A measurable function \(p(\cdot) \) is said to be globally log-Hölder continuous if it satisfies

1. \(|p(x) - p(y)| \leq \frac{1}{\log(1/|x-y|)}, \ x, y \in \mathbb{R}^n, |x-y| \leq 1/2; \)
2. \(|p(x) - p_{\infty}| \leq \frac{1}{\log(e+|x|)}, \ x \in \mathbb{R}^n, \)

for some \(p_{\infty} \geq 1 \). The set of \(p(\cdot) \) satisfying conditions (1) and (2) is denoted by \(LH(\mathbb{R}^n) \).

We know that, if \(p(\cdot) \in LH(\mathbb{R}^n) \cap P(\mathbb{R}^n) \), the Hardy-Littlewood maximal operator \(M \) is bounded on \(L^{p(\cdot)}(\mathbb{R}^n) \) (see[28]).

Definition 1.3. [29] Suppose that \(p(\cdot) \in P(\mathbb{R}^n) \) and \(w \) is a weight function. The weighted Lebesgue spaces with variable exponent \(L^{p(\cdot)}(w) \) is the set of all complex-valued measurable function \(f \) such that \(f^{1/p(\cdot)} \in L^{p(\cdot)}(\mathbb{R}^n) \). The space \(L^{p(\cdot)}(w) \) is a Banach space equipped with the norm

\[
\|f\|_{L^{p(\cdot)}(w)} = \|f^{1/p(\cdot)}\|_{L^{p(\cdot)}}.
\]

\(p'(\cdot) \) is the conjugate of \(p(\cdot) \) such that \(\frac{1}{p(\cdot)} + \frac{1}{p'(\cdot)} = 1 \). Next, we introduce the classical Muckenhoupt \(A_p \) weight.

Definition 1.4. [30] Let \(1 < p < \infty \), then \(w \in A_p \) for every cube \(Q \),

\[
\left(\frac{1}{|Q|} \int_Q w(x) \, dx \right) \left(\frac{1}{|Q|} \int_Q w(x)^{1-p'} \, dx \right)^{p-1} \leq C < \infty.
\]

We say that \(w \in A_1 \) if it satisfies \(Mw(x) \leq w(x) \) for all \(x \in \mathbb{R}^n \). The set \(A_1 \) consists of all Muckenhoupt \(A_1 \) weights.
Definition 1.5. [21, 25] Given \(p(\cdot) \in \mathcal{P}(\mathbb{R}^n) \) and a weight \(w \), then \(w \in A_{p(\cdot)} \) if

\[
\sup_{B:\text{ball}} |B|^{-1} \|w^{1/p(\cdot)} \chi_B\|_{L^{p(\cdot)}(w)} \|w^{-1/p(\cdot)} \chi_B\|_{L^{p'(\cdot)}(w)} < \infty.
\]

Definition 1.6. [25] Given \(p_1(\cdot), p_2(\cdot) \in \mathcal{P}(\mathbb{R}^n) \) and \(1/p_1(x) - 1/p_2(x) = \mu/n \) such that \(0 < \mu < n \). Then \(w \in A_{p_1(\cdot),p_2(\cdot)} \) if

\[
\|w \chi_B\|_{L^{p_2(\cdot)}(w)} \|w^{-1} \chi_B\|_{L^{p_1'(\cdot)}(w)} \leq |B|^n\frac{n+\mu}{n}
\]

holds for all balls \(B \in \mathbb{R}^n \).

Definition 1.7. [25] Let \(p(\cdot) \in \mathcal{P}(\mathbb{R}^n) \) and \(w \) be a weight. We say that \((p(\cdot),w) \) is an \(M \)-pair if the maximal operator \(M \) is bounded on \(L^{p(\cdot)}(w) \) and \(L^{p'(\cdot)}(w^{-1}) \).

Now, we need to give the definition of weighted Herz space with variable exponent. For all \(k \in \mathbb{Z} \), we denote \(B_k = \{ x \in \mathbb{R}^n : |x| \leq 2^k \} \), \(C_k = B_k \setminus B_{k-1} \), \(\chi_k = \chi_{C_k} \).

Definition 1.8. [26] Suppose that \(p(\cdot) \in \mathcal{P}(\mathbb{R}^n) \), \(0 < q < \infty \), \(\alpha \in \mathbb{R} \). The homogeneous weighted Herz space with variable exponent \(\dot{K}^\alpha_{p(\cdot)}(w) \) is the collection of \(f \in L^{p(\cdot)}_{loc}(\mathbb{R}^n \setminus \{0\},w) \) such that

\[
\|f\|_{\dot{K}^\alpha_{p(\cdot)}(w)} := \left(\sum_{k=-\infty}^{\infty} 2^{\alpha q k} \|f \chi_k\|_{L^{p(\cdot)}(w)}^q \right)^{1/q} < \infty.
\]

It is easy to see that if \(w = 1 \), then \(\dot{K}^\alpha_{p(\cdot)}(w) = \dot{K}^\alpha_{p(\cdot)}(\mathbb{R}^n) \) is the Herz space with variable exponent [17]. If \(w = 1 \) and \(p(\cdot) = p \), then \(K^\alpha_{p(\cdot)}(w) = K^\alpha_{p(\cdot)}(\mathbb{R}^n) \) is the classical Herz space introduced in [31]. If \(p(\cdot) = p \), then \(\dot{K}^\alpha_{p(\cdot)}(w) = \dot{K}^\alpha_{p(\cdot)}(w) \) is the weighted Herz space [32].

Definition 1.9. We say a kernel function \(\Omega(x,z) \) satisfies the \(L^r \)-Dini condition \((r \geq 1) \), if

\[
\int_0^1 \frac{\omega_r(\delta)}{\delta} (1 + |\log \delta|^r) d\delta < \infty,
\]

where \(\omega_r(\delta) \) denotes the integral modulus of continuity of order \(r \) of \(\Omega \) defined by

\[
\omega_r(\delta) = \sup_{x \in \mathbb{R}^n, |\rho| < \delta} \left(\int_{S_1} \left| \Omega(x,\rho z') - \Omega(x,z') \right|^r d\sigma(z') \right)^{1/r},
\]

where \(\rho \) is the rotation in \(\mathbb{R}^n \), \(\|\rho\| = \sup_{z' \in S^{n-1}} \|\rho z' - z'\| \).
2. Preliminaries and notations

In order to prove our main theorems, we need the following Lemmas.

Lemma 2.1. [3] Suppose that $X \subset M$ is a Banach function space.

1. (The generalized Hölder inequality) For all $f \in X$ and $g \in X'$, we have
 \[
 \int_{\mathbb{R}^n} |f(x)g(x)| \, dx \leq \|f\|_X \|g\|_X.
 \]

2. For all $f \in X$, we have
 \[
 \sup \left\{ \left| \int_{\mathbb{R}^n} f(x)g(x) \, dx \right| : \|g\|_{X'} \leq 1 \right\} = \|f\|_X.
 \]

In particular, space $(X')' = X$.

As an application of the generalized Hölder inequality above, we have the following Lemma.

Lemma 2.2. Let X be a Banach function space, we have

\[
1 \leq \frac{1}{|B|} \|\chi_B\|_X \|\chi_B\|_{X'}
\]

hold for all balls B.

Lemma 2.3. [24] Let X be a Banach function space. If the Hardy-Littlewood maximal operator M is weakly bounded on X, that is

\[
\|\chi_{\{Mf > \lambda\}}\|_X \leq \lambda^{-1} \|f\|_X,
\]

holds for all $f \in X$ and $\lambda > 0$, then we get

\[
\sup_{B: \text{Ball}} \frac{1}{|B|} \|\chi_B\|_X \|\chi_B\|_{X'} < \infty.
\]

Remark 2.1. [29] The weighted Banach function space $X(\mathbb{R}^n, W)$ is a Banach function space equipped the norm $\|f\|_{X(\mathbb{R}^n, W)} := \|fW\|_X$. The associated space of $X(\mathbb{R}^n, W)$ is a Banach function space and equals $X'(\mathbb{R}^n, W^{-1})$.

Remark 2.2. If $p_1(\cdot) \in \mathcal{P}(\mathbb{R}^n)$, by comparing the definition of the weighted Banach function space with weighted variable Lebesgue space, we have

1. If $X = L^{p_1(\cdot)}(\mathbb{R}^n)$ and $W = w$, then we obtain
 \[
 L^{p_1(\cdot)}(\mathbb{R}^n, w) = L^{p_1(\cdot)}(w^{p_1(\cdot)}).
 \]

2. If $X = L^{p_1(\cdot)}(\mathbb{R}^n)$ and $W = w^{-1}$. Using Lemma 2.3, we obtain
 \[
 L^{p_1(\cdot)}(\mathbb{R}^n, w^{-1}) = L^{p_1(\cdot)}(w^{-p_1(\cdot)}) = (L^{p_1(\cdot)}(w^{p_1(\cdot)}))'.
 \]
Lemma 2.4. [33] Suppose that X is a Banach space. Let M be bounded on the associated space X'. Then there exists a constant $0 < \delta < 1$ such that

$$\frac{\|\chi_E\|_X}{\|\chi_B\|_X} \leq \left(\frac{|E|}{|B|}\right)^\delta$$

holds for all balls B and all measurable sets $E \subset B$.

Lemma 2.5. [26] Suppose that $p_1(\cdot) \in LH(\mathbb{R}^n) \cap \mathcal{P}(\mathbb{R}^n)$ and $w^{p_1(\cdot)} \in A_1$. Let M be a bounded on $L^{p_1(\cdot)}(w^{p_1(\cdot)})$ and $L^{p'_1(\cdot)}(w^{-p'_1(\cdot)})$, then there exist constants $\delta_1, \delta_2 \in (0, 1)$ such that

$$\frac{\|\chi_S\|_{L^{p_1(\cdot)}(w^{p_1(\cdot)})}}{\|\chi_B\|_{L^{p_1(\cdot)}(w^{p_1(\cdot)})}} \leq C \left(\frac{|S|}{|B|}\right)^{\delta_1}, \quad \frac{\|\chi_S\|_{(L^{p_1(\cdot)}(w^{p_1(\cdot)}))'}}{\|\chi_B\|_{(L^{p_1(\cdot)}(w^{p_1(\cdot)}))'}} \leq C \left(\frac{|S|}{|B|}\right)^{\delta_2},$$

hold for all balls B and all measurable sets $S \subset B$.

Lemma 2.6. [34] Suppose that $\Omega \in L^\infty(\mathbb{R}^n) \times L^2(S^n-1)$ satisfies equation (1) and definition (1.9), $\lambda > 2, 2p - n > 0, 1 < p < \infty$. Then for all $f \in L^p(w)$ there exists $C > 0$ independent of f such that

$$\|\mu_{\Omega, \lambda}^\mu f\|_{L^n(w)} \leq C \|f\|_{L^n(w)}$$

and

$$\|\mu_{\Omega, \lambda}^\mu f\|_{L^n(w)} \leq C \|f\|_{L^n(w)}.$$

Lemma 2.7. [25] Assume that for $p_0, 1 < p_0 < \infty$ and every $w_0 \in A_{p_0},$

$$\int_{\mathbb{R}^n} f(x)p_0w_0(x)dx \leq \int_{\mathbb{R}^n} g(x)p_0w_0(x)dx, \quad (f, g) \in \mathcal{F}.$$

Then for any M-pair $(p(\cdot), w),$

$$\|f\|_{L^{p(\cdot)}(w)} \leq C\|g\|_{L^{p(\cdot)}(w)}, \quad (f, g) \in \mathcal{F},$$

Lemma 2.7 holds for $p_0 = 1$ and the maximal operator is bounded on $L^{p(\cdot)}(w^{-1})$. We know the Hardy-Littlewood maximal operator is bounded on $L^{p(\cdot)}(w)$ and $L^{p'(\cdot)}(w^{-p'(\cdot)})$ (see [33]).

Combining Lemma 2.6 with Lemma 2.7, we obtain the following conclusion.

Corollary 2.8. Let $p(\cdot) \in LH(\mathbb{R}^n) \cap \mathcal{P}(\mathbb{R}^n), \Omega \in L^\infty(\mathbb{R}^n) \times L^{r}(S^n-1)(r \geq 1)$ and $w \in A_{p(\cdot)}$. Then the parameterized Littlewood-Paley operators $\mu_{\Omega, \lambda}^\mu$ and $\mu_{\Omega, \lambda}^\nu$ with variable kernels are bounded on $L^{p(\cdot)}(w)$.

3. Main Theorems and their proofs

In this section, we will prove the boundedness of the parameterized Littlewood-Paley operators with variable kernels on variable weighted Herz spaces.
First, we consider $L \theta$.

Theorem 3.2. Let $P(\cdot) \in LH(\mathbb{R}^\alpha) \cap \mathcal{P}(\mathbb{R}^\alpha)$, $0 < q_1 \leq q_2 < \infty$, $\lambda > 2$, $a + b - n > 0$ and $\Omega \in L^\infty(\mathbb{R}^\alpha) \times L^2(S^{n-1})$ satisfies (1.1) and (1.2). If $w(P(\cdot)) \in A_1$ and $\lambda \delta_1 < \alpha < n \delta_2$, where δ_1, δ_2 are the constants in Lemma 2.5, then the operator $\mu_{\Omega,s}$ is bounded from $K_{\Omega,s}^{(\alpha,q_2)}(w(P(\cdot)))$ to $K_{\Omega,s}^{(\alpha,q_1)}(w(P(\cdot)))$.

Theorem 3.2. Let $P(\cdot) \in LH(\mathbb{R}^\alpha) \cap \mathcal{P}(\mathbb{R}^\alpha)$, $0 < q_1 \leq q_2 < \infty$, $\lambda > 2$, $a + b - n > 0$ and $\Omega \in L^\infty(\mathbb{R}^\alpha) \times L^2(S^{n-1})$ satisfies (1.1) and (1.2). If $w(P(\cdot)) \in A_1$ and $\lambda \delta_1 < \alpha < n \delta_2$, where δ_1, δ_2 are the constants in Lemma 2.5, then the operator $\mu_{\Omega,s}$ is bounded from $K_{\Omega,s}^{(\alpha,q_2)}(w(P(\cdot)))$ to $K_{\Omega,s}^{(\alpha,q_1)}(w(P(\cdot)))$.

Remark 3.1. As it is well known that, $\mu_{\Omega,s}^\lambda f(x) \leq 2^\lambda \mu_{\Omega,s}^\lambda f(x)$ (see [6], p.89). Therefore, we give only the proof of Theorem 3.2.

Proof of Theorem 3.2

Let $f \in K_{\Omega,s}^{(\alpha,q_1)}(w(P(\cdot)))$. By the Jensen inequality, we have

$$
\left| \mu_{\Omega,s}^\lambda f \right|_{K_{\Omega,s}^{(\alpha,q_2)}(w(P(\cdot)))} \leq \sum_{k=-\infty}^{\infty} 2^{\alpha q_2 k} \left(\mu_{\Omega,s}^\lambda f \right)_{K_{\Omega,s}^{(\alpha,q_1)}(w(P(\cdot)))}^{q_2} \leq \sum_{k=-\infty}^{\infty} 2^{\alpha q_1 k} \left(\mu_{\Omega,s}^\lambda f \right)_{K_{\Omega,s}^{(\alpha,q_1)}(w(P(\cdot)))}^{q_1}
$$

Denote $f_j = f \chi_j$ for each $j \in \mathbb{Z}$, then $f = \sum_{j=-\infty}^{\infty} f_j$, so we have

$$
\left| \mu_{\Omega,s}^\lambda f \right|_{K_{\Omega,s}^{(\alpha,q_2)}(w(P(\cdot)))} \leq \sum_{k=-\infty}^{\infty} 2^{\alpha q_1 k} \left(\mu_{\Omega,s}^\lambda f \right)_{K_{\Omega,s}^{(\alpha,q_1)}(w(P(\cdot)))}^{q_1}
$$

First, we consider L_2. Using Lemma 2.1 and $-2 \leq k - j \leq 2$, it is easy to get

$$
L_2 = \sum_{k=-\infty}^{\infty} 2^{\alpha q_1 k} \left(\sum_{j=-\infty}^{k+2} \left(\mu_{\Omega,s}^\lambda f_j \right)_{K_{\Omega,s}^{(\alpha,q_1)}(w(P(\cdot)))} \right)^{q_1}
$$

$$
= \sum_{k=-\infty}^{\infty} \left(\sum_{j=k-2}^{k+2} 2^{\alpha (k-j)} \left(\mu_{\Omega,s}^\lambda f_j \right)_{K_{\Omega,s}^{(\alpha,q_1)}(w(P(\cdot)))} \right)^{q_1}
$$
Now we need to consider $\mu_{\Omega, \lambda}^s f_j$. Applying the Minkowski inequality, we conclude that

$$
|\mu_{\Omega, \lambda}^s f_j(x)| = \left(\int_0^\infty \int_{S^n} \left(\frac{t}{t + |x - y|}\right)^{\lambda n} \frac{1}{\Omega(y, y - z)} \left| \int_{|y - z|^{-1}}^t f_j(z) dz \right|^2 \frac{dydt}{t^{n+1}} \right)^{\frac{1}{2}}
$$

$$
\leq \int_{S^n} f_j(z) \left(\int_0^\infty \int_{|y - z|^{-1}}^t \left(\frac{t}{t + |x - y|}\right)^{\lambda n} \frac{1}{\Omega(y, y - z)} \left| \int_{|y - z|^{-1}}^t f_j(z) dz \right|^2 \frac{dydt}{t^{n+1}} \right)^{\frac{1}{2}} dz
$$

$$
\leq \int_{S^n} f_j(z) \left(\int_0^\infty \int_{|y - z|^{-1}}^t \left(\frac{t}{t + |x - y|}\right)^{\lambda n} \frac{1}{\Omega(y, y - z)} \left| \int_{|y - z|^{-1}}^t f_j(z) dz \right|^2 \frac{dydt}{t^{2p+n+1}} \right)^{\frac{1}{2}} dz
$$

$$
+ \int_{S^n} f_j(z) \left(\int_0^\infty \int_{|y - z|^{-1}}^t \left(\frac{t}{t + |x - y|}\right)^{\lambda n} \frac{1}{\Omega(y, y - z)} \left| \int_{|y - z|^{-1}}^t f_j(z) dz \right|^2 \frac{dydt}{t^{2p+n+1}} \right)^{\frac{1}{2}} dz.
$$

For $\Omega \in L^\infty(\mathbb{R}^n) \times L^2(S^{n-1})$ and $2\rho - n > 0$, the following inequality holds

$$
\int_{|y - z|^{-1} \leq t} \frac{\Omega(y, y - z)}{|y - z|^{2n-2\rho}} dy \leq \int_{\mathbb{R}^n} \int_0^t \frac{\Omega(sy' + z, y')}{s^{2(n-2\rho)}} s^{-n-1} ds d\sigma(y')
$$

$$
\leq \|\Omega\|_{L^\infty(\mathbb{R}^n) \times L^2(S^{n-1})}^2 t^{2\rho - n}.
$$

Since $|x - z| \leq |x - y| + |y - z| \leq |x - y| + t$. For $\lambda > 2$, taking $0 < \delta < (\lambda - 2)n$, we have

$$
\int_0^{|x - z|} \int_0^{|y - z|^{-1}} \left(\frac{t}{t + |x - y|}\right)^{\lambda n} \frac{1}{|y - z|^{2n-2\rho}} \frac{dydt}{t^{2p+n+1}} \leq \int_0^{|x - z|} \int_0^{|y - z|^{-1}} \left(\frac{t}{t + |x - y|}\right)^{\lambda n-2n-\delta} \frac{dydt}{|y - z|^{2n+\delta}} \leq \frac{1}{|x - z|^{2n+\delta}} \int_0^{|x - z|} \frac{dydt}{t^{2p-n-\delta+1}} \leq \frac{\|\Omega\|_{L^\infty(\mathbb{R}^n) \times L^2(S^{n-1})}^2}{|x - z|^{2n+\delta}} \int_0^{|x - z|} t^{\delta-1} dt \leq C|x - z|^{-2n}.
$$

If we take $1 < \lambda_1 < 2$, then $\lambda_1 n - n > 0$ and $\lambda_1 n - 2n < 0$, so we have

$$
\int_{|x - z|}^\infty \int_{|y - z|^{-1}}^t \left(\frac{t}{t + |x - y|}\right)^{\lambda n} \frac{1}{|y - z|^{2n-2\rho}} \frac{dydt}{t^{2p+n+1}} \leq \int_{|x - z|}^\infty \int_{|y - z|^{-1}}^t |x - z|^{-\lambda_1 n} \frac{1}{|y - z|^{2n-2\rho}} \frac{dydt}{t^{2p-\lambda_1 n + n+1}}.
$$
Now we have two cases: $1 < q$ and $0 < q \leq 1$. Noting that for $x \in A_k$, $z \in A_j$ and $j \leq k - 2$, then $|x - z| \sim |x|$. By the virtue of the generalized Hölder inequality, we have

$$\mu_{1,\lambda}^p(f_j)(x) \leq C 2^{-kn} \| f_j \|_{L^{p_1}(w^{p_1}(\cdot))} \| \chi_j \|_{L^{p_1}(w^{p_1}(\cdot))}. $$

Applying Lemma 2.3 and Lemma 2.5, we take $\| . \|_{L^{p_1}(w^{p_1}(\cdot))}$ for each side, we have

$$\| \mu_{1,\lambda}^p(f_j)(x) \chi_k \|_{L^{p_1}(w^{p_1}(\cdot))} \leq C 2^{-kn} \| f_j \|_{L^{p_1}(w^{p_1}(\cdot))} \| \chi_j \|_{L^{p_1}(w^{p_1}(\cdot))} \| \chi_k \|_{L^{p_1}(w^{p_1}(\cdot))},$$

$$\leq C 2^{-kn} \| f_j \|_{L^{p_1}(w^{p_1}(\cdot))} \| \chi_j \|_{L^{p_1}(w^{p_1}(\cdot))} \| \chi_k \|_{L^{p_1}(w^{p_1}(\cdot))},$$

$$\leq C \| f_j \|_{L^{p_1}(w^{p_1}(\cdot))} \| \chi_k \|_{L^{p_1}(w^{p_1}(\cdot))} \| \chi_j \|_{L^{p_1}(w^{p_1}(\cdot))} \| \chi_k \|_{L^{p_1}(w^{p_1}(\cdot))},$$

$$\leq C \| f_j \|_{L^{p_1}(w^{p_1}(\cdot))} \| \chi_k \|_{L^{p_1}(w^{p_1}(\cdot))} \| \chi_j \|_{L^{p_1}(w^{p_1}(\cdot))} \| \chi_k \|_{L^{p_1}(w^{p_1}(\cdot))},$$

$$\leq 2^{(j-k)n2} \| f_j \|_{L^{p_1}(w^{p_1}(\cdot))}.$$

Thus, we have

$$L_1 \leq C \sum_{k=-\infty}^{\infty} 2^{\alpha q_1 k} \left(\sum_{j=-\infty}^{k-2} 2^{(j-k)n2} \| f_j \|_{L^{p_1}(w^{p_1}(\cdot))} \right)^{q_1},$$

$$\leq C \sum_{k=-\infty}^{\infty} \left(\sum_{j=-\infty}^{k-2} 2^{j \alpha n2} \| f_j \|_{L^{p_1}(w^{p_1}(\cdot))} \right)^{q_1}.$$

Now we have two cases: $1 < q_1 < \infty$ and $0 < q_1 \leq 1$. When $1 < q_1 < \infty$, by using the Hölder inequality, we have

$$L_1 \leq C \sum_{k=-\infty}^{\infty} \left(\sum_{j=-\infty}^{k-2} 2^{j \alpha n2} \| f_j \|_{L^{p_1}(w^{p_1}(\cdot))} \right)^{q_1}.$$
we have

Applying Lemma 2.3 and Lemma 2.5, we can take

\[
\|f_j\|_{L^p(\mathbb{R}^n)}^{q_1}
\]

Finally, we estimate \(L_3\). Noting that for \(x \in A_k, y \in A_j\) and \(j \geq k + 2\), then \(|y - x| \sim |y|\). By the virtue of the generalized Hölder inequality, we have

\[
m_{\frac{2-jm}{2-jm}j}(f_j(x)) \leq C 2^{-jm} \|f_j\|_{L^p(\mathbb{R}^n)}(\omega_{p_1}) \|\mathcal{X}_j\|_{L^p(\mathbb{R}^n)}(\omega_{p_1})^{jm}.
\]

Applying Lemma 2.3 and Lemma 2.5, we can take \(\|\mathcal{X}_{\omega_{p_1}}\|_{L^p(\mathbb{R}^n)}\) for each side, we have

\[
\|\mu_{\frac{2-jm}{2-jm}j}^{\omega_{p_1}}(f_j(x))\mathcal{X}_j\|_{L^p(\mathbb{R}^n)}(\omega_{p_1})
\]

Finally, we estimate \(L_3\). Noting that for \(x \in A_k, y \in A_j\) and \(j \geq k + 2\), then \(|y - x| \sim |y|\). By the virtue of the generalized Hölder inequality, we have

\[
m_{\frac{2-jm}{2-jm}j}(f_j(x)) \leq C 2^{-jm} \|f_j\|_{L^p(\mathbb{R}^n)}(\omega_{p_1}) \|\mathcal{X}_j\|_{L^p(\mathbb{R}^n)}(\omega_{p_1})^{jm}.
\]

Applying Lemma 2.3 and Lemma 2.5, we can take \(\|\mathcal{X}_{\omega_{p_1}}\|_{L^p(\mathbb{R}^n)}\) for each side, we have

\[
\|\mu_{\frac{2-jm}{2-jm}j}^{\omega_{p_1}}(f_j(x))\mathcal{X}_j\|_{L^p(\mathbb{R}^n)}(\omega_{p_1})
\]

Finally, we estimate \(L_3\). Noting that for \(x \in A_k, y \in A_j\) and \(j \geq k + 2\), then \(|y - x| \sim |y|\). By the virtue of the generalized Hölder inequality, we have

\[
m_{\frac{2-jm}{2-jm}j}(f_j(x)) \leq C 2^{-jm} \|f_j\|_{L^p(\mathbb{R}^n)}(\omega_{p_1}) \|\mathcal{X}_j\|_{L^p(\mathbb{R}^n)}(\omega_{p_1})^{jm}.
\]
Thus, we have

$$L_3 \leq C \sum_{k=-\infty}^{\infty} 2^{\alpha q_k} \left(\sum_{j=k+2}^{\infty} 2^{(k-j)n\delta_1} \| f_j \|_{L^{p_1(\cdot)}(w^{p_1(\cdot)})} \right)^{q_1}$$

$$\leq C \sum_{k=-\infty}^{\infty} \left(\sum_{j=k+2}^{\infty} 2^{(k-j)(\alpha+n\delta_1)} f_j^{q_1} \right) \frac{q_1}{q_1} \right)^{q_1} \sum_{k=-\infty}^{\infty} 2^{(k-j)(\alpha+n\delta_1)q_1/2} \| f_j \|_{L^{p_1(\cdot)}(w^{p_1(\cdot)})}^{q_1}$$

$$\leq C \sum_{j=-\infty}^{\infty} 2^{j\alpha q_1} \| f_j \|_{L^{p_1(\cdot)}(w^{p_1(\cdot)})}^{q_1} \sum_{k=-\infty}^{j-2} 2^{(k-j)(\alpha+n\delta_1)q_1/2}$$

$$\leq C \sum_{j=-\infty}^{\infty} \| f_j \|_{K^{\alpha,q_1}_{p_1(\cdot)}(w^{p_1(\cdot)})}^{q_1}.$$

When $0 < q_1 < 1$, applying the Jensen inequality, we obtain

$$L_3 \leq C \sum_{j=-\infty}^{\infty} \left(\sum_{k=-\infty}^{\infty} 2^{j\alpha q_1} \| f_j \|_{L^{p_1(\cdot)}(w^{p_1(\cdot)})} \right)^{q_1} \sum_{k=-\infty}^{j-2} 2^{(k-j)(\alpha+n\delta_2)q_1}$$

This completes the proof of Theorem 3.2.
Acknowledgments

The authors are very grateful to the referees for their valuable comments.

References

Affif Abdalmonem
Faculty of Science, University of Dalanj, Dalanj, Sudan.
e-mail: afeefy86@gmail.com

Omer Abdalrhman
College of Education, Shendi University, Shendi, Sudan.
e-mail: humoora@gmail.com

Shuangping Tao
Northwest Normal University, Lanzhou, China.
e-mail: taosp@nwnu.edu.cn