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Abstract: In the fields of chemical graph theory (CGT), mathematical chemistry and molecular topology,
a topological index (TI) also known as a connectivity index is a type of a molecular descriptor that is calculated
based on the molecular graph of a chemical compound. BiI3 is an excellent inorganic compound and is very
useful in qualitative inorganic analysis and topological indices of BiI3help to predict many properties like
boiling point, heat of formation, strain energy, rigidity and fracture toughness and correlate the structure
with various physical properties, chemical reactivity and biological activities. This paper computes several
degree-based topological indices like multiplicative first Zagreb index, multiplicative second Zagreb index,
multiplicative atomic bond connectivity index, multiplicative first and second hyper Zagreb index and
multiplicative geometric arithmetic index for Bismuth Tri-Iodide chains and sheets.

Keywords: Topological index, Bismuth Tri-Iodide, molecular graph, Zagreb index, Randić index.

1. Introduction

T he BiI3 is an inorganic compound which is the result of the reaction of iodine and bismuth, which
inspired the enthusiasm for subjective inorganic investigations [1]. BiI3 is an excellent inorganic

compound and is very useful in “qualitative inorganic analysis” [1,2].
It was proved that Bi-doped glass optical strands are one of the most promising dynamic laser media.

Different kinds of Bi-doped fiber strands have been created and have been used to construct Bi-doped fiber
lasers and optical loudspeakers [3].

Layered BiI3 gemstones are considered to be a three-layered stack structure in which a plane of bismuth
atoms is sandwiched between iodide particle planes to form a continuous I − Bi− I plane [4].

The periodic superposition of the diamond-shaped three layers forms BiI3 crystals with R− 3 symmetry
[5,6]. A progressive stack of I − Bi− I layers forms a symmetric hexagonal structure [7] and jewel of BiI3 was
integrated in [8].

In the unit cell (Figure 1), Main cycles are C1
4 , C2

4central cycles areC3
4 , C6

4 and Base cycles are C4
4 , C5

4
Mathematical chemistry is an area of research in chemistry in which mathematical tools are used to solve

problems of chemistry. Chemical graph theory is an important area of research in mathematically chemistry
which deals with topology of molecular structure such as the mathematical study of isomerism and the
development of topological descriptors or indices. Infect, TIs are real numbers attached with graph networks
and graph of chemical compounds and has applications in quantitative structure-property relationships. TIs
remain invariant upto graph isomorphism and help to predict many properties of chemical compounds,
networks and nanomaterials, for example, viscosity, boiling points, radius of gyrations, etc without going
to lab [9–12].
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Figure 1. bismuth tri-iodide.

Other emerging field is Cheminformatics, in which we use QSAR and QSPR relationship to guess
biological activity and chemical properties of nanomaterial and networks. In these investigations, some
Physico-chemical properties and TIs are utilized to guess the behavior of chemical networks [13–17]. Like
TIs, polynomials also fund considerable applications in network theory and chemistry, for example, Hosoya
polynomial, which is also known as Wiener polynomial, introduced in [18] plays an important role in
computation of distance-based TIs. M-polynomial [19] was defined in 2015 and plays a similar role in
computation of numerous degree-based TIs [20–24]. The M-polynomial contains precious information about
degree-based TIs and many TIs can be computed from this simple algebraic polynomial. The first TI was
defined in 1947 by Weiner during studying boiling point of alkanes [25]. This index is now known as Weiner
index. Thus Weiner established the framework of TIs and the Wiener index is initially the first and most
concentrated TI [26,27].

The other oldest TI is Randić index (RI), given by Milan Randić [28] in 1975. After the success of Randić
index, in the year 1988, the generalized version of Randić index was introduced [29,30]. This version attracts
both the mathematicians and chemists [31]. Numerous numerical properties of this simple TI are studied in
[32]. For comprehensive study about this index, the book [33] can be of great help.

The RI is a most mainstream regularly connected and most concentrated among all other TIs. Numerous
research papers and text books, for example, [34–36] are published in different academic journals on this TI.
Two surveys on RI was written by Milan Randić [37,38] and three more surveys are written on this TI by
different scientists [39–41]. The reason behind the success of such a simple TI is as yet a puzzle, although some
conceivable clarifications were given.

After Randić index, the most studied TIs are 1st Zagreb index (ZI) and 2nd ZI [42–46]. The modified 2nd
ZI was defined in [47]. Another TI is symmetric division (SDI) [48], Harmonic index (HI) [49,50], augmented
ZI [51].

In this article, we compute general form of several degree-based topological indices for Bismuth Tri-Iodide
chains and Bismuth Tri-Iodide sheets. For example we compute first and second multiplicative Zagreb indices,
multiplicative atomic bond connectivity index, sum connectivity index, modify Randić index, etc.

2. Basic definitions and Literature Review

In mathematical chemistry, precisely speaking, in chemical-graph-theory (CGT), a molecular graph and
graph network is a simple and connected graph, in which atoms represents vertices and chemical bonds
represents edges. We reserve G for simple connected graph, E for edge set and V for vertex set throughout the
thesis. The degree of a vertex u of graph G is the number of vertices that are attached with u and is denoted by
dv. With the help of TIs, many properties of molecular structure can be obtained without going to lab [52]. The
reality is, many research paper has been written on computation of degree-based indices and polynomials of
different molecular structure and networks but only few work has been done so far on distance based indices
and polynomials. In this paper, we aim to compute multiplicative degree-based TIs. Some indices related to
Wiener’s work are the first and second multiplicative Zagreb indices [33], respectively

I I1 (G) = ∏
u∈V(G)

(du)
2

I I2 (G) = ∏
uv∈E(G)

du · dv
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and the Narumi-Katayama index [52]
NK (G) = ∏

u∈V(G)

du

Like the Wiener index, these types of indices are the focus of considerable research in computational chemistry
[54–56]. For example, in the year 2011, Gutman in [54] characterized the multiplicative Zagreb indices for
trees and determined the unique trees that obtained maximum and minimum values for M1(G) and M2(G),
respectively. Wang et al. in [57] extended the results of Gutman to the following index for k-trees,

Ws
1 (G) = ∏

u∈V(G)

(du)
s .

Notice that s = 1, 2 is the Narumi-Katayama and Zagreb index, respectively. Based on the successful
consideration of multiplicative Zagreb indices, Eliasi et al. [58] continued to define a new multiplicative version
of the first Zagreb index as

I I∗1 (G) = ∏
uv∈E(G)

(du + dv) .

Furthering the concept of indexing with the edge set, the first author introduced the first and second
hyper-Zagreb indices of a graph [59]. They are defined as

HII1 (G) = ∏
uv∈E(G)

(du + dv)
2 ,

HII2 (G) = ∏
uv∈E(G)

(du · dv)
2 .

In [60] Kulli et al. defined the first and second generalized Zagreb indices

MZa
1 (G) = ∏

uv∈E(G)

(du + dv)
α ,

MZa
2 (G) = ∏

uv∈E(G)

(du · dv)
α .

Multiplicative sum connectivity and multiplicative product connectivity indices [61] are define as:

SCII (G) = ∏
uv∈E(G)

1√
du + dv

,

PCII (G) = ∏
uv∈E(G)

1√
du · dv

.

Multiplicative atomic bond connectivity index and multiplicative Geometric arithmetic index are defined as

ABCII (G) = ∏
uv∈E( G)

√
du + dv − 2

du · dv
,

GAII (G) = ∏
uv∈E(G)

2
√

du · dv

du + dv
,

GAa I I (G) = ∏
uv∈E(G)

(
2
√

du · dv

du + dv

)α

.

Shigehalli and Kanabur [62] introduced following new degree-based topological indices:
Arithmetic-Geometric (AG1) index AG1(G) = ∑uv∈E(G)

du+dv
2
√

dudv
, SK(G) = ∑uv∈E(G)

du+dv
2 , AG1(G) =

∑uv∈E(G)
du+dv

2
√

dudv
, SK2(G) = ∑uv∈E(G)

(
du+dv

2

)2
.
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3. Computational Results

This section contains the main results. In this section we give formulae of multiplicative versions of
degree-based TIs of Bismuth Tri-Iodide chains and Bismuth Tri-Iodide sheets. We also give formulae for some
new degree-based TIs of Bismuth Tri-Iodide chains and Bismuth Tri-Iodide sheets.

3.1. Bismuth Tri-Iodide Chain

Theorem 1. Let G be the molecular graph of m− BiI3. Then

1. MZα
1 (G) = (7)α(4p+8) × (8)α(20p+4) .

2. MZα
2 (G) = (2)α(44p+16) × (3)α(24p+12) .

3. GAα I I (G) =
(

2
√

6
7

)α(4p+8)
×
(√

3
2

)α(20p+4)
.

Proof. Let G be the molecular graph of p− BiI3 bismuth tri-iodide chain. The edge set of p− BiI3 has following
two partitions [1],
E1 = E{1,6} = {e = uv ∈ E (G) |du = 1, dv = 6} ,
E{2,6} = {e = uv ∈ E (G) |du = 2, dv = 6} ,
Such that
|E1 (G)| = 4p + 8,
|E2 (G)| = 20p + 4.
Now by definitions, we have

1.

MZα
1 (G) = ∏

uv∈E(G)

(du + dv)
α

= (1 + 6)α(4p+8) × (2 + 6)α(20p+4)

= (7)α(4p+8) × (8)α(20p+4) .

2.

MZα
2 (G) = ∏

uv∈E(G)

(du · dv)
α

= (1× 6)α(4p+8) × (2× 6)α(20p+4)

= (2× 3)α(4p+8) × (4× 3)α(20p+4)

= (2)α(44p+16) × (3)α(24p+12) .

3.

GAα I I (G) = ∏
uv∈E(G)

(
2
√

du · dv

du + dv

)α

=

(
2
√

1 · 6
1 + 6

)α(4p+8)

×
(

2
√

2 · 6
2 + 6

)α(20p+8)

=

(
2
√

6
7

)α(4p+8)

×
(√

3
2

)α(20p+4)

.

Corollary 2. Let G be the molecular graph of p− BiI3. Then

1. MZ1(G) = I I2 (G) = = (2)44p+16 × (3)24p+12 .
2. MZ2(G) = I I∗1 (G) = (7)4p+8 × (8)20p+4 .

3. GAII (G) =
(

2
√

6
7

)4p+8
×
(√

3
2

)20p+4
.
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Proof. These results can be obtained immediately proved by taking α = 1 in Theorem 1.

Corollary 3. Let G be the molecular graph of p− BiI3. Then

1. HII1 (G) = (7)2(4p+8) × (8)2(20p+4) .
2. HII2 (G) = (2)88p+32 × (3)48p+24 .

Proof. These results can be obtained immediately proved by taking α = 2 in Theorem 1.

Corollary 4. Let G be the molecular graph of p− BiI3. Then

1. SCII (G) =
(

1√
7

)4p+8
×
(

1√
8

)20p+4
.

2. PCII (G) =
(

1
2

)22p+8
×
(

1√
3

)24p+12
.

Proof. These results can be obtained immediately proved by taking α = − 1
2 in Theorem 1.

Theorem 5. Let G be the molecular graph of p− BiI3. Then

ABCII (G) =

(√
5
6

)4p+8

×
(√

1
2

)20p+4

.

Proof. Using the edge partition given in Theorem 1 and definition of multiplicative Atomic bond Connectivity
index, we have

ABCII (G) = ∏
uv∈E(G)

√
du + dv − 2

du · dv

=

(√
1 + 6− 2

1 · 6

)4p+8

×
(√

2 + 6− 2
2 · 6

)20p+4

=

(√
5
6

)4p+8

×
(√

1
2

)20p+4

.

Theorem 6. Let Gbe the graph of p− BiI3. Then

1. SC (G) =
(

4√
7
+ 10√

2

)
p +

(
8√
7
+
√

2
)

.

2. AG1 (G) =
(

14√
6
+ 40√

3

)
p +

(
28√

6
+ 8√

3

)
.

3. SK (G) = 94p + 44.
4. SK1 (G) = 132p + 48.
5. SK2 (G) = 369p + 162.
6. R′ (G) = 4p + 2.

Proof. Using edge partition given in Theorem 1 and definitions, we have

1.

SC (G) = ∑
uv∈E(G)

1√
du + dv

=
1√
7
(4p + 8) +

1
2
√

2
(20p + 4)

=

(
4√
7
+

10√
2

)
p +

(
8√
7
+
√

2
)

.



Eng. Appl. Sci. Lett. 2019, 2(1), 1-11 6

2.

AG1 (G) = ∑
uv∈E(G)

du + dv

2
√

du × dv

=
7

2
√

6
(4p + 8) + (20p + 4)

2√
3

=

(
14√

6
+

40√
3

)
p +

(
28√

6
+

8√
3

)
.

3.

SK (G) = ∑
uv∈E(G)

du + dv

2

=
7
2
(4p + 8) + 4 (20p + 4)

= 94p + 44.

4.

SK1 (G) = ∑
uv∈E(G)

du × dv

2

= 3 (4p + 8) + 6 (20p + 4)

= 132p + 48.

5.

SK2 (G) = ∑
uv∈E(G)

(
du + dv

2

)2

=
49
4

(4p + 8) + 16 (20p + 4)

= 369p + 162.

6.

R′ (G) = ∑
uv∈E(G)

(
1

max {du, dv}

)
=

1
6
(4p + 8) +

1
6
(20p + 4)

= 4p + 2.

3.2. Bismuth Tri-Iodide sheet

In this section we compute several indices for Bismuth Tri-Iodide sheet.

Theorem 7. Let G be the molecular graph of BiI3 (p× q). Then

1. MZa
1 (G) = (7)α(4p+4q+4) × (8)α(12pq+8p+8q−4) × (9)α(6pq−6q) .

2. MZa
2 (G) = (2)α(30pq+20p+14q−4) × (3)α(24pq+12p) .

3. GAα I I (G) =
(

2
√

6
7

)α(4p+4q+4)
×
(√

3
2

)α(12pq+8p+8q−4)
×
(

6
√

2
9

)α(6pq−6q)
.

Proof. Let G be the graph of BiI3 (p× q) bismuth tri-iodide sheet. The edge set of BiI3 (p× q) has following
three partitions [1],
E1 = E{1,6} = {e = uv ∈ E (G) |du = 1, dv = 6} ,
E2 = E{2,6} = {e = uv ∈ E (G) |du = 2, dv = 6} ,
E3 = E{3,6} = {e = uv ∈ E (G) |du = 3, dv = 6} ,
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such that
|E1 (G)| = 4p + 4q + 4,
|E2 (G)| = 12pq + 8p + 8q− 4,
|E3 (G)| = 6pq− 6q.
Now by definition

1.

MZα
1 (G) = ∏

uv∈E(G)

(du + dv)
α

= (1 + 6)α(4p+4q+4) × (2 + 6)α(12pq+8p+8q−4) × (3 + 6)α(6pq−6q)

= (7)α(4p+4q+4) × (8)α(12pq+8p+8q−4) × (9)α(6pq−6q) .

2.

MZα
2 (G) = ∏

uv∈E(G)

(du · dv)
α

= (6)α(4p+4q+4) × (2)α(12pq+8p+8q−4) × (3)α(6pq−6q)

= (2)α(30pq+20p+14q−4) × (3)α(24pq+12p) .

3.

GAα I I (G) = ∏
uv∈E(G)

(
2
√

du · dv

du + dv

)α

=

(
2
√

1 · 6
1 + 6

)α(4p+4q+4)

×
(

2
√

2 · 6
2 + 6

)α(12pq+8p+8q−4)

×
(

2
√

3 · 6
3 + 6

)α(6pq−6q)

=

(
2
√

6
7

)α(4p+4q+4)

×
(√

3
2

)α(12pq+8p+8q−4)

×
(

6
√

2
9

)α(6pq−6q)

.

Corollary 8. Let G be the molecular graph of BiI3 (p× q). Then

1. MZ1(G) = I I2 (G) = (2)30pq+20p+14q−4 × (3)24pq+12p .
2. MZ2(G) = I I∗1 (G) = (7)4p+4q+4 × (8)12pq+8p+8q−4 × (9)6pq−6q .

3. GAII (G) =
(

2
√

6
7

)4p+4q+4
×
(√

3
2

)12pq+8p+8q−4
×
(

6
√

2
9

)6pq−6q
.

Proof. These result can be obtained immediately proved by takingα = 1 in Theorem 7.

Corollary 9. Let G be the molecular graph of BiI3 (p× q). Then

1. HII1 (G) = (7)2(4p+4q+4) × (8)2(12pq+8p+8q−4) × (9)2(6pq−6q) .
2. HII2 (G) = (2)4(15pq+10p+7q−2) × (3)24(2pq+p) .

Proof. These result can be obtained immediately proved by takingα = 2 in Theorem 7.

Corollary 10. Let G be the molecular graph of BiI3 (p× q). Then

1. SCII (G) =
(

1√
7

)4p+4q+4
×
(

1√
8

)12pq+8p+8q−4
×
(

1√
9

)6pq−6q
.

2. PCII (G) =
(

1√
2

)30pq+20p+14q−4
×
(

1√
3

)24pq+12p
.

Proof. These result can be obtained immediately proved by takingα = − 1
2 in Theorem 7.
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Theorem 11. Let G be the molecular graph of BiI3 (p× q). Then

ABCII (G) =

(√
5
6

)4p+4q+4

×
(√

1
2

)12pq+8p+8q−4

×
(√

7
18

)6pq−6q

.

Proof.

ABCII (G) = ∏
uv∈E(G)

√
du + dv − 2

du · dv

=

(√
1 + 6− 2

1 · 6

)4p+4q+4

×
(√

2 + 6− 2
2 · 6

)12pq+8p+8q−4

×
(√

3 + 6− 2
3 · 6

)6pq−6q

=

(√
5
6

)4p+4q+4

×
(√

1
2

)12pq+8p+8q−4

×
(√

7
18

)6pq−6q

.

Theorem 12. Let G be the graph of BiI3 (p× q). Then

1. SC (G) =
(

6√
2
+ 2
)

pq +
(

4√
7
+ 4√

2

)
p +

(
4√
7
+ 4√

2
− 2
)

q +
(

4√
7
− 2√

2

)
.

2. AG1 (G) =
(

24√
3
+ 9√

2

)
pq +

(
14√

6
+ 16√

3

)
p +

(
14√

6
+ 16√

3
− 9√

2

)
q +

(
14√

6
− 8√

3

)
.

3. SK (G) = 75pq + 46p + 19q− 2.
4. SK1 (G) = 126pq + 60p + 6q− 12.
5. SK2 (G) = 627

2 pq + 177p− 111
2 q− 15.

6. R′ (G) = 3pq + 2p + q.

Proof. Using the edge partition given in Theorem 7, we have

1.

SC (G) = ∑
uv∈E(G)

1√
du + dv

=
1√
7
(4p + 4q + 4) +

1
2
√

2
(12pq + 8p + 8q− 4) +

1
3
(6pq− 6q)

=

(
6√
2
+ 2
)

pq +
(

4√
7
+

4√
2

)
p +

(
4√
7
+

4√
2
− 2
)

q +
(

4√
7
− 2√

2

)
.

2.

AG1 (G) = ∑
uv∈E(G)

du + dv

2
√

du × dv

=
7

2
√

6
(4p + 4q + 4) + (12pq + 8p + 8q− 4)

2√
3
+ (6pq− 6q)

3
2
√

2

=

(
24√

3
+

9√
2

)
pq +

(
14√

6
+

16√
3

)
p +

(
14√

6
+

16√
3
− 9√

2

)
q +

(
14√

6
− 8√

3

)
.

3.

SK (G) = ∑
uv∈E(G)

du + dv

2

=
7
2
(4p + 4q + 4) + 4 (12pq + 8p + 8q− 4) +

9
2
(6pq− 6q)

= 75pq + 46p + 19q− 2.
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4.

SK1 (G) = ∑
uv∈E(G)

du × dv

2

= 3 (4p + 4q + 4) + 6 (12pq + 8p + 8q− 4) + 9 (6pq− 6q)

= 126pq + 60p + 6q− 12.

5.

SK2 (G) = ∑
uv∈E(G)

(
du + dv

2

)2

=
49
4

(4p + 4q + 4) + 16 (12pq + 8p + 8q− 4) +
81
4

(6pq− 6q)

=
627

2
pq + 177p− 111

2
q− 15.

6.

R′ (G) = ∑
uv∈E(G)

(
1

max {du, dv}

)
=

1
6
(4p + 4q + 4) +

1
6
(12pq + 8p + 8q− 4) +

1
6
(6pq− 6q)

= 3pq + 2p + q.

4. Conclusions

In the present article, we computed closed form of 17 degree-based TIs for Bismuth Tri-Iodide chain
and sheet. TIs thus calculated for these Bismuth Tri-Iodides can help us to understand the physical features,
chemical reactivity, and biological activities. In this perspective, a TIs can be viewed as a score work which
maps each sub-atomic structure to a real number and is utilized as descriptors of the particle under testing.
These outcomes can likewise have a crucial influence in the assurance of the importance of Bismuth Tri-Iodide.
For instance, it has been proved that the first Zagreb index is straightforwardly related with all out π -
electron energy. Additionally Randic index is helpful for deciding physio-chemical properties of alkanes as
seen by scientific expert Melan Randic in 1975. He saw the relationship between’s the Randic index and a
few physico–chemical properties of alkanes like, “enthalpies of formation, boiling points, chromatographic
retention times, vapor pressure and surface areas” [52].
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