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1 Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China.;
chenlian@gzhu.edu.cn(L.C); zshao@gzhu.edu.cn(Z.S)

2 School of Information Science and Engineering, Chengdu University, Chengdu 610106, China.;
hq.jiang@hotmail.com(H.J)

3 Faculty of Mathematics, University of Belgrade, Studentski trg 16/IV, 11 000 Belgrade, Serbia.;
maria.ivanovic@gmail.com(M.I)

* Correspondence: zshao@gzhu.edu.cn

Received: 1 March 2019; Accepted: 15 May 2019; Published: 28 May 2019.

Abstract: The concept of vague graph was introduced early by Ramakrishna and substantial graph
parameters on vague graphs were proposed such graph coloring, connectivity, dominating set, independent
set, total dominating number and independent dominating number. In this paper, we introduce the concept
of the dominator coloring and total dominator coloring of a vague graph and establish mathematical
modelling for these problems.
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1. Introduction

F uzzy set generalize classical sets by use of a membership function such that each element is assigned a
number in the real unit interval [0,1], which measures its grade of membership in the set. The theory

of fuzzy sets was proposed by Zadeh in 1965 [1]. Since then, the theory was used in a wide range of domains
in which information is incomplete or imprecise, such as such as management science, medical science, social
science, financial science, environment science and bioinformatics [2]. In 1993, Gau et al. [3] presented the
concept of vague set theory as a generalization of fuzzy set theory, which allow a separation of evidence for
membership (grade of membership) and evidence against membership (negation of membership). They used
a subinterval of [0,1] to replace the value of an element in a set. That is, a vague set is characterized by
two functions. Namely, a truth-membership function tv(x) and false-membership function fv(x) are used to
describe the boundaries of the membership degree.

Graph theory is a very useful and well developed branch of discrete mathematics, and it also is
an important tool for modeling many types of relations and processes in biological, physical, social and
information systems. Realizing the importance of graph theory and inspiring of Zadeh’s fuzzy relations [4],
Kauffman [5] proposed the definition of fuzzy graph in 1973. Then Rosenfeld [6] proposed another elaborated
definition of fuzzy graph in 1975. Since then, there was a vast research on fuzzy graph [7–19]. Inspired by
fuzzy graph, in 2009, Ramakrishna [20] introduced the concept of vague graphs and studied some important
properties. After that, Samata et al. [21] analysed the concepts of vague graphs and its strength. Rashmanlou
et al. [22] introduced the notion of vague h-morphism on vague graphs and regular vague graphs, and they
investigated some properties of an edge regular vague graph [23]. At the same time, they introduced some
connectivity concepts in the vague graphs [24].

The Dominator coloring of a graph was proposed by Gera et al [25] in 2006. In the same paper, they
showed that dominator chromatic number is NP-complete. After that, they studied the bounds and realization
of the dominator chromatic number in terms of chromatic number and domination number [26] and the
dominator colorings in bipartite graphs [27]. Recently, several researchers have theoretically investigated
the dominator coloring number of Claw-free graph [28], Certain Cartesian Products [29], trees [30] and more
[31,32]. Motivated by dominator chromatic number, Kazemi [33] studied the new concept of a total dominator
chromatic number of a graph. And they showed that total dominator chromatic number is NP-complete. A
survey of total dominator chromatic number in graphs can also be found in [34,35].
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Borzooei et al. [36] in their work introduced the concepts of special kinds of dominating sets in vague
graph. Kumar et al. [37] discuss the new concepts of coloring in vague graphs with application. In this
paper, we introduce the concept of the dominator coloring and total dominator coloring of a vague graph and
establish mathematical modelling for these problems.

2. Preliminaries

A vague set A in an ordinary finite non-empty set X is a pair (tA, fA), where tA : X � [0, 1], fA :
X � [0, 1], and 0 ≤ tA(x) + fA(x) ≤ 1 for each element x ∈ X. Note that the truth-membership tA(x)
is considered as the lower bound on grade of membership of x derived from the evidence for x ∈ X and the
false-membership fA(x) is the lower bound on negation of membership of x derived from the evidence against
x ∈ X. The grade of membership for x is characterized by the interval [tA(x), 1− fA(x)] not a crisp value. And
if tA(x) = 1− fA(x) for all x ∈ X, the vague set degrades to a fuzzy set.

In this paper, we denote by Pn, Cn, Kn the path, cycle and complete graph on n vertices, respectively. The
complete bipartite graph with part size m, n is denoted by Km,n and the ladder graph is the Cartesion product
of P2 and Cn, denoted by P22Cn.

Definition 1. Let G = (V, E) be a graph. A pair G′ = (A, B) is called a vague graph on G where A = (tA, fA)

is a vague set on V and B = (tB, fB) is a vague set on E such that tB(uv) ≤ min{tA(u), tA(v)}, fB(uv) ≥
max{ fA(u), fA(v)} for each uv ∈ E.

Definition 2. For a vague graph G = (A, B), an edge uv is called a strong edge if tB(uv) = min{tA(u), tA(v)},
fB(uv) = max{ fA(u), fA(v)}. Let N(u) = {v|uv is a strong edge in G} and N[u] = N(u) ∪ {u}.

We say u dominates all vertices in N(u) and totally dominates all vertices in N[u].

Definition 3. Dominator coloring of a vague graph G is a coloring of the vertices of G such that every vertex
dominates all vertices of at least one other class. The dominator chromatic number χd(G) of G is the minimum
number of colors among all dominator colorings of G.

Definition 4. Total dominator coloring of a vague graph G is a coloring of the vertices of G such that every
vertex totally dominates all vertices of at least one other class. The total dominator chromatic number χd

t (G)

of G is the minimum number of colors among all total dominator colorings of G.

3. Dominator coloring problems

Let [k] = {1, 2, . . . , k}. Let Vc ⊆ V denotes set of vertices with assigned color c. Further, let decision
variables xi,c be defined as

xi,c =

{
1, i ∈ Vc

0, i ∈ Vc

For a vague graph G and an integer k, let Es be the set of all strong edges of G. We propose integer
linear programming (ILP) formulations (called Dominator Coloring ILP and Total Dominator Coloring ILP,
respectively), for the dominator coloring problem and total dominator coloring problem as follows:

Dominator coloring ILP

k

∑
c=1

xi,c = 1, i ∈ V (1)

k

∑
i∈V

xi,c ≥ 1, c ∈ [k] (2)

xi,c1 + xj,c2 + Mi,c1,c2 ≤ 2, c1, c2 ∈ [k], i ∈ V(G), j ∈ V\N[i] (3)

k

∑
c2=1

Mi,c1,c2 ≥ 1, c1 ∈ [k], i ∈ V (4)
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xi,c + xj,c ≤ 1, c ∈ [k], (i, j) ∈ Es (5)

xi,c ∈ {0, 1}, c ∈ [k], i ∈ V (6)

Mi,c1,c2 ∈ {0, 1}, {c1, c2} ⊆ [k], i ∈ V (7)

Theorem 5. Conditions (1)− (7) defined for the graph G are satisfied if and only if G admits a dominator coloring with
k colors.

Proof. Condition (1) ensures that each vertex is assigned with exactly one color. Condition (2) ensures that
each color should be used. Conditions (3) and (4) ensure that every vertex dominates all vertices of at least
one other class. Condition (5) ensures that the assignment is a proper coloring. Conditions (6) and (7) ensure
that each variable is boolean. Therefore, if each condition is satisfied, then G admits a dominator coloring with
k colors.

⇐ By the definition of the dominator coloring, it is clear that Conditions (1)− (7) defined for the graph
G are satisfied.

Total dominator coloring ILP

k

∑
c=1

xi,c = 1, i ∈ V (8)

k

∑
i∈V

xi,c ≥ 1, c ∈ [k] (9)

xi,c1 + xj,c2 + Mi,c1,c2 ≤ 2, {c1, c2} ∈ [k], i ∈ V(G), j ∈ V\N[i] (10)

k

∑
c2 6=c1,c2=1

Mi,c1,c2 ≥ 1, c1 ∈ [k], i ∈ V (11)

xi,c + xj,c ≤ 1, c ∈ [k], (i, j) ∈ Es (12)

xi,c ∈ {0, 1}, c ∈ [k], i ∈ V (13)

Mi,c1,c2 ∈ {0, 1}, {c1, c2} ⊆ [k], i ∈ V (14)

Theorem 6. Conditions (8)− (14) defined for the graph G are satisfied if and only if G admits a total dominator coloring
with k colors.

Proof. Condition (8) ensures that each vertex is assigned with exactly one color. Condition (9) ensures that
each color should be used. Conditions (10) and (11) ensure that every vertex totally dominates all vertices
of at least one other class. Condition (12) ensures that the assignment is a proper coloring. Conditions (13)
and (14) ensure that each variable is boolean. Therefore, if each condition is satisfied, then G admits a total
dominator coloring with k colors.

⇐ By the definition of the total dominator coloring, it is clear that Conditions (1)− (7) defined for the
graph G are satisfied.

Example 1. Let G be a vague graph depicted in Figure 1. Then the set of strong edges is
{(u1u2), (u2v2), (u2u4), (u2u3), (u3u4), (u4v3), (u4u5), (u5v4), (u5u6), (u6u7), (v1v2), (v2v3), (v3v4), (v4v5)}.

Example 2. Let G be a vague graph depicted in Figure 2. Then by solving the instance from Dominator
Coloring ILP, we obtain γd(G) = 6. A dominator coloring f with 6 colors is f (u1) = 1, f (u2) = 2, f (u3) =

4, f (u4) = 1, f (u5) = 4, f (u6) = 6, f (u7) = 1, f (v1) = 3, f (v2) = 1, f (v3) = 4, f (v4) = 5, f (v5) = 1 which is
presented in Figure 2.
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Figure 1. An example of a vague graph G

Figure 2. A dominator coloring of G with 6 colors

Figure 3. A total dominator coloring of G with 7 colors

Example 3. Let G be a vague graph depicted in Figure 3. Then by solving the instance from Total Dominator
Coloring ILP, we obtain γd

t (G) = 7. A dominator coloring f with 7 colors is f (u1) = 7, f (u2) = 1, f (u3) =

7, f (u4) = 4, f (u5) = 6, f (u6) = 5, f (u7) = 7, f (v1) = 7, f (v2) = 2, f (v3) = 7, f (v4) = 3, f (v5) = 7 which is
presented in Figure 3.



Eng. Appl. Sci. Lett. 2019, 2(2), 10-17 14

4. Dominator coloring number of some classes of vague graphs

Definition 7. For a vague graph G, we define an underlying graph of G, denoted by G̃, with V(G̃) = V(G),
and xy ∈ E(G̃) if and only if x ∈ N(y) in G.

By the definition of Dominator coloring, we have

Proposition 8. For any vague graph G, χd(G) = χd(G̃) and χt
d(G) = χt

d(G̃).

Proposition 9. (see [28]) For any vague graph G with G̃ ∼= Kn, we have χd(G) = χt
d(G) = n.

Proof. By the definition, we have χt
d(G) ≥ χd(G) ≥ χ(G) = n. Let V(G) = {v1, v2, . . . , vn}. We consider a

function f : V(G) � {1, 2, . . . , n} with f (vi) = i for any i, then we have f is a total dominator coloring of G
with n colors. Therefore, we have χt

d(G) ≤ n and so the desired result holds.

The following results are straightforward:

Proposition 10. (see [28]) For any vague graph G with G̃ ∼= Km,n, we have χd(G) = χt
d(G) = 2.

Proposition 11. (see [28]) For any vague graph G with G̃ ∼= Cn(n ≥ 3), we have χd(G) = 3 for n ≡ 3 (mod 6) and
χd(G) = 2 otherwise.

Proposition 12. (see [35]) For any vague graph G with G̃ ∼= Pn or Cn(n ≥ 3), we have χt
d(G) =

[
n
2

]
+

[
n
4

]
−
[

n
4

]
.

The Cartesian product G2H of two graphs G and H is a graph with V(G)×V(H) and two vertices (g1, h1)

and (g2, h2) are adjacent if and only if either g1 = g2 and (h1, h2) ∈ E(H), or h1 = h2 and (g1, g2) ∈ E(G). Let
V(Cn) = {1, 2, 3, . . . n}, E(Cn) = {i(i + 1)}, 1n|i = 1, 2, . . . n− 1} and V(P2) = {1, 2}, E(P2) = {(12)}. Let ui,j
be a vertex of P22Cn where i = 1, 2, j = 1, 2, . . . n. We have the following result:

Proposition 13. For any vague graph G with G̃ ∼= P22Cn with n ≥ 6,

γd
t (G) ≤



2n
3 + 2, n ≡ 0 (mod 6)

2n
3 + 4, n ≡ 1, 2 (mod 6)

2n
3 + 3, n ≡ 3 (mod 6)

2n
3 + 2, n ≡ 4, 5 (mod 6)

Proof. We use two lines of numbers to denote a total dominator coloring of P22Cn. The total dominator
coloring can be represented as a 2× n array as follows:

f (P22Cn) =

{
f (u1,1) f (u1,2) . . . f (u1,n−1) f (u1,n)

f (u2,1) f (u2,2) . . . f (u2,n−1) f (u2,n)

If i = 1 and j ≡ 1, 3 (mod 6), let f (ui,j) = 1.
If i = 1 and j ≡ 2, 4 (mod 6), let f (ui,j) = 2.

If i = 1 and j ≡ 5 (mod 6), let f (ui,j) = 4 j
6 + 5.

If i = 1 and j ≡ 0 (mod 6), let f (ui,j) = 4 j
6 + 6.

If i = 2 and j ≡ 4, 5 (mod 6), let f (ui,j) = 1.
If i = 2 and j ≡ 0, 5 (mod 6), let f (ui,j) = 2.

If i = 2 and j ≡ 2 (mod 6), let f (ui,j) = 4 j
6 + 3.

If i = 2 and j ≡ 3 (mod 6), let f (ui,j) = 4 j
6 + 4.

We will consider the following cases:
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Case 1. n ≡ 0 (mod 6).
Obviously, f is total dominator coloring with desired number of colors. For example, let n = 12, we have

f (P22C12) =

{
1 2 1 2 5 6 1 2 1 2 9 10

2 3 4 1 2 1 2 7 8 1 2 1

Case 2. n ≡ 1, 2, 4, 5 (mod 6).
Let h(x) = f (x) for any x ∈ V(P22Cn)\{u1,n, u2,n}, h(u1,n) = 2× n

3 , h(u2,n) = 2× n
3 + 4. Obviously, h is total

dominator coloring with desired number of colors. For example, let n = 13, we have

f (P22C13) =

{
1 2 1 2 5 6 1 2 1 2 9 10 11

2 3 4 1 2 1 2 7 8 1 2 1 12

Let n = 14, we have

f (P22C14) =

{
1 2 1 2 5 6 1 2 1 2 9 10 1 11

2 3 4 1 2 1 2 7 8 1 2 1 2 12

Let n = 16, we have

f (P22C16) =

{
1 2 1 2 5 6 1 2 1 2 9 10 1 2 1 13

2 3 4 1 2 1 2 7 8 1 2 1 2 11 12 14

Let n = 17, we have

f (P22C17) =

{
1 2 1 2 5 6 1 2 1 2 9 10 1 2 1 2 13

2 3 4 1 2 1 2 7 8 1 2 1 2 11 12 1 14

Case 3. n ≡ 3 (mod 6).
Let h(x) = f (x) for any x ∈ V(P22Cn)\{u1,n}, h(u1,n) =

2n
3 + 3. Obviously, h is total dominator coloring with

desired number of colors. As an example, let n = 15, we have

f (P22C15) =

{
1 2 1 2 5 6 1 2 1 2 9 10 1 2 13

2 3 4 1 2 1 2 7 8 1 2 1 2 11 12

Now the proof is complete.

5. Conclusion

Fuzzy graph theory has substantial applications for real-world life in different domains, such as in
the fields of biological science, neural networks, decision making, physics and chemistry. At present,
the graph coloring problem can be applied in sequencing, timetabling, scheduling, electronic bandwidth
allocation, computer register allocation and printed circuit board testing. Also the domination is also one
of the fundamental concepts in graph theory and it has been wide used to distributed computing, biological
networks, resource allocation and social networks. In this paper, motivated with the combination of fuzzy
graph theory, graph coloring and graph domination, we introduce the concept of the dominator coloring and
total dominator coloring of a vague graph and establish mathematical modelling for these problems.
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