Article

Cyclic-antimagic construction of ladders

Muhammad Awais Umar ${ }^{1, *}$
1 Government Degree College (B), Sharaqpur Shareef, Pakistan.
* Correspondence: owais054@gmail.com

Received: 14 November 2018; Accepted: 17 May 2019; Published: 25 June 2019.

Abstract

A simple graph $G=(V, E)$ admits an H-covering if every edge in the edge set $E(G)$ belongs to at least one subgraph of G isomorphic to a given graph H. A graph G having an H-covering is called (a, d)-H-antimagic if the function $h: V(G) \cup E(G) \rightarrow\{1,2, \ldots,|V(G)|+|E(G)|\}$ defines a bijective map such that, for all subgraphs H^{\prime} of G isomorphic to H, the sums of labels of all vertices and edges belonging to H^{\prime} constitute an arithmetic progression with the initial term a and the common difference d. Such a graph is named as super (a, d)-H-antimagic if $h(V(G))=\{1,2,3, \ldots,|V(G)|\}$. For $d=0$, the super (a, d) - H-antimagic graph is called H-supermagic. In the present paper, we study the existence of super (a, d)-cycle-antimagic labelings of ladder graphs for certain differences d.

Keywords: Cycle-antimagic, super cycle-antimagic, super (a, d)-cycle-antimagic, C_{4}-antimagic, ladder graph.

1. Introduction

Let $G=(V, E)$ be a finite simple graph. A family of subgraphs $H_{1}, H_{2}, \ldots, H_{t}$ of the graph G with property that each element of E belongs to at least one subgraph $H_{i}, i=1,2, \ldots, t$, is classified as an edge-covering of G. With the possibility, H_{i} isomorphic to a given graph H, G is said to admit an H-covering.

Suppose a (p, q)-graph G admits an H-covering. A bijective function $h: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ is called a total labeling for G. The associated H-weight is defined as

$$
w t_{h}(H)=\sum_{v \in V(H)} h(v)+\sum_{e \in E(H)} h(e) .
$$

A total labeling $h: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ is then called an H-magic labeling, if there exists a positive integer m_{c} (called the magic constant) such that for every subgraph H^{\prime} of G isomorphic to $H, w t_{h}(H)=m_{c}$. The graph G admitting such a labeling is called H-magic.

In addition, if the H-weights constitute an arithmetic progression $a, a+d, a+2 d, \ldots, a+(t-1) d$, where $a>0$ and $d \geq 0$ are two integers, and t is the number of all subgraphs of G isomorphic to H, then we say that graph G is an (a, d)-H-antimagic. The restriction $h(V)=\{1,2, \ldots, p\}$ makes G a super (a, d) - H-antimagic. If the subgraph H is isomorphic to a cycle C_{k} for some k, then super (a, d) - H-antimagic labeling is referred to a super (a, d)-cycle-antimagic labeling.

The H-supermagic labelings were first studied by Gutiérrez et al. in [1] as an extension of the edge-magic and super edge-magic labelings introduced by Kotzig et al. [2] and Enomoto et al. [3], respectively. Gutiérrez et al. considered star-supermagic and path-supermagic labelings of some connected graphs and proved that the path P_{n} and the cycle C_{n} are P_{m}-supermagic for some m. Maryati et al. [4] gave P_{m}-supermagic labelings of some trees such as shrubs, subdivision of shrubs and banana tree graphs. Lladó et al. [5] investigated C_{n}-supermagic graphs and proved that wheels, windmills, books and prisms are C_{m}-magic for some m. Some results on C_{n}-supermagic labelings of several classes of graphs can be found in [6,7]. Other examples of H-supermagic graphs with different choices of H have been given by Jeyanthi et al. in [8]. Inayah, Lladó and Moragas [9] gave a connection between graceful trees and antimagic H-decomposition of complete graphs. Maryati et al. [6] investigated the G-supermagicness of a disjoint union of copies of a graph G and showed that disjoint union of any paths is $c P_{m}$-supermagic for some c and m.

Motivated by H -(super)magic labelings, Inayah et al. [10] introduced the (a, d)- H -antimagic labeling. In [11] they investigated the super (a, d) - H-antimagic labelings for some shackles of a connected graph H. In
[12] Miller et al. exhibit an operation on graphs which keeps super H -antimagic properties using technique of partitioning sets of integers. The existence of super (a, d) - H-antimagic labelings for disconnected graphs is studied in [13] and there is proved that if a graph G admits a (super) (a, d) - H-antimagic labeling, where $d=|E(H)|-|V(H)|$, then the disjoint union of m copies of the graph G, denoted by $m G$, admits a (super) (b, d) - H-antimagic labeling as well.

The (super) (a, d) - H-antimagic labeling is related to a super d-antimagic labeling of type $(1,1,0)$ of a plane graph that is the generalization of a face-magic labeling introduced by Lih [14]. Further information on super d-antimagic labelings can be found in $[15,16]$.

For $H \cong K_{2}$, (super) (a, d) - H-antimagic labelings are also called (super) (a, d)-edge-antimagic total labelings and have been introduced in [17]. More results on (a, d)-edge-antimagic total labelings, can be found in [15,18-20]. The vertex version of these labelings for generalized pyramid graphs is given in [21].

A ladder is a Cartesian product $L_{m} \cong P_{m} \times P_{2}$ of the path on m vertices with the path on two vertices. The vertex set $V\left(L_{m}\right)$ consists of the elements $\left\{u_{i}, v_{i}: 1 \leq i \leq m\right\}$ and the edge set $E\left(L_{m}\right)$ consists of the elements $\left\{u_{i} v_{i}: 1 \leq i \leq m\right\} \cup\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leq i \leq m-1\right\}$.

In [7], Ngurah et al. proved that ladder graph L_{n} is C_{4}-supermagic for every $n \geq 2$.
In the present paper, we will study the existence of the super cycle-antimagic labelings of ladder graphs L_{m}. More explicitly, we will describe super $(a, d)-C_{4}$-antimagic labelings of ladder graphs for differences $0 \leq$ $d \leq 15$.

2. Results

Let $C_{4}^{(i)}, 1 \leq i \leq m-1$ be the subcycle of L_{m} with $V\left(C_{4}^{(i)}\right)=\left\{u_{i}, u_{i+1}, v_{i}, v_{i+1}\right\}$
and $E\left(C_{4}^{(i)}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, u_{i} v_{i}, u_{i+1} v_{i+1}\right\}$.
For the C_{4}-weight of the cycle $C_{4}^{(i)}, i=1,2, \ldots, m-1$, under the total labeling h we get:

$$
\begin{aligned}
w t_{h}\left(C_{4}^{(i)}\right) & =h\left(u_{i}\right)+h\left(v_{i}\right)+h\left(u_{i+1}\right)+h\left(v_{i+1}\right) \\
& +h\left(u_{i} u_{i+1}\right)+h\left(v_{i} v_{i+1}\right)+h\left(u_{i} v_{i}\right)+h\left(u_{i+1} v_{i+1}\right) .
\end{aligned}
$$

The following theorem shows that ladder graph L_{m} admits super $(a, d)-C_{4}$-antimagic labelings for differences $0 \leq d \leq 6$.

Theorem 1. Let $m \geq 3$ be a positive integer. Then the ladder L_{m} admits a super (a, d) - C_{4}-antimagic labeling for $d \in\{0,1,2,3,4,5,6\}$.

Proof. Label the vertices of the ladder L_{m} by the following integers:

$$
\begin{array}{ll}
h\left(u_{i}\right)=i & \text { if } i=1,2, \ldots, m \\
h\left(v_{i}\right)=2 m+1-i & \text { if } i=1,2, \ldots, m
\end{array}
$$

Clearly, under the vertex labeling h the vertices of L_{m} receive labels from 1 up to $2 m$ and for partial weights of $C_{4}^{(i)}$ for every $i=1,2, \ldots, m-1$ we get

$$
\begin{equation*}
w_{h}=h\left(u_{i}\right)+h\left(u_{i+1}\right)+h\left(v_{i}\right)+h\left(v_{i+1}\right)=4 m+2 . \tag{1}
\end{equation*}
$$

We define the labelings $h_{j}, j=0,1,2, \ldots, 6$, for the edges of L_{m} in the following way: if $i=1,2, \ldots, m-1$ then

$$
h_{j}\left(u_{i} u_{i+1}\right)= \begin{cases}3 m-i & \text { for } j=0 \\ 4 m-i & \text { for } j=1 \\ 3 m+i & \text { for } j=2,3,4 \\ 3 m-1+2 i & \text { for } j=5,6\end{cases}
$$

$$
h_{j}\left(v_{i} v_{i+1}\right)= \begin{cases}4 m-1-i & \text { for } j=0 \\ 4 m-1+i & \text { for } j=1,3,4 \\ 4 m+\left\lceil\frac{m}{2}\right\rceil+1-i & \text { for } j=2 \\ 3 m+2 i & \text { for } j=5,6\end{cases}
$$

and if $i=1,2, \ldots, m$ then

$$
h_{j}\left(u_{i} v_{i}\right)= \begin{cases}4 m-2+i & \text { for } j=0 \\ 2 m+\frac{i+1}{2} & \text { for } j=1,3,5 \text { and } i \text { odd, } \\ 2 m+\left\lceil\frac{m}{2}\right\rceil+\frac{i}{2} & \text { for } j=1,3,5 \text { and } i \text { even } \\ 2 m+i & \text { for } j=2,4,6\end{cases}
$$

It is not difficult to see that every edge labeling $h_{j}, j=0,1,2, \ldots, 6$, admits the values from $2 m+1$ up to $5 m-2$. Thus every edge labeling $h_{j}, j=0,1,2, \ldots, 6$, together with vertex labeling h has properties of a total labeling of the ladder L_{m}. Let

$$
\begin{equation*}
w_{h_{j}}=h_{j}\left(u_{i} u_{i+1}\right)+h_{j}\left(v_{i} v_{i+1}\right)+h_{j}\left(u_{i} v_{i}\right)+h_{j}\left(u_{i+1} v_{i+1}\right) \tag{2}
\end{equation*}
$$

be partial weights of cycles $C_{4}^{(i)}$ for every $i=1,2, \ldots, m-1$ and $j=0,1, \ldots, 6$. Then according to (1) and (2) we get

$$
\begin{equation*}
w t_{h_{j}}\left(C_{4}^{(i)}\right)=w_{h}+w_{h_{j}}=4 m+2+w_{h_{j}} \tag{3}
\end{equation*}
$$

For $j=0, w_{h_{0}}=15 m-4$ and $w t_{h_{0}}\left(C_{4}^{(i)}\right)=19 m-2$ for every $i=1,2, \ldots, m-1$. Thus the total labeling $h \cup h_{0}$ is C_{4}-supermagic for L_{m}.

For $j=1, w_{h_{1}}=12 m+\left\lceil\frac{m}{2}\right\rceil+i$ and $w t_{h_{1}}\left(C_{4}^{(i)}\right)=16 m+\left\lceil\frac{m}{2}\right\rceil+2+i$ for every $i=1,2, \ldots, m-1$. Under the labeling $h \cup h_{1}$ the C_{4}-weights of L_{m} are consecutive integers and L_{m} is a super $\left(16 m+\left\lceil\frac{m}{2}\right\rceil+\right.$ $3,1)-C_{4}$-antimagic.

For $j=2, w_{h_{2}}=11 m+\left\lceil\frac{m}{2}\right\rceil+2+2 i$ and $w t_{h_{2}}\left(C_{4}^{(i)}\right)=15 m+\left\lceil\frac{m}{2}\right\rceil+4+2 i$ for every $i=1,2, \ldots, m-1$ and it proves that the total labeling $h \cup h_{2}$ is a super $\left(15 m+\left\lceil\frac{m}{2}\right\rceil+6,2\right)-C_{4}$-antimagic.

For $j=3, w_{h_{3}}=11 m+\left\lceil\frac{m}{2}\right\rceil+3 i$ and $w t_{h_{3}}\left(C_{4}^{(i)}\right)=15 m+\left\lceil\frac{m}{2}\right\rceil+2+3 i$ for every $i=1,2, \ldots, m-1$. It shows that the labeling $h \cup h_{3}$ is a super C_{4}-antimagic with the difference $d=3$.

For $j=4, w_{h_{4}}=11 m+4 i$ and $w t_{h_{4}}\left(C_{4}^{(i)}\right)=15 m+2+4 i$ for every $i=1,2, \ldots, m-1$. Under the labeling $h \cup h_{4}$ the C_{4}-weights of L_{m} form the arithmetic sequence with the difference $d=4$ and L_{m} is a super $(15 m+6,4)-C_{4}$-antimagic.

For $j=5, w_{h_{5}}=10 m+\left\lceil\frac{m}{2}\right\rceil+5 i$ and $w t_{h_{5}}\left(C_{4}^{(i)}\right)=14 m+\left\lceil\frac{m}{2}\right\rceil+2+5 i$ for every $i=1,2, \ldots, m-1$. It shows that the labeling $h \cup h_{5}$ is a super C_{4}-antimagic with the difference $d=5$.

For $j=6, w_{h_{6}}=10 m+6 i$ and $w t_{h_{6}}\left(C_{4}^{(i)}\right)=14 m+2+6 i$ for every $i=1,2, \ldots, m-1$ and it proves that the total labeling $h \cup h_{6}$ is a super $(14 m+8,2)-C_{4}$-antimagic. This completes the proof.

Next theorem proves a super C_{4}-antimagicness for ladder graph with differences $7 \leq d \leq 15$.
Theorem 2. Let $m \geq 3$ be a positive integer. Then the ladder L_{m} is a super $(a, d)-C_{4}$-antimagic for every $d \in$ $\{7,8,9,10,11,12,13,14,15\}$.

Proof. Define a vertex labeling $h: V\left(L_{m}\right) \rightarrow\{1,2, \ldots, 2 m\}$ such that

$$
\begin{array}{ll}
h\left(u_{i}\right)=2 i-1 & \text { if } i=1,2, \ldots, m \\
h\left(v_{i}\right)=2 i & \text { if } i=1,2, \ldots, m
\end{array}
$$

For partial weights of $C_{4}^{(i)}$ for every $i=1,2, \ldots, m-1$ we get

$$
\begin{equation*}
w_{h}=h\left(u_{i}\right)+h\left(u_{i+1}\right)+h\left(v_{i}\right)+h\left(v_{i+1}\right)=8 i+2 . \tag{4}
\end{equation*}
$$

We construct the labelings $h_{j}, j=7,8, \ldots, 15$, for the edges of L_{m} as follows: if $i=1,2, \ldots, m-1$ then

$$
\begin{gathered}
h_{j}\left(u_{i} u_{i+1}\right)= \begin{cases}4 m-i & \text { for } j=7,9, \\
3 m+i & \text { for } j=8,11,12, \\
2 m+2 i-1 & \text { for } j=10,14, \\
3 m-1+2 i & \text { for } j=13, \\
2 m+2 i & \text { for } j=15,\end{cases} \\
h_{j}\left(v_{i} v_{i+1}\right)= \begin{cases}5 m-1-i & \text { for } j=7, \\
4 m-1+i & \text { for } j=8,9,11,12,15, \\
2 m+2 i & \text { for } j=10,14, \\
3 m+2 i & \text { for } j=13,\end{cases}
\end{gathered}
$$

and if $i=1,2, \ldots, m$ then

$$
h_{j}\left(u_{i} v_{i}\right)= \begin{cases}2 m+\frac{i+1}{2} & \text { for } j=7,9,11,13 \text { and } i \text { odd, } \\ 3 m-2+\frac{i}{2} & \text { for } j=7,9,11,13 \text { and } i \text { even, } \\ 3 m+1-i & \text { for } j=8 \\ 5 m-1-i & \text { for } j=10 \\ 2 m+i & \text { for } j=12 \\ 4 m-2+i & \text { for } j=14 \\ 2 m-1+2 i & \text { for } j=15 .\end{cases}
$$

One can see that for $j=7,8,9, \ldots, 15$ every edge labeling h_{j} attains the values from the set $\{2 m+1,2 m+$ $2, \ldots, 5 m-2\}$ and every labeling $h \cup h_{j}$ satisfies the properties of a total labeling of the ladder L_{m}. Then according to (2) and (4) we get

$$
\begin{equation*}
w t_{h_{j}}\left(C_{4}^{(i)}\right)=w_{h}+w_{h_{j}}=8 i+2+w_{h_{j}} \tag{5}
\end{equation*}
$$

For $j=7, w_{h_{7}}=14 m-i-2$ and $w t_{h_{7}}\left(C_{4}^{(i)}\right)=14 m+7 i$ for every $i=1,2, \ldots, m-1$. Under the labeling $h \cup h_{7}$ the C_{4}-weights of L_{m} create the arithmetic progression of the difference $d=7$ and L_{m} is a super ($14 m+$ 7,7)-C4-antimagic.

For $j=8, w_{h_{8}}=13 m$ and $w t_{h_{8}}\left(C_{4}^{(i)}\right)=13 m+2+8 i$ for every $i=1,2, \ldots, m-1$ and it proves that the total labeling $h \cup h_{8}$ is a super $(13 m+10,8)-C_{4}$-antimagic.

For $j=9, w_{h_{9}}=13 m-2+i$ and $w t_{h_{9}}\left(C_{4}^{(i)}\right)=13 m+9 i$ for every $i=1,2, \ldots, m-1$. It shows that the labeling $h \cup h_{9}$ is a super C_{4}-antimagic with the difference $d=9$.

For $j=10, w_{h_{10}}=14 m-4+2 i$ and $w t_{h_{10}}\left(C_{4}^{(i)}\right)=14 m-2+10 i$ for every $i=1,2, \ldots, m-1$. Under the labeling $h \cup h_{10}$ the C_{4}-weights of L_{m} form the arithmetic sequence with the difference $d=10$ and L_{m} is a super $(14 m+8,10)-C_{4}$-antimagic.

For $j=11, w_{h_{11}}=12 m-2+3 i$ and $w t_{h_{11}}\left(C_{4}^{(i)}\right)=12 m+11 i$ for every $i=1,2, \ldots, m-1$ and it proves that the total labeling $h \cup h_{10}$ is a super $(12 m+11,11)-C_{4}$-antimagic.

For $j=12, w_{h_{12}}=11 m+4 i$ and $w t_{h_{12}}\left(C_{4}^{(i)}\right)=11 m+2+12 i$ for every $i=1,2, \ldots, m-1$ and it proves that the total labeling $h \cup h_{12}$ is a super $(11 m+14,12)-C_{4}$-antimagic.

For $j=13, w_{h_{13}}=11 m-2+5 i$ and $w t_{h_{13}}\left(C_{4}^{(i)}\right)=11 m+13 i$ for every $i=1,2, \ldots, m-1$. It shows that the labeling $h \cup h_{13}$ is a super C_{4}-antimagic with the difference $d=13$.

For $j=14, w_{h_{14}}=12 m-4+6 i$ and $w t_{h_{14}}\left(C_{4}^{(i)}\right)=12 m-2+14 i$ for every $i=1,2, \ldots, m-1$. Under the labeling $h \cup h_{14}$ the C_{4}-weights of L_{m} form the arithmetic sequence with the difference $d=14$ and L_{m} is a super $(12 m+12,14)-C_{4}$-antimagic.

For $j=15, w_{h_{15}}=10 m-1+7 i$ and $w t_{h_{15}}\left(C_{4}^{(i)}\right)=10 m+1+15 i$ for every $i=1,2, \ldots, m-1$. It shows that the labeling $h \cup h_{15}$ is a super C_{4}-antimagic with the difference $d=15$.

Thus we have arrived at the desired result.
Conflicts of Interest: "The author declare no conflict of interest."

References

[1] Gutiérrez, A., \& Lladó, A. (2005). Magic coverings. Journal of Combinatorial Mathematics and Combinatorial Computing, 55(2005), 43-56.
[2] Kotzig, A., \& Rosa, A. (1970). Magic valuations of finite graphs. Canadian Mathematical Bulletin, 13(4), 451-461.
[3] Enomoto, H., Lladó, A. S., Nakamigawa, T., \& Ringel, G. (1998). Super edge-magic graphs. Sut J. Math, 34(2), 105-109.
[4] Maryati, T. K., Baskoro, E. T., \& Salman, A. N. M. (2008). P_{h}-(super)magic labelings of some trees. Journal of Combinatorial Mathematics and Combinatorial Computing, 65, 198-204.
[5] Lladó, A., \& Moragas, J. (2007). Cycle-magic graphs. Discrete Mathematics, 307(23), 2925-2933.
[6] Maryati, T. K., Salman, A. N. M., \& Baskoro, E. T. (2013). Supermagic coverings of the disjoint union of graphs and amalgamations. Discrete Mathematics, 313(4), 397-405.
[7] Ngurah, A. A. G., Salman, A. N. M., \& Susilowati, L. (2010). H-supermagic labelings of graphs. Discrete Mathematics, 310(8), 1293-1300.
[8] Jeyanthi, P., \& Selvagopal, P. (2010). More classes of H-supermagic graphs. International Jornal of Algorithms, Computing and Mathematics, 3(1), 93-108.
[9] Inayah, N., Lladó, A., \& Moragas, J. (2012). Magic and antimagic H-decompositions. Discrete Mathematics, 312(7), 1367-1371.
[10] Inayah, N., Salman, A. N. M., \& Simanjuntak, R. (2009). On (a,d)-H-antimagic coverings of graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 71, 273-281.
[11] Inayah, N., Simanjuntak, R., Salman, A. N. M., \& Syuhada, K. I. A. (2013). Super (a, d)- H-antimagic total labelings for shackles of a connected graph H. Australasian Journal of Combinatorics, 57, 127-138.
[12] Miller, M., \& Semaničová-Feňovčíková, A. (2015). A Construction of H-antimagic Graphs. Acta Mechanica Slovaca 19(3), 6-11.
[13] Bača, M., Miller, M., Ryan, J., \& Semaničová-Feňovčíková, A. (2016). On H-antimagicness of disconnected graphs. Bulletin of the Australian Mathematical Society, 94(2), 201-207.
[14] Lih, K. W. (1983). On magic and consecutive labelings of plane graphs. Utilitas Math, 24, 165-197.
[15] Bača, M., Brankovic, L., \& Semaničová-Feňovčíková, A. (2011). Labelings of plane graphs containing Hamilton path. Acta Mathematica Sinica, English Series, 27(4), 701-714.
[16] Bača, M., Miller, M., Phanalasy, O., \& Semaničová-Feňovčíková, A. (2010). Super d-antimagic labelings of disconnected plane graphs. Acta Mathematica Sinica, English Series, 26(12), 2283-2294.
[17] Simanjuntak, R., Miller, M., \& Bertault, F. (2000). Two new (a, d)-antimagic graph labelings. Proc. Eleventh Australas. Workshop Combin. Alg. (AWOCA), 179-189.
[18] Bača, M., \& Miller, M. (2008). Super edge-antimagic graphs: A wealth of problems and some solutions. Universal-Publishers.
[19] Figueroa-Centeno, R. M., Ichishima, R., \& Muntaner-Batle, F. A. (2001). The place of super edge-magic labelings among other classes of labelings. Discrete Mathematics, 231(1-3), 153-168.
[20] Wallis, W. D. (2001). Magic graphs. Birkhäuser, New York.
[21] Arumugam, S., Miller, M., Phanalasy, O., \& Ryan, J. (2014). Antimagic labeling of generalized pyramid graphs. Acta Mathematica Sinica, English Series, 30(2), 283-290.
(C) 2019 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

