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1. Introduction

O ver the decades, the fractional calculus has been building a great history and consolidating itself in
several scientific areas such as: mathematics, physics and engineering, among others. The emergence

of new fractional integrals and derivatives, makes the wide number of definitions becomes increasingly larger
and clears its numerous applications. Recently, the existence of solutions of initial and boundary value
problems for differential equations involving Hilfer fractional derivative has a considerable attention [1–8].

Very recently, Almeida [9] introduced a new fractional derivative named by ψ-fractional derivative with
respect to another function, which extended the classical fractional derivative and also studied some properties
like semigroup law, Taylor’s Theorem and so on. Thereafter, Sousa and Oliveira [10,11] initially studied a
Cauchy problem for fractional ordinary differential equation with ψ-Hilfer operator with respect to another
function, in order to unify the wide number of fractional derivatives in a single fractional operator and
consequently, open a window for new applications and established a new Gronwall inequality to derive a
prior bound of a solution. The authors studied the Leibniz type rule: ψ-Hilfer fractional operator in [12].

The oscillation theory as a part of the qualitative theory of differential equations has been developed
rapidly in the last decades and there has been a great deal of work on the oscillatory behavior of integer
order differential equations. However, there are only very few papers dealing with the oscillation of FDEs;
see [13–15]. The study of oscillation and other qualitative properties of fractional dynamical systems such
as stability, existence, and uniqueness of solutions is necessary to analyze the systems under consideration
[16,17].

Motivated by [18] and the aforementioned papers, we study the oscillatory theory for ψ-Hilfer fractional
type FDEs of the form

Dα,β;ψ
a+ x(t) + f1(t, x) = w(t) + f2(t, x), (1)

I1−γ;ψ
a+ x(t) = b1, (2)

where Dα,β;ψ
a+ denotes the ψ-Hilfer fractional derivative of order 0 < α < 1 type 0 ≤ β ≤ 1, I1−γ;ψ

a+ is the
ψ-Riemann-Liouville fractional integral with γ = α + β(1− α) and b1 > 0.

We assume in this paper that the functions f1, f2 and w are continuous. The solution representation of
(1)-(2) can be written as
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x(t) =


b1(ψ(t)−ψ(a))γ−1

Γ(γ)

+ 1
Γ(α)

∫ t
a ψ

′
(s) (ψ(t)− ψ(s))α−1 [w(s) + f2(s, x(s))− f1(s, x(s))] ds

. (3)

We only take those solutions which are continuous and continuable to (a, ∞), and are not identically zero
on any half-line (b, ∞) for some b ≥ a. The term "solution"’ henceforth applies to such solutions of equations
(1) or (3). A solution is said to be oscillatory if it has arbitrarily large zeros on (0, ∞); otherwise, it is called
nonoscillatory.

2. Main results

We will make use of the conditions:

x fi(t, x) > 0 (i = 1, 2), x 6= 0, t ≤ a (4)

and

| f1(t, x)| ≥ p1(t) |x|v , | f2(t, x)| ≤ p2(t) |x|u , x 6= 0, t ≥ a, (5)

where p1, p2 ∈ C ([a, ∞],R+) and u, v > 0 are real numbers.
We will use the following lemma [[19], Lemma 1]

Lemma 1. For X ≥ 0 and Y > 0, we have

X λ + (λ− 1)Y λ − λX Y λ−1 ≥ 0, λ > 1 (6)

and

X λ + (1− λ)Y λ − λX Y λ−1 ≤ 0, λ < 1, (7)

where equality holds if and only if X = Y .

Now we may give our first theorem when f2 = 0.

Theorem 2. Let f2 = 0 and condition (4) hold. If

lim
t→∞

inf(ψ(t))1−γ
∫ t

a
ψ
′
(s)(ψ(t)− ψ(s))α−1w(s)ds = −∞, (8)

and

lim
t→∞

sup(ψ(t))1−γ
∫ t

a
ψ
′
(s)(ψ(t)− ψ(s))α−1w(s)ds = ∞. (9)

Proof. Let x(t) be a non-oscillatory solution of equations (1)-(2) with f2 = 0. Suppose that T > a is large
enough so that x(t) > 0 for t ≤ T.

Let F(t) = w(t) + f2(t, x(t))− f1(t, x(t)), then we see from (3) that

x(t) ≤ (ψ(t)− ψ(a))γ−1

Γ(γ)
|b1|+

1
Γ(α)

∫ T

a
ψ
′
(s)(ψ(t)− ψ(s))α−1 |F(s)| ds

+
1

Γ(α)

∫ T

a
ψ
′
(s)(ψ(t)− ψ(s))α−1w(s)ds, t ≥ T, (10)
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and hence

Γ(α)(ψ(t))1−γx(t) ≤ c(T) + (ψ(t))1−γ
∫ t

T
ψ
′
(s)(ψ(t)− ψ(s))α−1w(s)ds, (11)

where,

c(T) =
1

Γ(γ)

(
ψ(T)

ψ(T)− ψ(a)

)1−γ

|b1|+
∫ T

a

(
ψ(T)

ψ(T)− ψ(s)

)1−α

|F(s)| ds. (12)

Note that the improper integral on the right is convergent. Applying the limit inferior of both sides of
inequality (11) as t → ∞, we obtain a contradiction to condition (8). In case x(t) is eventually negative, a
similar argument leads to a contradiction with (9).

Next we have the following results.

Theorem 3. Let conditions (1)-(2) and (2) hold with v > 1 and u = 1. If

lim
t→∞

inf(ψ(t))1−γ
∫ t

a
ψ
′
(s)(ψ(t)− ψ(s))α−1 [w(s) +Hv(s)] ds = −∞ (13)

and

lim
t→∞

sup(ψ(t))1−γ
∫ t

a
ψ
′
(s)(ψ(t)− ψ(s))α−1 [w(s) +Hv(s)] ds = ∞ (14)

where

Hv(s) = (v− 1)v
v

(1−v) p
1

(1−v)
1 (s)p

1
(v−1)
2 (s),

then every solution of equation (1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equations (3), say, x(t) > 0 for r ≥ T > a. Using (5) in equation
(3) with u = 1 and v > 1 and t ≥ T, we find

Γ(γ)(ψ(t))1−γx(t) ≤ c(T) + (ψ(t))1−γ

[∫ T

t
ψ
′
(s)(ψ(t)− ψ(s))α−1w(s)ds

+
∫ T

t
ψ
′
(t)(ψ(t)− ψ(s))α−1 [p2(s)x(s)− p1(s)xv(s)] ds

]
. (15)

We apply (6) in Lemma 1 with

λ = v, X = p
1
v
1 x and Y =

(
p2 p

−1
v

1 /v
) 1

(v−1)

to obtain

p2(t)x(t)− p1(t)xv(t) ≤ (v− 1)v
v

(1−v) p
1

(1−v)
1 (t)p

v
(v−1)
2 (t). (16)

Using (16) in (15), we have

Γ(γ)(ψ(t))1−γx(t) ≤ c(T) + (ψ(t))1−γ
∫ t

T
ψ
′
(t) [ψ(t)− ψ(s)]α−1 [w(s) +Hv(s)] ds, t ≥ T.

The rest of the proof is the similar as in that of Theorem 2.
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Theorem 4. Let condition (4) and (5) hold with v = 1 and u < 1. If

lim
t→∞

inf(ψ(t))1−γ
∫ t

a
ψ
′
(s)(ψ(t)− ψ(s))α−1 [w(s) +Hu(s)] ds = −∞ (17)

and

lim
t→∞

sup(ψ(t))1−γ
∫ t

a
ψ
′
(s)(ψ(t)− ψ(s))α−1 [w(s) +Hu(s)] ds = ∞, (18)

where,

Hu(s) = (1− u)u
u

(u−1) p
u

(u−1)
1 (s)p

1
(1−u)
2 (s),

then every solution of equations of (1)-(2) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equations (3), say x(t) > 0 for t ≥ a > 1. Using condition (5) in
(3), with v = 1 and u < 1, we obtain

Γ(α)(ψ(t))1−γx(t) ≤ c(T) + (ψ(t))1−α

[∫ t

a
ψ
′
(s) (ψ(t)− ψ(s))α−1 w(s)ds

+
∫ t

a
ψ
′
(s) (ψ(t)− ψ(s))α−1 [p2(s)xu(s)− p1(s)x(s)] ds

]
. (19)

Now we use (7) in Lemma 1 with

λ = u, X = p
1
u
2 x and Y =

(
p1 p

−1
u

2 /u
) 1

(u−1)

to get

p2(t)xu(t)− p1(t)x(t) ≤ (1− u)u
u

(1−u) p
u

(u−1)
1 (t)p

1
(1−u)
2 (t). (20)

Using (20) in (19) then yields

Γ(α)(ψ(t))1−γx(t) ≤ c(T) + (ψ(t))1−γ
∫ T

t
ψ
′
(s) (ψ(t)− ψ(s))α−1 [w(s) +Hu(s)] ds, t ≥ T.

The rest of the proof is the similar as in that of Theorem 2.

Theorem 5. Let condition (4) and (5) hold with v > 1 and u < 1. If

lim
t→∞

inf(ψ(t))1−γ
∫ t

a
ψ
′
(s) (ψ(t)− ψ(s))α−1 [w(s) +Hv,u(s)] ds = −∞, (21)

and

lim
t→∞

sup(ψ(t))1−γ
∫ t

a
ψ
′
(s) (ψ(t)− ψ(s))α−1 [w(s) +Hv,u(s)] ds = ∞, (22)

where

Hv,u(s) = (v− 1)v
v

(1−v) ε
v

(v−1) (s)p
1

(1−v)
1 (s) + (1− u)u

u
(1−u) ε

u
(u−1) (s)p

1
(1−u)
2 (s)

with ε ∈ C ([a, ∞],R+), then every solution of equation (1)-(2) is oscillatory.
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Proof. Let x(t) be a nonoscillatory solution of (1)-(2), say x(t) > 0 for t ≥ T > a. Using (5) in equation (3) one
can easily write that

Γ(α)(ψ(t))1−γx(t) ≥ c(T) + (ψ(t))1−γ
∫ t

T
ψ
′
(s) (ψ(t)− ψ(s))α−1 w(s)ds

+ (ψ(t))1−γ
∫ t

T
ψ
′
(s)(ψ(t)− ψ(s))α−1 (ε(s)x(s)− p1(s)xv(s)) ds

+ (ψ(t))1−γ
∫ t

T
ψ
′
(s)(ψ(t)− ψ(s))α−1 (p2(s)xu(s)− ε(s)x(s)) ds, t ≥ T. (23)

We may bound the term (εx− p1xv) and (p2xu − εx) by using inequalities (16) (with p2 = ε) respectively; to
get

Γ(α)(ψ(t))1−γx(t) ≤ c(T) + (ψ(t))1−α
∫ t

T
ψ
′
(s) (ψ(t)− ψ(s))α−1 [w(s) +Hv,u(s)] ds, t ≥ T.

The rest of the proof is the similar as in that of Theorem 2.

Remark 1. The result obtained from (1) are with different nonlinearities and one can observe that the forcing
term w is unbounded, and its oscillatory character is inherited by the solutions.
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