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Abstract: The high strength-to-weight ratio and flexibility of single walled carbon nanotubes (SWCNT) make
them of potential use in the control of nanoscale structures for thermal, electrical, structural and mechanical
applications. This indicates that they will have a vital contribution to nanotechnology engineering. This
paper presents an exact solution to the dynamic response of such CNTs considering the shear force and
bending moment under uniformly distributed external pressure. The dynamic behaviour of the SWCNT is
modeled by employing the theories of Euler-Bernoulli beam and thermal elasticity mechanics. The developed
model that governs the physics of the behaviour of the SWCNT when excited by the aforementioned external
agents is solved using Integral transforms. The results of the close form solution in this work were compared
with results of past works and excellent agreements were achieved. Furthermore, the dynamic study revealed
that a point of maximum shear force on the CNT produced the minimum bending moment at any mode and
for any parameter value considered. It is envisaged that this work will enhance the application of SWCNT
for structural, electrical and mechanical uses.
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1. Introduction

S ince the discovery of CNT by Iijima [1], a considerable number of studies on carbon nanotubes with
multi branched arrangements have been analyzed [2–4]. Subsequently, it has been established that

such structures have merits when applied to the functionability of transistors and diodes. As a result, logical
investigations and analysis of carbon nanotube have been a subject of interest such as the vibrations of a
micro-resonator that is excited by electrostatic and piezoelectric actuations. Studies have been performed
on beams, CNT, nano-wires, nano-rods and nano-beam so as to specifically understand and achieve their
area of best fit. In achieving this, the well known beam models were employed and dynamic ranges were
obtained in the scope of the structures [5–8]. Different studies have been performed to determine the resonance
point and to enhance the mechanical properties of single and multi-walled nanotubes, using initial stress
and compressive axial loading, to study the non-coaxial resonance [9–14]. Elishakoff et al., [15] performed
an investigation on the fundamental natural frequencies of double-walled carbon nanotubes and ascertained
some stability criteria using some controlling parameters. Mass detection with nonlinear nano-mechanical
resonator as well as dynamic range of nanotube- and nanowire-based electromechanical systems have also
been studied [16,17].

In order to be able to predict the dynamic behaviour of embedded carbon nanotubes, Fu et al.[18] and Xu
et al. [19] performed some analysis of nonlinear vibration for embedded carbon nanotubes. In application to
electrical and electronics, the static and dynamic analysis of carbon nanotube-based switches, micro-resonator
under piezoelectric and electrostatic actuations have been presented [20–22]. As a continuation of the
tremendous work, Abdel-Rahman and Nayfeh [23], Hawwa and Al-Qahatani [24] and, Hajnayeb and Khadem
[25] performed vibration and instability studies of double wall carbon natotube (DWCNT) using a nonlinear
model and considering electrostatic actuation as external excitation agent. In their investigation, DWCNT
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was situated and conditioned to direct and alternating voltages and different behaviors of the nanotubes
were recorded as the exciting agent was varied. They went further to determine the bifurcation point of the
DWCNT and concluded that both walls had the same frequency of vibration under the two resonant conditions
considered. Belhadj et al. [26] presented their work on a pinned-pinned supported SWCNT employing
nonlocal theory of elasticity and obtained natural frequency up to the third mode. They also explained how the
high frequency obtained in their work might be harnessed to be of high merit in optical applications. Lei et al.
[27] studied the dynamic behaviour of DWCNT by employing the well-known Timoshenko beam theory. The
nonlinear governing equations obtained by Sharabiani and Yazdi [28] were applied to nanobeams that were
graded and had surface roughness. Wang [29] obtained a closed form model for the aforementioned surface
roughness effect for an unforced fluid conveying nanotube and beams based on nonlocal theory of elasticity
and ascertained the significance of stability analysis for reasonably small thickness of the tube considered.

Interesting foundation studies have been considered after modelling of CNTs as structures resting on
or embedded in elastic foundations such as Winkler, Pasternak and Visco-Pasternak media [30–35]. Other
interesting works through modelling and experiment have also been presented to justify the widespread
application of SWCNTs [36–41]. To the best of the authors’ knowledge, no work has been done to dynamically
determine the shearing force and bending moment diagram of a tensioned and pressurized SWCNT. Motivated
by these considerations, this work aims to dynamically determine the response, shearing force and bending
moment of a tensioned SWCNT under an external uniform pressure by employing Integral transform
techniques.

2. Problem description and governing equation

Consider a SWCNT with a uniformly distributed surface pressure as shown in Figure 1. The assumptions
used for the analysis include:

1. the SWCNT is modeled according to Euler-Bernoulli beam
2. the exciting agent is a uniform pressure distribution at the SWCNT surface governed by:

P(x) = µACNT d
dx

(
P0

(
1 +

δ

LCNT x
))

(1)

3. the SWCNT is simply supported at both ends.

χ(0, t) = χ”(0, t) = 0 (2)

χ(LCNT , t) = χ”(LCNT , t) = 0

4. CNT is homogenous and have constant properties.
5. CNT have constant cross-section, hence constant moment of Inertia.

Figure 1. Schematic of the SWCNT with Static and Moving uniformly distributed pressure at the surfaces

By incorporating the above assumptions into the classic Euler-Bernoulli beam model, the vibration of
Figure 1 can be described by the model:

EICNT ∂4χ

∂x4 +

(
EA

1− 2v∗α∗θ − T
)

∂2χ

∂x2 + M
∂2χ

∂t2 + Kχ = P(x) (3)
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Substituting Equation (1) into Equation (3) and simplifying, the model becomes:

EICNT ∂4χ

∂x4 +

(
EA

1− 2v∗α∗θ − T
)

∂2χ

∂x2 + M
∂2χ

∂t2 + Kχ = µACNT d
dx

(
P0

(
1 +

δ

LCNT x
))

(4)

3. Methods of solution using integral transforms

Since the resulting model in Equation (4) contains both spatial and temporal part, a superb approach of
applying Laplace transform to the temporal and Fourier transform to the spatial terms is adopted. In this
present study, the linear transient model in Equation (3) will be solved exactly using Integral transform.

3.1. Basic principle of the integral transforms

Fourier transforms can be used to transform second and higher-order spatial derivatives. Although,
the inversion of Fourier transform is usually easier than the inversion of Laplace transform, there are some
functions which do not have Fourier transform as they have in Laplace transform. Fourier transform could be
used to solve problems in.

1. Finite domains (0 ≤ x ≤ L)
2. Semi-infinite domain, and (0 ≤ x ≤ ∞,−∞ ≤ x ≤ 0)
3. Infinite domains unlike Laplace transform (−∞ ≤ x ≤ ∞)

The transform of a finite fourier cosine function is:

Fc = f̄ (n) =
∫ l

0
cos
(nπx

L

)
f (x)dx 0 ≤ x ≤ L, where n = index counter 1, 2, 3, . . . .

The operational properties of the finite fourier cosine function are:

Fc

[
d f
dx

]
= −(1)n f (l)− f (0) +

nπ

L
f̄s(n) (5)

Fc

[
d2 f
dx2

]
= −(1)n d f

dxx=L
− d f

dxx=0
− n2π2

L2 f̄s(n)

Generally,

Fc

[
d2N f
dx2N

]
= (−1)nβ2n f̄c −

n−1

∑
m=0

(−1)mβ2m ∂2n−2m−1 f (0+)
∂x2n−2m−1 f or n ≥ 1 provided that |d

m f
dxm | → 0 as x → ∞

[
d2n+1 f (x)

dx2n+1

]
= (−1)nβ2n+1 f̄s −

n

∑
m=1

(−1)mβ2m ∂2n−2m f (0+)
∂x2n−2m n ≥ 1.

The finite Fourier cosine inverse transform is:

F−1
c [ ¯f (n)] = f (x) =

f̄ (n = 0)
L

+
2
L

∞

∑
n=1

f̄ (n) cos
(nπx

L

)
. (6)

The finite Fourier sine transform of a function is defined as:

Fs[ f (n)] = ¯f (x) =
∫ l

0
f (x)sin

(nπx
L

)
0 ≤ x ≤ L. n = 1, 2, 3, . . . .

The operational properties of the sine transform of a function are:

Fs

[
d f
dx

]
= −nπ

L
f̄c(n)



Eng. Appl. Sci. Lett. 2019, 2(3), 40-52 43

Fs

[
d2 f
dx2

]
= −nπ

L
[ f (0)− (−1)n f (L)]− n2π2

L2 f̄c(n)

Fs

[
d3 f
dx3

]
= −

[nπ

L

]3
f̄ . (7)

Generally, we have

Fs

[
d2N f
dx2N

]
= (−1)nβ2n fs +

n

∑
m=1

(−1)m+1β2m−1 ∂2n−2m f (0+)
∂x2n−2m . (8)

Thus, if the boundary value problem of a 2nd-order derivative extends over a finite domain and has 1st-type
boundary condition at both ends [ f (0) = f0 at x = 0, f (L) = fL at x = L],the finite Fourier sine transform can
be used to transform the 2nd- order derivatives.

The finite Fourier sine inverse transform is:

F−1
c
[

f̄ (n)
]
= f (x) =

2
L

∞

∑
n=1

f̄ (n)sin
[nπx

L

]
0 ≤ x ≤ L. (9)

3.2. Method of solution: Laplace and Fourier transform

Recall that the linear transient governing equation as shown in Equation (4) may be expressed as

M
∂2χ

∂t2 + EICNT ∂4χ

∂x4 +

[
EA

1− 2v∗
α∗θ − T

]
∂2χ

∂x2 + Kχ = µACNT P0
δ

LCNT (10)

subject to the initial and pinned-pinned conditions:

χ(x, 0) = χ̇(x, 0) = 0,

χ(0, t) = χ”(0, t) = 0,

χ(LCNT , t) = χ”(LCNT , t) = 0.

Applying Laplace transform on the temporal term gives

M
[
s2χ̄(x, s)− sχ(x, 0)− χ̇(x, 0)

]
+ EICNT d4χ̄

dx4

[
EA

(1− 2V∗)
α∗θ − T

]
d2χ̄

dx2 + Kχ = µACNT P0
δ

sLCNT . (11)

Using the initial condition and applying Fourier transform to the spatial terms, we have

µACNT P0
δ

sLCNT

(
LCNT

iπ

) [
1− (−1)i

]
= Ms2 ˜̄χ + EICNT

((
iπ

LCNT

)4 ˜̄χ− iπ
LCNT

)3

[χ(0)

−(−1)iχ(LCNT)
]
+

iπ
LCNT

[
χ”(0)− (−1)iχ”(LCNT)

]
+

[
EA

(1− 2V∗)
α∗θ − T

] [
−
(

iπ
LCNT

)2 ˜̄χ
+

iπ
LCNT

] [
χ(0)− (−1)iχ(LCNT)

]
+ K˜̄χ.

Applying the boundary conditions and grouping like terms

˜̄χ =
µACNT P0δ

(
1

iπ

) [
1− (−1)i]

s
[

Ms2 + EICNT
(

iπ
LCNT

)4
−
[

EA
(1−2V∗)α∗θ − T

] (
iπ

LCNT

)2
+ K

] . (12)

3.3. Determination of the natural frequency

From Equation (12), the denominator may be arranged to take the form:
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˜̄χ =
µACNT P0δ

(
1

iπ

) [
1− (−1)i]

s
[

s− j
[

I
M

[
EICNT iπ

LCNT

]4
−
[

EA
(1−2V∗)α∗θ − T

]] (
iπ

LCNT

)2
+ K

]
µACNT P0δ

(
1

iπ

) [
1− (−1)i][

s + j
[

I
M

[
EICNT iπ

LCNT

]4
−
[

EA
(1−2V∗)α∗θ − T

]] (
iπ

LCNT

)2
+ K

] . (13)

The natural frequencies can be determined from the poles of Equation (12) as:

ωi =

√√√√{ 1
M

[
EICNT

(
iπ

LCNT

)4
−
[

EA
(1− 2V∗)

α∗θ − T
] (

iπ
LCNT

)2
+ K

]}
(14)

The displacement of the nanotube will be realized by finding inverse Laplace transform of Equation (12). That
is

χ̃ =
µACNT P0δ(LCNT)4

iπ
(

EICNT(iπ)4 −
(

EA
1−2v∗ α∗θ − T

)
(iπLCNT)2 + K(LCNT)4

)

×

[
1 + (−1)i+1 + cosh

{√
(LCNT)4 M(−EICNT(iπ)4+( EA

1−2v∗ α∗θ−T)(iπLCNT)2−K(LCNT)4)t

(LCNT)4 M

}
1 + (−1)i

]
iπ
(

EICNT(iπ)4 −
(

EA
1−2v∗ α∗θ − T

)
(iπLCNT)2 + K(LCNT)4

) (15)

and the Fourier inverse of Equation (15) becomes:

χ(x, t) =
2

LCNT

∞

∑
i=1

µACNT P0δ(LCNT)4

iπ
(

EICNT(iπ)4 −
(

EA
1−2v∗ α∗θ − T

)
(iπLCNT)2 + K(LCNT)4

)

×

[
1 + (−1)i+1 + cosh

{√
(LCNT)4 M(−EICNT(iπ)4+( EA

1−2v∗ α∗θ−T)(iπLCNT)2−K(LCNT)4)t

(LCNT)4 M

}
1 + (−1)i

]
iπ
(

EICNT(iπ)4 −
(

EA
1−2v∗ α∗θ − T

)
(iπLCNT)2 + K(LCNT)4

) (16)

Equation (16) is the desired exact solution that represents deflection of the SWCNT.

3.4. Determination of the SWCNT Bending moment and Shear force

The bending moment is related to the SWCNT deflection by [39]:

B(x, t) = −EICNT ∂2χ

∂x2 (17)

Similarly, the shear force is related to the SWCNT deflection by:

S(x, t) = −EICNT ∂3χ

∂x3 (18)
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Substituting Equation (16) into Equations. (17, 18), we have

B(x, t) = −EICNT ∂2

∂x2

 2
LCNT

∞

∑
i=1

µACNT P0δ(LCNT)4

iπ
(

EICNT(iπ)4 −
(

EA
1−2v∗ α∗θ − T

)
(iπLCNT)2 + K(LCNT)4

) sin
nπx
LCNT



×

[
1 + (−1)i+1 + cosh

{√
(LCNT)4 M(−EICNT(iπ)4+( EA

1−2v∗ α∗θ−T)(iπLCNT)2−K(LCNT)4)t

(LCNT)4 M

}
1 + (−1)i

]
iπ
(

EICNT(iπ)4 −
(

EA
1−2v∗ α∗θ − T

)
(iπLCNT)2 + K(LCNT)4

)

S(x, t) = −EICNT ∂3

∂x3

 2
LCNT

∞

∑
i=1

µACNT P0δ(LCNT)4

iπ
(

EICNT(iπ)4 −
(

EA
1−2v∗ α∗θ − T

)
(iπLCNT)2 + K(LCNT)4

) sin
nπx
LCNT



×

[
1 + (−1)i+1 + cosh

{√
(LCNT)4 M(−EICNT(iπ)4+( EA

1−2v∗ α∗θ−T)(iπLCNT)2−K(LCNT)4)t

(LCNT)4 M

}
1 + (−1)i

]
iπ
(

EICNT(iπ)4 −
(

EA
1−2v∗ α∗θ − T

)
(iπLCNT)2 + K(LCNT)4

) .

(19)

The bending moment using the series at i = 3 which is the converged point becomes;

B(x, t) = 2
EIn2π2

L3

[
µAP0εL3

π(EIπ4 − (AP− Nt − T)L2π + KL4)

×
[

2− 2cosh

[√
(−EIπ4 + (AP− Ni − T)L2π2 − KL4) L4M

L4M
t

]]

+
1
3

µAP0εL3

π(81EIπ4 − 9(AP− Nt)L2π2 + KL4)

[
2− 2cosh

[√
(−81EIπ4 + 9(AP− Nt − T)L4M)

L4M
t

]]]
sin

nπx
L

.

(20)

And the shear force becomes:

S(x, t) = 2
EIn3π3

L4

[
µAP0εL3

π(EIπ4 − (AP− Nt − T)L2π + KL4)

×
[

2− 2cosh

[√
(−EIπ4 + (AP− Ni − T)L2π2 − KL4) L4M

L4M
t

]]

+
1
3

µAP0εL3

π(81EIπ4 − 9(AP− Nt)L2π2 + KL4)

[
2− 2cosh

[√
(−81EIπ4 + 9(AP− Nt − T)L4M)

L4M
t

]]]
cos

nπx
L

.

(21)

4. Results and Discussion

Figure 2 depicts the convergence criteria based on the number of iteration (i) in the close form solution
for the deflection of the simply supported SWCNT. The computational time associated with each iteration is
shown in Table 1. It is clear that at i = 3, the solution has already converged, hence, extending the iteration
above three will only increase the computational time and cost with negligible effect on the improvement of
the established solution.

4.1. Effect of the modal number on the deflection of the SWCNT

Figure 3 displays the simply supported SWCNT deflection along its length for the first five mode shapes.
Critical visualization shows that as the modal number associated with the kernel that defines the boundary
condition increases, the stability of the SWCNT under study decreases as a result of an increase in the cycles
covered by the SWCNT for the same length. These occur because the kernel depends on the modal number.
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Figure 2. Convergence criteria

Table 1. Convergence criteria based on the number of iteration (i) in the close form solution for the deflection
of the SWCNT

Iteration Maximum deflection Computational time (secs)
i chi(pm) n = 1 n = 2 n = 3 n = 4

1 1.600 0.256784 0.323885 0.435583 0.436961
2 1.601 0.296788 0.323900 0.436781 0.446962
3 3.700 0.456733 0.466385 0.468551 0.486001

10 3.700 1.236734 1.523877 1.835101 1.999921
15 3.700 3.456780 3.723335 3.935513 4.001610

Figure 3. SWCNT modes with pinned-pinned condition

4.2. Dynamic response of the SWCNT

Figure 4, 5, 6, 7 depict the three dimensional dynamic response associated with the SWCNT for the first
four modes. As the mode number increases, the number of cycles completed as shown by the dynamic
behaviour of the system increases. A critical assessment shows that it is possible to track the behaviour of
the CNT at any instance. The dynamic analysis is important as it helps in the quick monitory and adjustment
of the CNT during application.

The model derived in the present study was reduced to the model of Coskun et al. [40] beam model and
a very good agreement was obtained as shown in Table 2.
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Figure 4. Dynamic response of the SWCNT for mode 1

Figure 5. Dynamic response of the SWCNT for mode 2

Figure 6. Dynamic response of the SWCNT for mode 3

4.3. Effect of modal number and length on the frequency of the SWCNT

Figure 8 depicts the influence of modal number and length on the frequency of the SWCNT. A careful
study helps visualizes the effect of these two important parameters on stability of the SWCNT. The frequency
of SWCNT which is a vital parameter in the study of the SWCNT stability reaches some THz and continues
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Figure 7. Dynamic response of the SWCNT for mode 4

Table 2. Comparison of present study with Coskun et al. [40] exact method for pinned - pinned condition

Mode shape
Mode Coskun et al. [40] Present study

1 3.14159265 3.14159265
2 6.28318531 6.28318531
3 9.42477796 9.42477796
4 - 12.56637061
5 - 15.70796327

to increase as the modal number increases. This astonishing property enables SWCNT to offer exceptional
optical and mechanical properties although there is always need to dampen the frequency to an application
limit. These two parameters as a result of their tremendous effects on frequency may be used to annul the
effect on each other when one of them is desired based on the requirement of the engineering design and
applications. The dimensional frequency model obtained in the present study was also reduced to the level of

Figure 8. Effect of modal number on the frequency

Belhadj et al. [26] SWCNT model and a very good agreement was obtained for the first three modes as shown
in Table 3.
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Table 3. Comparison of the present study with exact solution of Belhadj et al. [26] for pinned - pinned condition
for the frequency of the SWCNT (THz)

Length (nm) Belhadj et al. [26] Present study
Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

1 0.3 1.0 2.5 0.3 1.0 2.5
2 0.2 0.6 1.6 0.2 0.6 1.6
3 0.2 0.4 0.7 0.2 0.4 0.7
4 0.2 0.3 0.5 0.2 0.3 0.5
5 0.2 0.2 0.2 0.2 0.2 0.2

4.4. The Shear force and bending moment of the SWCNT

Figure 9, 10, 11, 12 depict the three dimensional Shear force and bending moment diagram of the SWCNT
for the first two modes. A critical assessment shows that it is possible to track the positions of maximum shear
and maximum moment for proper design of the CNT device. The dynamic analysis is important as it helps in
the quick monitory and adjustment of the CNT during application.

Figure 9. Shear force Diagram of the SWCNT for mode 1

Figure 10. Shear force Diagram of the SWCN for mode 2
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Figure 11. Bending moment Diagram of the SWCNT for mode 1

Figure 12. Bending moment Diagram of the SWCNT for mode 2

5. Conclusion

In this paper, analytical investigations of dynamic response of a SWCNT subjected to an external uniform
pressure have been carried out using Integral transform. The exact solution as presented in the present study
was reduced to the model of Coskun et al. [40] beam model and a very good agreement was obtained. The
natural frequency as obtained in this study was also reduced to the model of Belhadj et al. [26] and an excellent
agreement was reached. It was established that the Integral transform gave a good result and was efficient for
the problem investigated. Also, some necessary parametric studies were performed to fully understand the
dynamic behaviour of SWCNTs and to justify the widespread application of SWCNTs subjected to a uniformly
distributed pressure acting externally. Furthermore, the dynamic study reveals that a point of maximum
shear force on the CNT produces the minimum bending moment at any mode and for any parameter value
considered. It is envisaged that this work will enhance the use of SWCNT under the influence of uniform
surface pressure to structural, electrical and mechanical applications.
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