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Abstract: Dynamic analysis of isotropic thin rectangular plate resting on two-parameter elastic foundations
is investigated. The governing system is converted to system of nonlinear ordinary differential equation
using Galerkin method of separation. The Ordinary differential equation is analyzed using hybrid method
of Laplace transform and Variation of iteration Method. The accuracies of the analytical solutions obtained
are verified with existing literature and confirmed in good agreement. Thereafter, the analytical solutions are
used for parametric studies. From the results, it is observed that, increase in elastic foundation parameters
increases the natural frequency. Increase in aspect ratios increases the natural frequency. It is expected that
the present study will add value to the existing knowledge in the field of vibration.

Keywords: Analytical solution, deflection, Laplace variation of iteration method, natural frequency, Winkler
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1. Introduction

R esearch into vibration analysis of thin isotropic rectangular plate resting on elastic nonlinear foundation
is vast gaining significant awareness among researchers due to its wide applications and important in

the field of engineering. Geotechnics engineers need to understand the behaviour of plates when embedded in
soil for their design, structural engineers requires same information for the design of the structural foundations
likewise highway engineers rely on the information for the highway pavement design. In the design of elastic
soil foundation, the adoption of two- parameter foundations gives better results than the use of Winkler
foundation alone, which is associated with limitation of shear interaction among the spring elements. In the
study of dynamic behavior of plates, Jain et al. [1] worked on free vibration of rectangular plate. In another
work, natural frequency of rectangular plate was determined by Bhat [2] using Rayleight method. Few years
later, Balkaya [3] investigated the dynamic response of rectangular plate using differential transform method
(DTM). Thereafter, Gupta et al. [4] analyzed forced vibration of rectangular plate with varying thickness. In a
further study, some other researchers [5–10] studied buckling and vibration of plates and beams.

Several authors already applied different method of solutions for analysis of thin rectangular plate.
However, in numerical analysis [9–23], it is very important to carry out convergence and stability study
which increases the computational time and cost otherwise the solution will diverge. Furthermore, exact
method [24–26] are having the limitation of handling nonlinear problem due to the complex mathematics
involved. These limitations had led to the introduction of semi-analytical methods. Ozturk and Coskun [27]
used Homotopy perturbation method (HPM) in the study of plate dynamic behaviour. However, despite the
effectiveness, there is setback of finding embedded parameters. In another study, Galerkin method of solution
was adopted by Njoku [28] for vibration analysis of thin isotropic rectangular plate. The method suffers the
limitation of extension of the series solution to provide precise result. In a later work, Pirbodaghi et al.[29]
utilized Homotopy analysis method (HAM) for investigation of vibration analysis of beam. HAM suffers from
limitation of assumption of solution for the expression. Variation of iteration method (VIM), was first proposed
by He [30–36], has been applied to investigate many nonlinear partial differential equation. The approach uses
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Lagrange multiplier to find the analytical solution with very fast convergence. This present study adopts
the use of exact method to handle the linear part of the system governing equation and solving the rest of
equation with very effective method of VIM. The advantage of this method over other hybrid method calls for
its application in this research.

Despite the effectiveness of the method and high prediction of results, the author realized that, with
several researches on dynamic analysis of plate, Laplace transform and VIM has not been used to determine
analytical solution of thin rectangular isotropic plate resting on two-parameter foundations. Therefore, the
present study is on determination of analytical solution of free vibration of thin isotropic rectangular plate
resting on nonlinear foundation. The analytical solution obtained is used for investigation of the controlling
parameters.

2. Problem formulation and mathematical analysis

Considering homogenous rectangular plate of uniform thickness resting on Winkler and Pasternak
foundations as shown in Figure 1. The two opposite edge y = 0 and y = b are regarded as simply supported.

Figure 1. Rectangular plate resting on two-parameter foundations

Figure 2. Geometry of plate with boundary conditions

The domain are 0 ≤ x ≤ a, 0 ≤ y ≤ b where a and b represents the length and breadth of the rectangular
plate as shown in Figure 2. The following assumptions are made for the development of the governing
equation [37]:

1. Normal stresses in the direction transverse to the plate are considered small.
2. Thickness of plate is smaller compared to the other dimensions.
3. Plate is of constant thickness.
4. Normal to the undeformed middle surface remains straight and unstretched in length and still normal

to the deformed middle surface.

The governing equation for thin isotropic rectangular plate as reported by Leissa [38] is;

D
(

∂x4w(x, y, t)
∂x4 + 2

∂4w(x, y, t)
∂x2∂y2 +

∂4w(x, y, t)
∂x4

)
+ ρh

∂2w(x, y, t)
∂t2 + Kww(x, y, t) + Kpw3(x, y, t) = 0, (1)

where, w(x, y, t) represents the transverse deflection, D is the flexural rigidity Eh3

12(1−v2)
, represents modulus

of elasticity h, represents the plate thickness, v represents the Poisson ratio of plate material, ρ represents the
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mass density of the plate, ω represents the radial frequency (rad/s), kw, and kp are Winkler foundation and
Pasternak foundation parameter respectively.

Using the following dimensionless variables:

W =
w

wmax
, X =

x
a

, Y =
y
b

. (2)

According to Kantorovich type approximation, the free vibration of Equation (1) can be written as:

w(x, y, t) = w(x, y)ejωt, (3)

Ω2 =
a4 ph

D
ω2, kw =

a4kw

D
, kp =

a4kpw2
max

D
, (4)

∂4W(x, y)
∂X4 + 2λ2 W(x, y)

∂X2∂Y2 + λ4 ∂4W(x, y)
∂Y4 −Ω2W(x, y) + kwW(x, y) + kpW3(x, y) = 0. (5)

Assuming the two opposite edges of Figure 1, Y = 0 and Y = 1 to be simply supported, deflection
function can be represented as follows:

W = W(X)sin(mπY). (6)

Substituting the derivative of Equation (6) into governing differential equation

d4W(X)

dX4 − 2λ2m2π2 d2W(x)
dX2 − (Ω2 − kw − λ4m4π4)W(X) + kpW3(X) = 0, (7)

where λ

(
a
b

)
represents the aspect ratio, m is an integer, Ω is the frequency parameter, a represents side

length along x− axis.

2.1. Boundary conditions

Three boundary conditions are considered at X = 0 and X = l namely, Simply supported and clamped
edge (SC), Simply supported and simply supported edge (SS) and Simply supported and free edge conditions
(SF).

Clampededge : W =
dW
dX

= 0, (8)

SimplySupportededge : W =
d2W
dX2 − v(λ2m2π2)W = 0, (9)

Freeedge :
d2W
dX2 − v(λ2m2π2)W = 0,

d3W
dX3 − (2− v)(λ2m2π2)

dW
dX

= 0, (10)

3. Method of Solution: Laplace transform and variation iteration method

3.1. Basic ideal of Laplace transform

If f (t) is a function of a variable t. L F(t) and is defined by the integral:

L {F(t)} = f (s) =
∫ ∞

0
e−stF(t)dt. (11)

Some of the properties used in this study include:

L {1} = 1
s
(s ≥ 0), (12)
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L {tn} = n!
sn+1 (s ≥ 0), (13)

L {Fn(t)} = nn f (s)− sn−1F(0)− sn−2F′(0) . . . Fn−1(0), (14)

where Fn(t) represents the n− th derivative of F(t) and L {F(t)} = f (s). If Laplace transform of F(t) is
f (s), then the inverse Laplace transform of f (s) is expressed as F(t) = L −{ f (s)}, where L − is called inverse
Laplace operator. The inverse Laplace of Equations (12) and (13) are:

1 = L − 1
s

, (15)

tn = L −
(

n!
sn+1

)
, (16)

3.2. Laplace and variation iteration method

Assuming the following nonlinear differential equation:

Lw(x) + Nw(x) = f , (17)

L represents the linear operator, N is nonlinear operator, f is the source or analytical function. VariatiFon
iteration method use the correction function for Equation (17) as:

wn+1(x) = wn(x) +
∫ x

0
λ(ζ)

[
Lwn(ζ) + Nw̃n(ζ)− f (ζ)

]
dζ, n = 0, 1, 2, . . . , (18)

where λ is general Lagrange multiplier identified through variational theory. The subscript n represents
the nth term and w̃n is a constrained variation (δw̃n = 0).

Laplace transform of both sides of Equation (12) gives:

L
[
wn+1(x)

]
= L

[
wn(x)

]
+L

[ ∫ x

0
λ̄(x− ζ)

[
Lwn(ζ) + Nw̃n(ζ)− f (ζ)

]
dζ]

]
, n = 0, 1, 2, . . . (19)

Apply convolution to Equation (19), we get

L
[
wn+1(x)

]
= L

[
wn(x)

]
+L

[
λ̄(x)×

[
Lwn(x) + Nw̃n(x)− f (x)

]]
= L

[
wn(x)

]
+L

[
λ̄(x)L

[
Lwn(x) + Nw̃n(x)− f (x)

]]
. (20)

Optimal value of λ̄(x− ζ) is obtained taking variation with respect to wn(x) given as;

δ

δwn
L
[
wn+1(x)

]
=

δ

δwn
L
[
wn(x)

]
+

δ

δwn
L
[
λ̄(x)

]
L
[
Lwn(x) + Nw̃n(x)− f (x)

]
. (21)

Applying variation with respect to wn(x) gives:

L
[
δwn+1

]
= L

[
δwn

]
+ δL

[
λ̄
]
L
[
wn
]
. (22)

Assume L is linear differential operator with constant coefficients as;

L(w) = a0w + a1w′ + a2w′′ + · · ·+ an−2wn−2 + an−1wn−1 + anwn (23)

where a′is are constants. The coefficient contains non-constant terms of the form xk. The Laplace transform
of initial operator term is given as:
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L
[
anwn] = ansnL

[
w
]
− an

n

∑
k=1

sk−1wn−k(0). (24)

The variation with respect to w is given as:

L
[
δwn+1

]
= L

[
δwn

]
+L

[
λ̄
][ n

∑
k=0

aksk
]
L
[
δwn

]
=

[
1 +L

[
λ̄
][ n

∑
k=0

aksk
]]

L
[
δwn

]
. (25)

Extremum condition wn+1 needs that δwn+1. Meaning the right hand side of Equation (25) should be set
to zero. Hence stationary condition is;

L
[
λ̄
]
= − 1

n
∑

k=0
aksk

. (26)

3.3. Application of LVIM to the governing equation

Following the basic principle of LVIM , the governing equation is now analyzed as:

L
[
wn+1(x)

]
= L

[
wn(x)

]
+L

[
λ̄
]
L

[
d4Wn(X)

dX4 − 2λ2m2π2 d2Wn(x)
dX2

−(Ω2 − kw − λ4m4π4)Wn(x)− kpW3
n(x)

]
= L

[
wn(x)

]
+L

[
λ̄
][
(λ4m4π4 − 2π2s2λ2m2 + s2 −Ω2 + kw)L

[
wn(x)

]
−w′′n(0)− sw′′n(0)− s2w′n(0)− s3wn(0) + 2m2λ2π2wn(0) + swn(0)− kpL

[
W3(x)

]]
.(27)

Taking variation with respect to wn(x) on both sides of Equation (27), we get

δ

δwn
L
[
wn+1(x)

]
=

δ

δwn
L
[
wn(x)

]
+

δ

δwn
L
[ ¯λ(x)

][
(λ4m4π4 − 2π2s2λ2m2 + s2 −Ω2 + kw)L

[
wn(x)

]
−w′′n(0)− sw′′n(0)− s2w′n(0)− s3wn(0) + 2m2λ2π2wn(0) + swn(0)− kpL

[
W3(x)

]]
(28)

Simplifying Equation (28) gives,

L
[
δwn+1

]
= L

[
δwn

]
+L

[
λ̄
](
(λ4m4π4 − 2π2s2λ2m2 + s2 −Ω2 + kw)L

[
δwn

]
)
)

= L
[
δwn

](
1 +L

[
λ̄
]
(λ4m4π4 − 2π2s2λ2m2 + s2 −Ω2 + kw)

)
(29)

Extremum condition wn+1 needs that δwn+1 = 0 . Meaning the right hand side of Equation (29) should
be set to zero.

1 +L
[
λ̄
]
(π4 − 2π2s2 + s4) = 0, L

[
λ̄
]
= − 1(

π4 − 2π2s2 + s4
) . (30)

For simplicity we adopt,

L
[
λ̄
]
= − 1

s4 . (31)

Substituting Equation (31) into Equation (27) results;
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L
[
wn+1(x)

]
= L

[
wn(x)

]
−L

[ ∫ x

0
λ̄(x− ζ)

[
d4Wn(ζ)

dζ4 − 2m2π2λ2 d2Wn(ζ)

dζ2

−
(
Ω2 −m4π4λ4 − kw

)
Wn(ζ)− kpW3

n(ζ)

]
dζ

]
= L

[
wn(x)

]
−L

[
x3

6

]
L

[
d4Wn(ζ)

dζ4 − 2m2π2λ2 d2Wn(ζ)

dζ2

−
(
Ω2 −m4π4λ4 − kw

)
Wn(x)− kpW3

n(x)
]

. (32)

Assuming

Φ0 =


w(0), if L = d

dx

w(0) + xw′(0), if L = d2

dx2

w(0) + xw′(0) + x2

2! w′′(0), if L = d3

dx3

w(0) + xw′(0) + x2

2! w′′(0) + x3

3! w′′′(0), if L = d4

dx4 ,

(33)

w0 = w(0) + w′(0)x +
1
2!

w′′(0)x2 +
1
3!

w′′′(0)x3. (34)

Applying condition 9 at x = 0 on Equation (34) gives

w0 = w′(0)x +
1
3!

w′′′(0)x3 = ax +
β

3!
x3!. (35)

Then

L
[
w1
]
= L

[
w0
]
−L

[
x3

6

]
L

[
d4W0(x)

dX4 − 2m2π2λ2 d2W0(x)
dX2 −

(
Ω2−m4π4λ4− kw

)
W0(x)− kpW3

0 (x)
]

. (36)

L
[
w1
]
=

αs2 + β

s4 − 1
s4

[
(−m4π4λ4 + Ω2 − kw)(αs2 + β)

s4 +
kp(αs2 + β)3

s12

]
. (37)

Inverse Laplace gives the first iteration:

w1 =

[
− 259459200π4βλ4m4x2 + β3kpx10 − 10897286400π4αλ4m4 + 630αβ2kpx8

+98280α2βkpx6 + 3603600α3kpx4 + 259459200Ω2βx2

−259459200βkwx2 + 10897286400Ω2α− 10897286400αkw

]
x5

1307674368000
+

1
6

x(βx2 + 6α), (38)

L
[
w2
]
= L

[
w1
]
−L

[
x3

6

]
L

[
d4W1(x)

dX4 − 2m2π2λ2 d2W1(x)
dX2 −

(
Ω2 −m4π4λ4 − kw

)
Wx − kpW3

1 (x)
]

, (39)

L
[
w2
]
= L

[
w1
]
− 1

s4

[(
Ω2 −m4π4λ4 − kw

)(
− π4βλ4m4

s8 +
Ω2β

s8 −
βkw

s8 −
π4αλ4m4

s6 +
Ω2α

s6 −
αkw

s6

+
3α2βkp

s12 +
α3kp

s10 +
3αβ2kp

s14 +
β3kp

s16 +
β

s4 +
α

s2

)
+ kp

(
− π4βλ4m4

s8 +
Ω2β

s8 −
βkw

s8 −
π4αλ4m4

s6 +
Ω2α

s6

−αkw

s6 +
3α2βkp

s12 +
α3kp

s10 +
3αβ2kp

s14 +
β3kp

s16 +
β

s4 +
α

s2

)]
. (40)
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Inverse Laplace gives the second iteration:

w2 =

[
− 1424499357221085171226298826358784000000π12β3kpλ12m12x22

+4503328777444754421964800000π8β5k2
pλ8m8x30

−299999564628605370602585328311599104000000π12αβ2kpλ12m12x20

−77022858528000π4β7kpλ4m4x38 + . . .
]

x5 +
1
3

x
(

βx2 + 6α
)

+

[
− 259459200π4βλ4m4x2 + β3kpx10 − 10897286400π4αλ4m4

+630αβ2kpx898280α2βkpx6 − 3603600α3kpx4 + 259459200Ω2βx2 − 259459200βkwx2

+10897286400Ω2α− 10897286400αw

]
x5

1307674368000
, (41)

The same approach is continued till frequency parameter Ω obtained converges. Substituting boundary
condition at x = 1 to find the unknowns introduced results into simultaneous equation.

Table 1. Parameters for validation of the model

Pasternak foundation Winkler foundation Poisson ratio Integer Aspect ratio

Kw Kp v m λ
0 0 0.3 1 1

Table 1 contains parameters for validation of the approach to ascertain the correctness of the results.

ψn
11(Ω)w0 + ψn

12(Ω)w2

ψn
21(Ω)w0 + ψn

22(Ω)w2. (42)

The polynomials are represented as ψ11, ψ12, ψ21 and ψ22. Equation (42) can be written in matrix form as:

[
ψn

11(Ω) ψn
12(Ω)

ψn
21(Ω) ψn

22(Ω)

] [
w0

w2

]
=

[
0
0

]
(43)

The following Characteristic determinant is obtained applying the non-trivial condition

[
ψn

11(Ω) ψn
12(Ω)

ψn
21(Ω) ψn

22(Ω)

]
=

[
0
0

]
(44)

Solving Equation (44) gives the natural frequencies. Substitute the result obtained into Equation (43), we
get

[
245431
40824

32120
19453

−181919
3773

−125273
9460

] [
α

β

]
1

=

[
0
0

]
(45)

Setting α = 1 and find β

[
α

β

]
1

=

[
1

−3.641035489

]
(46)
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Same procedure is repeated for other modes.

w(x) =

[
4.27× 1058π8x4 − 2.36× 1060x6 − 3.34× 1062x4 − 4.58× 1062x2 + 5.28× 1063

1.55× 1064

]
x5

−1
3

[
− 47399

13018
x2 − 6

]
x−

[
3.86× 108x2 − 4.45× 109

1.30× 1010

]
x5 (47)

The following convergence criterion may be used

|Ω(i)
j −Ω(i−1)

j |

Ω(i)
j

≤ ε, j = 1, 2, 3, . . . , n (48)

where ε is the tolerance parameter taken to be 0.0001 for this study, Ωj represents the Eigenvalue.
The iteration converges at third iteration for first mode frequency parameter.

4. Results and discussion

The solution of Laplace and Variation iteration method is presented here. Table 2 shows the comparison
of present results to that of previously published work. It is realized from the Table 2 that, good agreements
is achieved with that of the past results.The fundamental modal shape of the thin rectangular plate are shown
in Figures 3, 4, 5 and it is observed that the shape obeys classical plate theory. Also, Table 3 shows different
deflection values of transverse displacement for the first three mode frequency parameters of SC, SS and SF
boundary condition considered. Table 4 shows the convergence study, it is observed that the fundamental
natural frequency converges at the third iteration while higher modes are obtained by increasing the number
of iterations. This phenomenon is peculiar to vibration problem.

Table 2. Showing validation of results

Edge
Condition/Dimensionless

Natural frequency

Simply-supported
(SS)

Simply supported
-Clamped (SC)

Simply-supported
-Free (SF)

Bhat et al. [2] Present Leissa [38] Present Leissa [38] Present
Ω1 19.7392 19.7434 23.6463 23.6486 11.7195 11.7606

Figure 3. Fundamental mode shape of simply supported condition at both edges
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Figure 4. Fundamental mode shape of simply supported with clamped edge condition

It is also observed that, the presence of elastic foundation and aspect ratio has no significant changes on
the mode shape of the rectangular plate. Since dimensionless analysis is carried out, the results are valid for all
thin plates. Table 4 shows that the value of frequency parameters Ω decreases in the order of SC ≥ SS ≥ SF.

Figure 5. Fundamental mode shape of Simply Supported Condition at one edge and free at other edge

4.1. Effect of foundation parameter on natural frequency

Table 5 illustrates the impact of foundation parameter on natural frequency. It is clear from the Figures
6, 7 and 8 that the foundation parameter has impact on natural frequency, increasing values of the foundation
parameter increases the natural frequency. This satisfies the principle of classical vibration. Stiffness increment
results to natural frequency increment. This also corroborated with finding reported in [38]. The effect of
increase in natural frequency is much significant in higher values of the elastic foundation.

4.2. Effect of variation of aspect ratio on natural frequency

The influence of aspect ratio on natural frequency are shown in Table 6 and Figures 9, 10, 11 respectively.
It is shown that, the natural frequency increase with increases in aspect ratio. This is because, the plate becomes
more stiff as the aspect ratio increases resulting in the natural frequency increases.
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Table 3. Results of different deflection values

Transverse
displacement

SF SS SC SF SS SC SF SS SC

Ω1 Ω2 Ω3

w[0] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
w[0.05] 0.0500 0.0498 0.0497 0.0496 0.0492 0.0490 0.0489 0.0482 0.0479
w[0.10] 0.0998 0.0984 0.0978 0.0970 0.0935 0.0921 0.0916 0.0858 0.0837
w[0.15] 0.1492 0.1445 0.1425 0.1400 0.1288 0.1240 0.1224 0.1048 0.0983
w[0.20] 0.1981 0.1871 0.1825 0.1767 0.1514 0.1410 0.1376 0.1009 0.0881
w[0.25] 0.2464 0.2251 0.2163 0.2054 0.1592 0.1409 0.1351 0.0750 0.0556
w[0.30] 0.2938 0.2575 0.2429 0.2248 0.1514 0.1237 0.1153 0.0328 0.0091
w[0.35] 0.3403 0.2836 0.2615 0.2340 0.1288 0.0915 0.0807 -0.0166 -0.0397
w[0.40] 0.3857 0.3027 0.2715 0.2323 0.0935 0.0482 0.0358 -0.0623 -0.0784
w[0.45] 0.4300 0.3144 0.2727 0.2199 0.0492 -0.0011 -0.0134 -0.0945 -0.0973
w[0.50] 0.4732 0.3183 0.2652 0.1971 0.0000 -0.0506 -0.0607 -0.1061 -0.0915
w[0.55] 0.5153 0.3144 0.2496 0.1647 -0.0492 -0.0945 -0.0998 -0.0946 -0.0624
w[0.60] 0.5564 0.3027 0.2266 0.1239 -0.0935 -0.1275 -0.1254 -0.0624 -0.0173
w[0.65] 0.5967 0.2836 0.1976 0.0760 -0.1288 -0.1462 -0.1340 -0.0167 0.0326
w[0.70] 0.6363 0.2575 0.1641 0.0227 -0.1514 -0.1487 -0.1240 0.0327 0.0751
w[0.75] 0.6757 0.2251 0.1279 -0.0345 -0.1592 -0.1356 -0.0958 0.0750 0.0999
w[0.80] 0.7154 0.1871 0.0914 -0.0939 -0.1514 -0.1095 -0.0520 0.1009 0.1018
w[0.85] 0.7561 0.1445 0.0571 -0.1542 -0.1288 -0.0754 0.0036 0.1048 0.0821
w[0.90] 0.7987 0.0984 0.0281 -0.2148 -0.0935 -0.0400 0.0664 0.0859 0.0487
w[0.95] 0.8444 0.0498 0.0078 -0.2753 -0.0492 -0.0117 0.1325 0.0482 0.0155
w[1.00] 0.8948 -9.0000 -9.0000 -0.3364 0.0000 0.0000 0.1995 0.0000 0.0000

Table 4. Showing convergence study of the results

Edge
Condition

/Dimensionless
Natural frequency

Iteration (SS) (SC) (SF)

Bhat et al. [39] Present Leissa [38] Present Leissa [38] Present

Ω1 N3 19.7392 19.7434 23.6463 23.6486 11.7195 11.7606
Ω1 N4 19.7392 19.9574 23.6463 23.8905 11.7195 11.7445
Ω2 49.3481 49.3271 58.6465 58.6240 27.7563 27.7563
Ω1 N6 19.7392 19.7418 23.6463 23.6487 11.7195 11.6855
Ω2 49.3481 49.0637 58.6465 58.3220 27.7563 27.6965
Ω1 N7 19.7392 19.7394 23.6463 23.6465 11.7195 11.6846
Ω2 49.3481 49.3271 58.6465 58.6240 27.7563 27.7563

Table 5. Variation elastic foundation coefficient on natural frequency

Edge
Condition

Natural
frequency kw=5 kw=15 kw=45 kw=120 kw=200 kw=250

SS Ω1 19.865457 20.115575 20.847934 22.575127 24.282429 25.291033
Ω2 49.398659 49.49977 49.801882 50.549258 51.334467 51.81918

SC Ω1 23.751809 23.961395 24.579431 26.060476 27.552648 28.445534
Ω2 58.688978 58.774102 59.02877 59.660676 60.327409 60.7404

SF Ω1 11.896571 12.309687 13.473248 16.016504 18.34471 19.660326
Ω2 27.846269 28.025251 28.555467 29.839817 31.151479 31.94393
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Figure 6. Variation of elastic foundation parameter on SF edge condition

Figure 7. Variation of elastic foundation parameter on SS-edge condition

Figure 8. Variation of elastic foundation parameter on SC-edge condition



Eng. Appl. Sci. Lett. 2019, 2(4), 6-20 17

Figure 9. Variation of Aspect ratio on SF edge condition

Figure 10. Variation of Aspect ratio on SS edge condition

Figure 11. Variation of Aspect ratio on SC edge condition
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Table 6. Variation of aspect ratio on natural frequency

Edge
Condition

Natural
frequency λ = 0.4 λ = 0.7 λ = 1.0 λ = 1.5 λ = 2.5 λ = 3.0

SS Ω1 11.448741 14.705711 19.739209 32.076214 71.554632 98.696055
Ω2 41.057554 44.314525 49.348024 61.685024 101.16349 128.3048

SC Ω1 16.627624 19.277232 23.64632 35.051125 73.438926 100.26994
Ω2 51.326727 54.171092 58.646365 69.912813 107.42 133.79231

SF Ω1 3.0081474 6.562375 11.684537 24.010127 63.28683 90.296225
Ω2 17.636147 21.826148 27.756345 41.173975 81.606845 108.92412

5. Conclusion

In this study, the dynamic analysis of isotropic rectangular plates resting on Winkler and Pasternak
foundations is analyzed. The governing equation is transform to nonlinear ordinary differential equation
using Galerkin method of separation. The nonlinear ordinary differential equations have been solved using
Laplace transform and variation of iteration method. The accuracies of the obtained analytical solutions were
ascertained with the results obtained by earlier researcher. The obtained analytical solutions were used to
examine the effects of foundation parameter, aspect ratio. The rate of convergence is increased with the
introduction of exact method for analyzing the linear part of the governing equation while the remaining part
are treated with variation of iteration method, practical applications of the study are base plate of tower, steel
hinged steel column structures and culvert covers. From the parametric studies, the following observations
were established:

1. Increase in elastic foundation parameter increases the natural frequency.
2. Increase in aspect ratio increases the natural frequency.
3. Increasing the combine elastic foundation parameters increases the natural frequency.
4. Accurate higher mode frequency can be obtained with increase in number of iterations.
5. SF boundary condition has the least value of frequency parameter followed by SS edge condition.
6. The effect of increase in natural frequency is much significant in higher value of the elastic foundation.

Abbreviations

Abbreviations Nomenclature
a Length of the plate
b Width of the plate
C Clamped edge plate
E Young’s modulus
F Free edge support
S Simply supported edge

d/dx Differential operator
w Dynamic deflection
X space coordinate along the length of thin plate Symbol
h plate thickness
ρ Mass density
D Modulus of elasticity
Ω natural frequency
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