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Abstract: The paper construct continuous and discrete distribution laws, used to assess risks in information
systems. Generalized expressions for continuous distribution laws with maximum entropy are obtained. It
is shown that, in the general case, the entropy also depends on the type of moments used to determine the
numerical characteristics of the distribution law. Also, probabilistic model have been developed to analyze
the sequence of independent trials with three outcomes. Expressions for their basic numerical characteristics
are obtained, as well as for calculating the probabilities of occurrence of the corresponding events.
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1. Introduction

A t the present stage of the development of society, which is characterized by the intensive introduction of
information systems in virtually areas of activity, issues related to the assessment of the risks that occur

during their operation are of particular importance. When analyzing and assessing risks, issues related to the
definition of distribution laws are of the greatest importance. The given work is devoted to the construction of
distribution laws.

In the modeling of information systems, risk is a random variable and is described by a probability
distribution on a given set [1–3]. In contrast to experiments conducted in physics, where the possibility of
their multiple conduct, the conditions of the functioning of information systems are characterized by a constant
impact of negative external influences and are constantly changing [4], and consequently the repetition of the
experiment under the same conditions is practically impracticable. The laws of probability distribution of risk
events, as a rule, do not correspond to the law of the normal Gaussian distribution [5,6].

2. Construction of continuous distribution laws with the maximum entropy

Entropy coefficient is often used [7,8] with the classification of distribution laws of random continuous
value (RV) with number characteristics.

δe =
1

2σ
exp(H). (1)

In the formula (1), σ =
√

µ2 is standard deviation, and µ2 is the second central power moment for this
distribution law; value H is the entropy, which is defined as:

H = −
∫ ∞

−∞
p(x)ln(p(x))dx (2)

where p(x) is the density of probability distribution (PDD) SV. Entropy coefficient has the maximum value for
Gaussian law is δe = 2.066; for uniform law is δe = 1.73 and for Koshi distribution is δe = 0 etc.

The entropy value does not depend on shift parameter, to simple computation let’s consider, that it is
equal to zero. Firstly we need to find distribution law from unilateral laws of distribution of unlimited RV, for
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which entropy value (2) reaches the maximum with the following limitations imposed on probability density
p(x):

p(x) ≥ 0,
∫ ∞

0
p(x)dx = 1,

∫ ∞

0
xν p(x)dx =

βν

ν
, (3)

where β is scale parameter and ν is value of maximum existing primary direct moment. Here and next we’ll
consider positive power moment as a direct moment in accordance with (3) and negative power moment as a
reverse moment.

To find the extremum we’ll use the method of indefinite Lagrange multipliers [9]. We need to maximize

∫ ∞

0

[
− p(x)ln(p(x)) + λ1 p(x) + λ2xν p(x)

]
dx (4)

by inserting Lagrange multipliers λ1 and λ2 and considering the limitations (3). Equating the result of variation
integrand expression in (4) when p(x) = 0, we’ll take the equation relatively to p(x) :

−ln(p(x))− 1 + λ1 + λ2xν = 0 (5)

So, the density p(x) which satisfy (3) and maximizes H can be found from the equation (5):

p(x) = exp(λ1 − 1 + λ2xν). (6)

By substituting (6) in (3) and integrating, we have

exp(λ1)
Γ(1/ν)

ν(−λ2)1/ν
= 1; exp(λ1)

Γ(1/ν)

ν(−λ2)1+1/ν
=

βν

ν
. (7)

From (7), we find that λ2 =
−1
βν

and exp(λ1 − 1) =
v

βΓ( 1
ν )

. Consequently

p(x) =
ν

βΓ(1/ν)
exp
(
−xν

βν

)
(8)

where Ā(z) is gamma function.
From (8), it follows that if only the first beginning direct moment ν = 1 exists than exponential law has the

maximum entropy; if there are two moments (ν = 2) then unilateral Gaussian law and if all direct moments
exist (ν → ∞) than unilateral uniform law. Indeed, the limiting moment (8) with (ν → ∞) is a unilateral
uniform law p(x) = β−1, 0 < x < β. So, if all direct moments exist then uniform law has the maximum
entropy from unilateral distribution laws of RV.

Analogically, for bilateral symmetry laws of distribution of RV, it can be shown that if the first ν of absolute
central direct moments then the probability density has the maximum entropy:

p(x) =
0.5ν

βΓ(1/ν)
exp
(
−|x|ν

β

)
, −∞ < x < ∞. (9)

From (9), it follows that if only first absolute central moment exists (ν = 1) then Laplace distribution
has the biggest entropy; if there are two moments (ν = 2) then Gaussian law and if all direct moments exist
(ν → ∞) then uniform law. Indeed, the limiting case for (9) is a uniform law p(x) = 0.5β−1, − β < x < β.
So, if all direct moments exist then uniform law has the biggest entropy from bilateral symmetry distribution
laws of RV. Considered private cases of bilateral laws with the maximum entropy coincide with already known
laws (Laplace and Gaussian) which have maximum entropy that confirms the correctness of received results.

From analysis of the received expressions (8) and (9), it follows that for increasing the amount of
information about evaluating parameters of distribution laws with big length (with long "tails") with the help
of a method of moments is necessary to use direct moments of lesser order, including fractional order. If the
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parameters of distribution laws with lesser length are used then it is necessary to use direct moment of higher
order.

Let’s find from unilateral distribution laws of unlimited RV distribution law with which entropy value H
reaches maximum with the following limitations imposed on probability density p(x):

p(0) =0, p(x) ≥ 0,
∫ ∞

0
p(x)dx = 1,

∫ ∞

0
x−ν p(x)dx = βµ/ν (10)

where ν is value of maximum existing beginning reverse moment. Considering the entropy is defined by an
expression:

H = −
∫ ∞

0
y−2 p(1/y)ln(y−2 p(1/y))dy = −

∫ ∞

0
p(x)ln(x2 p(x))dx. (11)

where y−2 p( 1
y ) is a probability density RV η which is reverse to ξ and has the probability density p(x).

As a result of using the method of indefinite Lagrange numerators, we’ll receive following expression for
distribution law with the maximum entropy:

p(x) =
νexp(x)
βΓ(1/ν)

exp
(
−exp(νx)

βν

)
. (12)

The limiting case for (12) with ν → ∞ (all reverse moments exist) is a unilateral distribution law of
limitations down from RV p(x) = 1

β x2, 1
β < x < ∞.

Let’s define the bilateral distribution laws of RV for which entropy value H reaches the maximum with
the following limitations imposed on probability density p(x)

p(x) ≥ 0,
∫ ∞

−∞
p(x)dx = 1,

∫ ∞

−∞
exp(νx)p(x)dx = βν/ν, (13)

where ν is the value of maximum existing primary direct exponential moment. Considering the entropy H is
defined by the expression;

H = −
∫ ∞

−∞
p(x)ln(exp(−x)p(x))dx. (14)

By using the method of indefinite Lagrange numerators we’ll receive the following expression for
distribution law with the maximum entropy;

p(x) =
νexp(x)
βΓ(1/ν)

exp
(
−exp(νx)

βν

)
, −∞ < x < ∞. (15)

The limiting case for (15) when ν → ∞ (all direct exponential moments exist) is a distribution law of
bordered above RV p(x) = exp(x)

β ,−∞ < x < ln(β).
Now let’s find such distribution law from bilateral distribution laws of unlimited RV for which the value

of entropy H reaches maximum with the following limitations imposed on probability density p(x):

p(x) ≥ 0,
∫ ∞

−∞
p(x)dx = 1

∫ ∞

−∞
exp(−νx)p(x)dx =

βν

ν
, (16)

where ν is the value of maximum existing primary reverse exponential moment. Considering an entropy H is
defined by the expression:

H = −
∫ ∞

−∞
p(x)ln(exp(x)p(x))dx. (17)
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As a result of using the method of indefinite Lagrange numerators, we’ll receive the following expression
for distribution law with the maximum entropy:

p(x) =
ν exp(−x)
βΓ(1/ν)

exp
(
−exp(−νx)

βν

)
, −∞ < x < ∞. (18)

The limiting case for (18) when ν → ∞ (all direct exponential moments exist) is a distribution law of
bordered above RV p(x) = exp(−x)

β ,−ln(β) < x < ∞.
From the analysis of expressions (15) and (18), it follows that exponential transformation of RV leads to

transformation of form parameter ν in scale parameter and β parameter in shift parameter.
Finally let’s define such distribution law from unilateral distribution laws of unlimited RV for which the

value of entropy H reaches maximum with the following limitations imposed on probability density p(x):

p(0) =0, p(x) ≥ 0,
∫ ∞

0
p(x)dx = 1,

∫ ∞

0
|ln(x)|ν p(x)dx =

βν

ν
, (19)

where ν is the value of maximum existing primary direct logarithmic moment. Considering an entropy H is
defined by the expression:

H = −
∫ ∞

0
p(x)ln(xp(x))dx. (20)

As a result of using the method of indefinite Lagrange numerators, we’ll receive the following expression
for distribution law with the maximum entropy:

p(x) =
ν

2βΓ(1/ν)x
exp
(
−|ln(x)|ν

βν

)
, 0 < x < ∞. (21)

From (21), it follows that if only two absolute logarithmic moments exist (ν = 2 ) then logarithmic normal
law has the biggest entropy. If ν → ∞ (all absolute primary moments exist) then (21) is transforming in
Shannon law for limitations from above and down of RV p(x) = 0.5/βx, exp(−β) < x < exp(β). It is
necessary to notice that with logarithmic transformation of RV scale parameter transforms in form parameter
and shift parameter transforms in scale parameter.

In general case, if RV η connected with RV η� by a ratio y = f (x) and known PDD p(y) of continuous
RV ξ , then PDD p(x) can be found by a method of functional transformation with the help of expression:

p(x) = p(y).
∣∣∣∣ dy
dx

∣∣∣∣ . (22)

Considering (22), the entropy

H = −
∫

Ω
p(y)ln(p(y))dy

takes the form

H = −
∫

Ω
p(x)ln(q(x).p(x))dx (23)

where q(x) =
∣∣∣∣ dy
dx

∣∣∣∣−1
and Ω is the areas of existence RV η and ξ respectively.

3. Distributions arising in the analysis of the sequence of independent tests with three outputs

Next, consider the development of a probabilistic model of a sequence of independent trials with three
outcomes which becomes particularly important in the formation of estimates of the information security of
information processing systems [10].

During the test, it is taken into account that its result is either event A or the opposite event C. The
probability of event A in any test is independent of the outcomes of all other tests (the tests are independent)
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and equal to the probability (this is ensured by the same set of conditions for each test). This scheme of tests
was first considered by J. Bernoulli and bears his name [11–14].

The probability PA(k) of the fact that event A in N tests will come precisely k times (k = 1, 2, . . . , N) is
defined by Bernoulli’s formula [13–15]:

PA(k) =
N!

(N − k)!k!
pk(1− p)N−k, (24)

which represents binomial distribution. For N = 1, it transforms to Bernoulli’s distribution.

PA(k) = pk(1− p)1−k. (25)

The limiting case of binomial distribution when p→ 0 and N → ∞ and product Np aims to some positive
constant value λ (i.e., Np→ ∞) is Poisson’s distribution [13–15].

P(k) =
λk

k!
exp(−λ), 0 ≤ k < ∞. (26)

If sequence of tests with Bernoulli’s scheme continues to appear m "failures" then the number of successes
k obeys to negative binomial distribution

P(k) =
Γ(m + k)
Γ(m)k!

pk(1− p)m, 0 ≤ k < ∞ (27)

where Γ(m) is the gamma function.
Main purpose of this work is to invent sequence probability model of independent tests with three outputs

and with it’s help receive formulas analogue to (24), (26) and (27) for defining the probabilities of coming
coinciding events.

Let it be produced N of independent tests. Every test can end with three outputs: either event A with
the probability p1 will come, or event B with the probability p2 will come, or event C with the probability
(1− p1 − p2) will come. Let’s match random discrete value to random output of every test which takes three
values: -1 if event A happened; 0 if event C happened and 1 if event B happened. Positive or negative output
of every test we’ll consider as a "success" and zero output - "failure". In this the probability of coming events
A, C and B in every test can be found by an expression

P(k) =


p1, k = −1;

1− p1 − p2, k = 0;

p2, k = 1;

(28)

where 0 < p1 < 1, 0 < p2 < 1, p1 + p2 < 1.
This distribution of probabilities, analogically to Bernoulli’s distribution (25), can be called bilateral

Bernoulli’s distribution.
Let’s find characteristic function for distribution (28), using ratio [15]

θ(jϑ) =
1

∑
k=−1

exp(jϑk)P(k). (29)

Using (28), we’ll get

θ(jϑ) = p1exp(−jϑ) + (1− p1 − p2) + exp(jϑ). (30)

Since ongoing tests are independent so characteristic function θN(j, ϑ) of distribution laws P(k) in N tests
will be equal to expression:
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θN(jϑ) = θ(jϑ)N = [p1exp(−jϑ) + (1− p1 − p2) + exp(jϑ)]N . (31)

In this probability distribution P(k) in N tests can be found by the formula:

P(k) =
1

2π

∫ π

−π
Ω(jϑ)Nexp(−jϑk)dϑ, − (N − 1), . . . , N (32)

Let’s find obvious expression for probability distribution P(k) in N tests by substituting (31) in (32) and
integrating

P(k) = (1− p1 − p2)
N ×

(√
p2

p1

)k N

∑
i=|k|

N!
(N − i)!

× B(i, k)
( √

p1 p2

1− p1 − p2

)i

(33)

where B(i, k) = 0.5(1+(−1)+|k|)
Γ(0.5(i−k)+1)η(0.5(i+k)+1) . Expression (10) can be simplified for five private cases:

1. If p1 = p2 = p < 0.5, then

P(k) = (1− 2p)N ×
N

∑
i=|k|

N!
(N − i)!

×
(

p
1− 2p

)i

× 0.5[1 + (−1)i+|k|]

Γ[0.5(i + k) + 1]Γ[0.5(i− k) + 1]
(34)

2. If p1 = (1− p)2, p2 = p2, then

P(k) =
(2N)!

(N − k)!(N + k)!
× p(N + k)(1− p)(N−k), k = −N, − (N − 1), . . . , N (35)

Probability distribution (35), just like distribution (24), is a binomial distribution with not-zero shift
parameter.

3. Let’s view limiting case for distribution (33), when probability of coming value C is aims to zero, i.e.,
(p1 + p2) → 1. In this case every test will end in two outputs: either coming of event A with the
probability (1p), or event B with the probability p. Those outputs can be matched discrete random
value, which takes two values: -1, if event A happened and 1, if event B happened. In this probability
distribution (33), the result can be transformed to distribution:

P(k) = (0.5N![1 + (−1)N+|k|])× (Γ[0.5(N + k) + 1]Γ[0.5(N − k) + 1]−1)×
(

p
1− p

)0.5k

(p(1− p))0.5N

(36)

4. Let’s view the second limiting case for distribution (33), when probability of coming event A aims to
zero, i.e. p1 → 0. In this case every test will end in two outputs: either coming of event C with a
probability (i − p), or event B with a probability p. Those outputs can be matched random discrete
value, which takes two values: 0, if event C happened and 1, if event B happened. This probability
distribution (33) as a result of limiting transition transforms is the binomial distribution (24) and that’s
why received probability distribution (33) can be called generalized Bernoulli’s formula, or bilateral
binomial distribution.

5. Let’s view the third limiting case for distribution (33), when p1 → 0, p2 → 0, N → ∞, and products
Np1, Np2 aim to some positive constant values λ1, λ2 (i.e. Np1 → λ1, Np2 → λ2 ). This probability
distribution (33) in result of limiting transition transforms is the probability distribution either
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P(k) = exp(−λ1 − λ2)

(√
λ2

λ1

)k

×
∞

∑
i=|k|

0.5[1 + (−1)i+|k|]
√

λ1λ2
i

Γ[0.5(i + k) + 1]Γ[0.5(i− k) + 1]
(37)

or

P(k) = exp(−λ1 − λ2)×
(√

λ2

λ1

)k

I|k|(2
√

λ1λ2), −∞ < k < ∞ (38)

where Iν(z) is the modified Bessel’s function.

If parameter λ1 → 0, and parameter λ2 → λ, then distribution (37) or (38) transforms in Poisson’s
distribution (26). That’s why probability distribution (37) or (38) can be called bilateral Poisson’s distribution.
Characteristic function for it is;

θ(jϑ) = exp[−(λ1 + λ2) + λ1exp(−jϑ) + λ2exp(jϑ)]. (39)

The first, second, third and fourth order for distribution (33) can be found from the expressions

m1 = N(p2 − p1); (40)

M2 = N[p2 + P1 − (p2 − p1)
2]

M3 = (p2 − p1)× [N − N(p2 − p1)
2 − 3M2] (41)

M4 = M2[1 + 6(p2 − p1)
2] + 3(1− 1

N
)M2

2 + 3N(p2 − p1)
2[(p2 − p1)

2 − 1]. (42)

To compute these moments, we need asymmetry coefficient Ka and excess coefficient Ke, which are given
as;

Ka =
M3

M1.5
2

; ke =
M4

M2
2
− 3. (43)

Expressions (41), (41) and (42) for moments are significantly simplified for private distribution cases (33).
So, for distribution (33), we have:

m1 = 0, M2 = 2Np, M3 = 0, M4 = M2 + 3(1− 1
N
)M2

2. (44)

In this case

Ka = 0; ke =
0.5− 3p

pN
(45)

For distribution (45), we have:

m1 = N(2p− 1); (46)

M2 = 2Np(1− p);

M3 = 2Np(1− p)(1− 2p);

M4 = 2Np(1− p)× [1 + 6p(1− p)(N − 1)]. (47)

where

Ke =
1− 2p√

2Np(1− p)
, Ke =

1− 6p(1− p)
2Np(1− p)

. (48)
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For distribution (36), we have

m1 = N(2p− 1),

M2 = 4Np(1− p),

M3 = 8Np(1− p)(1− 2p), (49)

M4 = 3M2
2 + 4M2[1 + 6p(1− p)]. (50)

where

Ke =
1− 2p√

Np(1− p)
, Ke =

1 + 6p(1− p)
Np(1− p)

. (51)

For expression (37) or (38), we have

m1 = λ2 − λ1, M2 = λ1 + λ2, M3 = λ2 − λ, M4 = λ1 + λ2 + 3M2
2. (52)

where

Ka =
λ2 − λ1

(λ1 + λ2)1.5 , Ke =
1

λ1 + λ2
. (53)

Probability PB(k) of fact, that event B in N tests will come k times can be found from formula (33), or from
it’s private cases (34), (35), (36), (37) or (38). In this we suppose that PB(k) = P(k), k = 1, 2, . . . , N.

Probability PA(k) of fact, that event A in N tests will come k times can be also found from formula (33), or
it’s private cases (34), (35), (36), (37) or (38). In this we suppose that PA(k) = P(k), k = −1,−2, . . . ,−N.

Probability PC of coming event C in N tests can be found using formula (33), or it’s private cases (35), (36),
(37) or (38). In that we suppose, that PC = P(0). Probability PC matches to probability of fact, that in N cases
events A and B won’t come.

Let’s view the example. Two symmetric coins are being thrown for ten rimes. In every throw three outputs
are possible: two "eagles" with probability 0.25; two "tails of coin" with probability 0.25 and "eagle and tail of
coin" with probability 0.5. It’s necessary to find: 1) probability of fact, that precisely five times two "eagles"
drop; 2) probability Ptt of fact, that precisely three times two "tails of coin" drop; 3) probability Pet of fact, that
precisely five times two "eagles" and three "tales of coin" drop. In the match with example’s condition we have

p1 = p2 = p = 0.25, N = 10; pee = PA(−5), Ptt = PB(3), Pet = PA(−5)PB(3).

i.e., p1 = p2, then we use expression (9) as a counting formula. With it’s help we find, that either

Pee ≈ 0.015, Ptt ≈ 0.075, pet ≈ 1.093× 10−3, (54)

or

P(k) = (1− p1 − p2)
m
(√

p2

p1

)k

×
(
√

p1 p2

)|k| Γ(m + |k|)
Γ(m)

F(k), −∞ < k < ∞, (55)

where F(k) = F1(0.5(m + |k|)), 0.5(m + |k|+ 1), 1 + |k|, 4p1 p2 is the Hypergeometric Gaussian function.
Characteristic function of distribution (54) or (55) has the form

θ(jϑ) = [(1− p1 − p2)× (1− p1exp(−jϑ)− p2(jϑ))−1]m. (56)

Primary moment of the first order and central moments of the second, the third and the fourth orders for
expressions (54) or (55) are defined by expressions

m1 =
m(p2 − p1)

1− p1 − p2
,
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M2 =
m(p2 + p1 − 4p1 p2)

(1− p1 − p2)2 , , (57)

M3 =
m(p2 − p1)

(1− p1 − p2)3 × (1 + p2 + p1 − 8p1 p2), (58)

M4 = m
[

6(p2 − p1)
4

(1− p1 − p2)4 +

(
4(p2 − p1)

2

(1− p1 − p2)3 +
(p1 + p2)

(1− p1 − p2)2

)
× (2p1 + 2p2 + 1)

]
+ 3M2

2. (59)

Let’s view limiting case for distribution (31) or (32), when probability p1 → 0, and probability p2 = p.
In the probability distribution (31) or (32) as a result of limiting transaction transforms in negative binomial
distribution (4). That’s why received probability distribution (31) or (32) can be called bilateral negative
binomial distribution.

Choosing from bilateral binomial, Poisson’s and negative binomial distributions, we can use following
properties of those distributions: Binomial - Ka M2 < 1, Poisson’s - Ke M2 = 1, Negative binomial - Ke M2 > 1.

So, there was developed probability model for sequence of independent tests with three outputs, were
received expressions for it’s general number characteristics, and also for calculating the probabilities of coming
matched events precisely k times. It was shown, that limiting cases of received bilateral distributions are
binomial, negative binomial and Poisson’s distributions.

4. Conclusion

The following results are obtained in this paper

• Generalized expressions for one-way and two-way continuous distribution laws with maximum entropy
depending on the number of existing power, exponential or logarithmic moments. With their help, one
can more reasonably choose the a priori distribution under the conditions of a priori uncertainty in the
analysis of the risks of information systems. From the analysis of expression (23) and its particular cases
(2), (11), (14), (17), (20) at the appropriate values q(x) it follows that in the general case the entropy
depends also on the type of moments used to determine the numerical characteristics of the distribution
law.

• Probabilistic model for a sequence of independent trials with three outcomes, which acquire special
significance in the formation of information security assessments of information systems. Expressions
for its basic numerical characteristics are obtained. It is shown that the limiting cases of the obtained
two-way distributions are the binomial, negative binomial and Poisson distributions.
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