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Abstract: In this paper, a block linear multistep method (LMM) with step number 4 (k = 4) through
collocation and interpolation techniques using probabilists Hermite polynomial as basis function which
produces a family of block scheme with maximum order five has been proposed for the numerical solution
of stiff problems in ODEs. The method is found to be consistent, convergent, and zero stable.The accuracy of
the method is tested with two stiff first order initial value problems. The results are compared with fourth
order Runge Kutta (RK4) method and a block LMM developed by Berhan et al. [1]. All numerical examples
are solved with the aid of MATLAB software after the schemes are developed using MAPLE software.
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1. Introduction

T his study considers the general first order stiff initial value problems of ordinary differential equations
of the form

y′(x) = f (x, y(x)), y(x0) = y0 (1)

The problem of stiffness in most ordinary differential equations (ODEs) has posed a lot of computational
difficulties in many practical application modeled by ODEs. A very important special class of differential
equations taken up in the initial value problems termed as stiff differential equations result from the
phenomenon with widely differing time scales [2,3]. There is no universally acceptable definition of stiffness.
Stiffness is a subtle, difficult and important concept in the numerical solution of ordinary differential equations.
It depends on the differential equation, the initial condition and the interval under consideration. The
initial value problems with stiff ordinary differential equations occur in many field of engineering science,
particularly in the studies of electrical circuits, vibrations, chemical reactions and so on. Stiff differential
equations are ubiquitous in astrochemical kinetics, many non-industrial areas like weather prediction and
biology. A set of differential equations is ‘stiff’ when an excessively small step is needed to obtain correct
integration.

Linear multistep methods (LMMs) are very popular for solving first-order initial value problems (IVPS).
LMMs are not self-starting hence, need starting values from single-step methods like Euler’s method and
Runge-Kutta family of methods. The general k-step method or LMM of step number k is given by Lambert [4]
as follows

k

∑
j=0

αjyn+j = h
k

∑
j=0

β j fn+j (2)

where the coefficients αj’s and β j ’s are real constants. The LMM in Equation (2) generates discrete schemes
which are used to solve first-order ordinary differential equations.

The techniques for the derivation of continuous LMMs for direct solution of initial value problems in
ordinary differential equations have been discussed in literature over the years and these include, among
others collocation, interpolation, integration, and interpolation polynomials. Basis functions such as, power
series, Chebyshev polynomials, trigonometric functions, monomials, the canonical polynomial of the Lanczos
Tau method in a perturbed collocation approach have been employed for this purpose [1,5–8].
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Berhan et al. [1] constructed block procedure with implicit sixth order linear multistep method using
Legender polynomial for solving stiff initial value problems. In this study, we constructed implicit linear
multistep method in block form of uniform step size for the solution of stiff first order ordinary differential
equation using probabilists Hermite polynomial as a base function. The procedure yields four linear multistep
schemes which are combined as simultaneous numerical integrators to form block method. The method is
found to be consistent and zero-stable and hence convergent. Briefly, the present method is stable, accurate
and effective method for solving stiff first order differential equations.

2. Description of the method

2.1. Derivation of the linear multistep methods

In [9,10], some continuous LMM of the type in Equation (3) were developed using the collocation function
of the form:

y(x) =
k

∑
j=0

αjxj. (3)

Awoyemi et al. [11] proposed a similar function to Equation (3) as

y(x) =
k

∑
j=0

αj(x− xk)
j (4)

to develop LMM for the solution of third-order IVPs. Adeniyi and Alabi [12] used Chebyshev polynomial
function of the form:

y(x) =
k

∑
j=0

αjTj

(
x− xk

h

)
,

where Tj(x) are Chebyshev functions to develop continuous LMM.
In this paper, we applied the Probabilists Hermite polynomial proposed by Koornwinder et al. [13] which

is given as

y(x) = ∑k
j=0 αj Hj(x− xk),

where Hj are probabilists Hermite polynomials generated by the recursive relation

Hn+1(x) = xHn(x)− Hn′(x), H0 = 1.

The first seven probabilists Hermite polynomials are

H0 = 1,

H1 = x,

H2 = x2 − 1,

H3 = x3 − 3x,

H4 = x4 − 6x2 + 3,

H5 = x5 − 10x3 + 15x,

H5 = x5 − 10x3 + 15x,

H5 = x5 − 10x3 + 15x,

H5 = x5 − 10x3 + 15x,

H6 = x6 − 15x4 + 45x2 − 15.

(5)

We wish to approximate the exact solution y(x) to the IVP in Equation (1) by a polynomial of degree n of
the form

y(x) =
k

∑
j=0

aj Hj(x− xk), xk ≤ x ≤ xk+p, p = 1(1)n. (6)
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Hence

y′(x) = f (x, y) =
k

∑
j=1

aj H
′
j(x− xk), xk ≤ x ≤ xk+p.

2.2. Derivation of the method for k = 1

Using Equations (5) and (6), we get

y(x) = a0 + a1(x− xk) + a2[(x− xk)
2 − 1]. (7)

Differentiating Equation (7) gives

y′(x) = a1 + 2a2(x− xk). (8)

Interpolating Equation (7) at x = xk and collocating Equation (8) at x = xk and xk+1, we get
y(xk) = a0 − a2,

y′(xk) = a1 = fk, and

y′(xk+1) = a1 + 2a2h = fk+1.

The system of Equations (9) can be written in matrix form as 1 0 −1
0 h 0
0 h −2h2


 a0

a1

a2

 =

 y(xk)

h fk
h fk+1

 .

Solving the system of equations, we obtain

a0 =
1

2h
( fk+1 − fk) + y(xk),

a1 = fk, and

a2 =
1

2h2 ( fk+1 − fk).

Substituting aj, for j = 0, 1, 2 in Equation (7) yields the continuous method

y(x) =
1

2h
( fk+1 − fk) + y(xk) + fk(x− xk) +

1
2h2 ( fk+1 − fk)[(x− xk)

2 − 1]. (9)

Interpolating Equation (9) at x = xk+1, we obtain the discrete form

yk+1 = yk +
h
2
( fk + fk+1). (10)

2.3. Derivation of the method for k = 2

Using Equations (5) and (6), we get

y(x) = a0 + a1(x− xk) + a2[(x− xk)
2 − 1] + a3[(x− xk)

3 − 3(x− xk)]. (11)

Differentiating Equation (11) gives

y′(x) = a1 + 2a2(x− xk) + 3a3[(x− xk)
2 − 1]. (12)
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Interpolating Equation (11) at x = xk and collocating Equation (12) at x = xk, xk+1, and xk+2, we get
y(xk) = a0 − a2,

y′(xk) = a1 − 3a3 = fk,

y′(xk+1) = a1 + a2h + 3a3(h2 − 1) = fk+1, and

y′(xk+2) = a1 + 4a2h + a3(12h2 − 3) = fk+2.

(13)

The matrix form of system of Equations (13) is
1 0 −1 0
0 h 0 −3h
0 h 2h2 3h2 − 3h
0 h 4h2 12h3 − 3h




a0

a1

a2

a3

 =


y(xk)

h fk
h fk+1
h fk+2


Solving the system of equations, we obtain

a0 =
1

12h
(−5h2 fk + 8h2 fk+1 − h2 fk+2 − 12yk+1h + 9 fk − 12 fk+1 + 3 fk+2),

a1 =
1
h2 (2h2 fk + fk − 2 fk+1 + fk+2),

a2 =
1

4h
(3 fk − 4kk+1 + fk+2), and

a3 =
1

6h
( fk − 2 fk+1 + fk+2).

Substituting aj, for j = 0, 1, 2, 3 in Equation (11) yields

y(x) =
1

12h
(−5h2 fk + 8h2 fk+1 − h2 fk+2 − 12yk+1h + 9 fk − 12 fk+1 + 3 fk+2

1
h2 (2h2 fk + fk − 2 fk+1 + fk+2)

+ [(x− xk)
2 − 1] +

1
6h

( fk − 2 fk+1 fk+2[(x− xk)
3 − 3(x− xk)]. (14)

Interpolating Equation (14) at x = xk+2, we obtain

yk+2 = yk+1 +
h

12
(− fk + 8 fk+1 + 5 fk+2). (15)

2.4. Derivation of the method for k = 3

Using Equations (5) and (6), we get

y(x) = a0 + a1(x− xk) + a2[(x− xk)
2 − 1] + a3[(x− xk)

3 − 3(x− xk)] + a4[(x− xk)
4 − 6(x− xk)

2 + 3]. (16)

Differentiating Equation (15) gives

y′(x) = a1 + 2a2(x− xk) + 3a3[(x− xk)
2 − 1] + a4[(x− xk)

3 − 12(x− xk)]. (17)

Interpolating Equation (16) at x = xk+1 and collocating Equation (17) at x = xk, xk+1, xk+2, and xk+3, we
get

y(xk+1) = a0 + a1(xk+1 − xk) + a2[(xk+1 − xk)
2 − 1] + a3[(xk+1 − xk)

3 − 3(xk+1 − xk)]

+a4[(xk+1 − xk)
4 − 6(xk+1 − xk)

2 + 3] = yk+1

y′(xk) = a1 − 3a3 = fk,

y′(xk+1) = a1 + 2a2(xk+1 − xk) + 3a3[(xk+1 − xk)
2 − 1] + a4[4(xk+1 − xk)

3 − 12(xk+1 − xk)] = fk+1,

y′(xk+2) = a1 + 2a2(xk+2 − xk) + 3a3[(xk+2 − xk)
2 − 1] + a4[4(xk+2 − xk)

3 − 12(xk+2 − xk)] = fk+2,

y′(xk+3) = a1 + 2a2(xk+3 − xk) + 3a3[(xk+3 − xk)
2 − 1] + a4[4(xk+3 − xk)

3 − 12(xk+2 − xk)] = fk+3.

(18)
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The matrix form of system of Equations (18) is
1 h h2 − 1 h3 − 3h h4 − 6h2 + 3
0 h 0 −3h 0
0 h 2h2 3h3 − 3h 4h4 − 12h2

0 h 4h2 12h3 − 3h 32h4 − 24h2

0 h 6h2 27h3 − 3h 108h4 − 36h2




a0

a1

a2

a3

a4

 =


yk+1
h fk

h fk+1
h fk+2
h fk+3

 .

Solving the system of equations, we have

a0 =
1

24h3 (9h4 fk + 19h4 fk+1 − 5h4 fk+2 + h4 fk+3 − 24h3yk+1 + 22h2 fk − 36h2 fk+1

+ 18h2 fk+2 − 4h2 fk+3 + 3 fk − 9 fk+1 + 9 fk+2 − 3 fk+3)

a1 =
1

2h2 (2h2 fk + 2 fk − 5 f k+1 + 4 fk+2 − fk+3)

a2 =
1

12h3 (−11h2 fk − 18h2 fk+1 + 9h2 fk+2 − 2h2 fk+3 + 3 fk − 9 fk+1 + 9 fk+2 − 3 fk+3)

a3 =
1

24h2 (2 fk − 5 fk+1 + 4 fk+2 − fk+3)

a4 =
1

24h3 (− fk − 3 fk+1 + 3 fk+2 − fk+3)

Substituting aj, for j = 0, 1, 2, 3, 4 in Equation (16) yields

y(x) =
1

24h3 (9h4 fk + 19h4 fk+1 − 5h4 fk+2 + h4 fk+3 − 24h3yk+1 + 22h2 fk − 36h2 fk+1

+ 18h2 fk+2 − 4h2 fk+3 + 3 fk − 9 fk+1 + 9 fk+2 − 3 fk+3) +
1

2h2 (2h2 fk + 2 fk − 5 fk+1

+ 4 fk+2 − fk+3)(x− xk) +
1

12h3 (−11h2 fk − 18h2 fk+1 + 9h2 fk+2 − 2h2 fk+3 + 3 fk

− 9 fk+1 + 9 fk+2 − 3 fk+3)[(x− xk)
2 − 1] +

1
24h2 (2 fk − 5 fk+1 + 4 fk+2 − fk+3)[(x− xk)

3

− 3(x− xk)] +
1

24h3 (− fk − 3 fk+1 + 3 fk+2 − fk+3)[(x− xk)
4 − 12(x− xk)]. (19)

Interpolating Equation (19) at x = xk+3, we obtain the discrete form

yk+3 = yk+1 +
h
3
( fk+1 + 4 fk+2 + fk+3). (20)

2.5. Derivation of the method for k = 4

Using Equations (5) and (6), we get

y(x) = a0 + a1(x− xk) + a2[(x− xk)
2 − 1] + a3[(x− xk)

3 − 3(x− xk)] + a4[(x− xk)
4 − 6(x− xk)

2 + 3]

+ a5[(x− xk)
5 − 10(x− xk)

3 + 15(x− xk)] (21)

Differentiating Equation (21) gives

y′(x) = a1 + 2a2(x− xk) + 3a3[(x− xk)
2 − 1] + a4[(x− xk)

3 − 12(x− xk)]

+ a5[5(x− xk)
4 − 30(x− xk)

4 + 15] (22)

Interpolating Equation (21) at x = xk+2 and collocating Equation (22) at x = xk, xk+1, xk+2, xk+3, and xk+4,
we get
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

y(xk+2) = a0 + a1(xk+2 − xk) + a2[(xk+2 − xk)
2 − 1] + a3[(xk+2 − xk)

3

−3(xk+2 − xk)] + a4[(xk+2 − xk)
4 − 6(xk+2 − xk)

2 + 3]

+a5[(xk+2 − xk)
5 − 10(xk+2 − xk)

3 + 15(xk+2 − xk)] = yk+2,

y′(xk) = a1 − 3a3 + 15a5 = fk,

y′(xk+1) = a1 + 2a2(xk+1 − xk) + 3a3[(xk+1 − xk)
2 − 1] + a4[4(xk+1 − xk)

3

−12(xk+1 − xk)] + a[5(xk+1 − xk)
4 − 30(xx+1 − xk) + 15] = fk+1,

y′(xk+2) = a1 + 2a2(xk+2 − xk) + 3a3[(xk+2 − xk)
2 − 1] + a4[4(xk+2 − xk)

3

−12(xk+2 − xk)] + a5[5(xk+2 − xk)
4 − 30(xk+2 − xk)

4 + 15] = fk+2,

y′(xk+3) = a1 + 2a2(xk+3 − xk) + 3a3[(xk+3 − xk)
2 − 1] + a4[4(xk+3 − xk)

3

−12(xk+3 − xk)] + a5[5(xk+3 − xk)
4 − 30(xk+3 − xk)

4 + 15] = fk+3,

y′(xk+4) = a1 + 2a2(xk+4 − xk) + 3a3[(xk+4 − xk)
2 − 1] + a4[4(xk+4 − xk)

3

−12(xk+4 − xk)] + a5[5(xk+4 − xk)
4 − 30(xk+4 − xk)

4 + 15] = fk+4.

(23)

The matrix form of system of Equations (23) is

1 2h 4h2 − 1 8h3 − 6h 16h4 − 24h2 + 3 32h5 − 80h3 + 30h
0 h 0 −3h 0 15h
0 h 2h2 3h3 − 3h 4h4 − 12h2 5h5 − 30h3 + 15h
0 h 4h2 12h3 − 3h 32h4 − 24h2 80h5 − 120h3 + 15h
0 h 6h2 27h3 − 3h 108h4 − 36h2 405h5 − 270h3 + 15h
0 h 8h2 48h3 − 3h 256h4 − 48h2 1280h5 − 480h3 + 15h





a0

a1

a2

a3

a4

a5


=



yk+2
h fk

h fk+1
h fk+2
h fk+3
h fk+4


.‘

Solving the system of equations, we have

a0 =
−1

720h3 (232h4 fk + 992h4 fk+1 + 192h4 fk+2 + 32h4 fk+3 − 8h4 fk+4 − 720h3yk+2

+750h2 fk − 1440h2 fk+1 + 1080h2 fn+2 − 480h2 fk+3 + 90h2 fk+4 + 225 fk − 810 fk+1

+1080 fk+2 − 630 fk+3 + 135 fk+4),

a1 =
1

24h4 (24h4 fk + 35h2 fk − 104h2 fk+1114h2 fk+2 − 56h fk+3 + 11h2 fk+4 + 3 fk − 12 fk+1

+18 fk+2 − 12 fk+3 + 3 fk+4),

a2 = − 1
24h3 (25h2 fk − 48h2 fk+1 + 36h2 fk+2 − 16h2 fk+33h2 fk+4 + 15 fk − 54 fk+1 + 72k+2

−42 fk+3 + 9 fk+4),

a3 =
1

72h4 (35h2 fk − 104h2 fk+1 + 114h2 fk+2 − 56h2 fk+2 + 11h2 fk+4 + 6 fk − 28 fk+1 + 36 fk+2

−24 fk+3 + 6 fk+4),

a4 = − 1
48h3 (5 fk − 18 fk+1 + 24 fk+2 − 14 fk+3 + 3 fk+4), and

a5 =
1

120h4 ( fk − 4 fk+1 + 6 fk+2 − 4 fk+3 + fk+4).

Substituting aj, for j = 0, 1, 2, 3, 4, 5 in Equation (21) yields
y(x) = −1

720h3 (232h4 fk + 992h4 fk+1 + 192h4 fk+2 + 32h4 fk+3 − 8h4 fk+4 − 720h3yk+2 + 750h2 fk − 1440h2 fk+1 +

1080h2 fn+2 − 480h2 fk+3 + 90h2 fk+4 − 810 fk+1 + 1080 fk+2 − 630 fk+3 + 135 fk+4) +
1

24h4 (24h4 fk + 35h2 fk −
104h2 fk+1114h2 fk+2 − 56h fk+3 + 11h2 fk+4 + 3 fk − 12 fk+1 + 18 fk+2 − 12 fk+3 + 3 fk+4)(x− xk)− 1

24h3 (25h2 fk −
16h2 fk+3 + 3h2 fk+4 + 15 fk − 54 fk+1 − 104h2 fk+1 + 114h2 fk+2 + 72 fk+2 − 42 fk+3 + 9 fk+4)[(x − xk)

2 − 1] +
1

72h4 (35h2 fk − 56h2 fk+2 − 28 fk+1 + 36 fk+2 − 24 fk+3 + 6 fk+4) + 1
48h3 (5 fk − 18 fk+1 + 24 fk+2 − 14 fk+3 +

3 fk+4)[(x− xk)
4 − 6(x− xk)

2 + 3] + 1
120h4 ( fk − 4 fk+1 + 6 fk+2 − 4 fk+3 + fk+4)− 10(x− xk)

3 + 15(x− xk)].

(24)
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Interpolating Equation (24) at x = xk+4, we obtain

yk+4 = yk+2 +
h

90
(29 fk+4 + 124 fk+3 + 24 fk+2 + 4 fk+1 − fk). (25)

2.6. The proposed block method

The proposed block procedure with implicit linear multistep method is given by
yk+1 = y(xk) +

h
2 ( fk + fk+1),

yk+2 = yk+1 +
h

12 (− fk + 8 fk+1 + 5 fk+2),

yk+3 = yk+1 +
h
3 ( fk+1 + 4 fk+2 + fk+3),

yk+4 = yk+2 +
h

90 (29 fk+4 + 124 fk+3 + 24 fk+2 + 4 fk+1 − fk).

(26)

3. Analysis of the method

3.1. Order and error constant

It is convenient at this point to introduce the so called characteristic polynomials

ρ(z) = ∑k
j=0 αjzj and σ(z) = ∑k

j=0 β jzj

for the linear multistep methods given in Equation (2) obtained by using the substitutions yn+j = zj and
fn+j = λ zj where z is a variable and j = 0, 1, 2, 3, · · · , k. Moreover, following Henric [14], the approach
adopted in Fatunla [15], Lambert [16], and Suli and Mayer [17], they define the local truncation error associated
with Equation (26) by the difference operator

L[y(x) : h] =
1

h ∑k
j=0 β j

(
k

∑
j=0

[αjy(xn + jh)− hβ j f (xn + jh)]) (27)

where y(x) is the exact solution. Assuming y(x) is smooth and expanding Equation (27) in Taylor series give
us

L[y(x) : h] =
1

σ(1)
[c0y(xn) + c1hy′(xn) + c2h2y′′(xn) + . . . + cp+1hp+1yp+1(xn)] (28)

and

c0 =
k

∑
j=0

αj, c1 =
k

∑
j=1

jαj −
k

∑
j=0

β j, c2 =
k

∑
j=1

j2

2
αj −

k

∑
j=1

β j, cp =
k

∑
j=1

jp

p!
αj −

k

∑
j=1

jp−1

(p− 1)!
β j. (29)

According to Lambert [16], any linear multistep method of the form Equation (2) is of order p if c0 = c1 =

c2 = . . . cp = 0 and cp+1 6= 0. In this case the number
cp+1
σ(1) is called the error constant of the method. Thus, the

order of Equation (26) is (2 3 4 5)T with error constant (−0.833333 − 0.83333 − 0.011 − 0.011)T .

3.2. Zero stability of the method

Definition 1. [18] A block method is zero-stable provided that the root zj, j = 1(1)k of the first characteristics
polynomial satisfies |zj| ≤ 1 and for those root with |zj| the multiplicity must not exceed two.

The characteristic polynomials of Equations (10), (15), (20) and (25) are z− 1 = 0, z2 − z = 0, z3 − z2 = 0
and z4 − z3 = 0 respectively. Hence, they are all zero stable according to Definition 1.

3.3. Consistency of the method

Definition 2. [16]. A linear multistep method is said to be consistent if it has order at least one.

Using Definition 2, the linear method is said to be consistent if it has an order greater than or equal to one.
Therefore, the block method (26) is consistent, since the orders of each method is greater than one.
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3.4. Convergence of the method

Theorem 3. [19] A necessary and sufficient condition for a linear multistep method to be convergent is that it be
consistent and zero-stable.

The proposed method satisfies the two conditions stated in Definition 1 and Definition 2. Hence,
according to Theorem 1 the scheme in Equation (26) is convergent.

4. Numerical examples

The mode of implementation of our method is by combining the schemes Equation (26) as a block for
solving Equation (1). It is a simultaneous integrator without requiring the starting values. To assess the
performance of the proposed block method, we consider two stiff first order initial value problems in ODEs.
The maximum absolute errors of the proposed method is compared with that of Runge Kutta order 4 (RK4)
and Berhan et al. [1]. All calculations are carried out with the aid of MATLAB software.

Example 1. [18] Consider the first order stiff ordinary differential equation

y′ = −1000(y− x3) + 3x2, y(0) = 0, x ∈ [0, 1].

The exact solution is y(x) = x3. Maximum Absolute errors of RK4 and the present method is given in
Table 1

Table 1. Maximum Absolute errors of RK4 and the present Method for Example 1

h RK4 Present method
10−1 2.81614e + 60 1.78054e− 04
10−2 1.07457e + 239 3.67265e− 07
10−3 9.98899e− 08 5.00000e− 10
10−4 6.5319e− 12 5.00033e− 12
10−5 2.88657e− 15 5.11812e− 14

Example 2. [20] Consider the first order stiff ordinary differential equation

y′ = −2100
(

y− cos(x)
)
− sin(x), y(0) ∈ [0, 1].

The exact solution is y(x) = cos(x). Maximum Absolute error of Berhan et al. [1] and the present method
in Table 2.

Table 2. Maximum Absolute errors of Berhan et al. [1] and the present Method for Example 2

h Berhan et al. [8] Present method
10−1 1.22516e− 5 4.06068e− 06
10−2 9.67880e− 8 3.78971e− 8
10−3 6.46040e− 11 3.3317e− 11
10−4 3.33844e− 13 3.33844e− 13
10−5 4.10783e− 15 4.10782e− 15
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Figure 1. The logplot of the step size h versus MAXAE for Example 2

5. Concluding remarks

This paper presented a block procedure with the linear multistep method based on probabilists’ Hermite
polynomials for solving first order IVPs in ODEs. A collocation approach along with interpolation at some grid
points which produces a family block scheme with maximum order five has been proposed for the numerical
solution of stiff problems in ODEs. The method is tested and found to be consistent, zero stable and convergent.
We implement the method on two numerical examples, and the numerical evidence shows that the method is
accurate and effective for stiff problems.
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