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Abstract: Prime numbers and their variations are extremely useful in applied research areas such as
cryptography, feedback and control in engineering. In this paper we discuss about prime numbers, perfect
numbers, even perfect and odd perfect numbers, amicable numbers, semiprimes, mersenne prime numbers,
triangular numbers, distribution of primes, relation between π and prime numbers. In the process we also
obtain interesting properties of some of them and raise a set of open problems for further exploration.
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1. Introduction

I t is widely acknowledged that mathematics is a base for all science and engineering concepts and number
theory is the base for mathematics. A vital and challenging task of answering questions in number theory

depends heavily on finding an integer’s unique factor decomposition. When researchers show involvement,
new research approaches emerge. Number theory is largely classified as elementary number theory dealing
with divisibility and congruence; analytic number theory supported by complex analysis; algebraic number
theory due to the evolution of the study on ring of integers; geometric number theory depending on the
perspectives of geometry to explain the pattern of distribution and computational number theory that uses
computer algorithms to solve certain mind boggling problems. The universe now witness the rapid use of
the concepts of number theory in applied fields such as physics, biology, chemistry, communication, acoustics,
electronics, cryptography, computing etc, [1].

2. Prime numbers

A positive integer p which is larger than 1 is called a prime number if ∀ n ∈ N, n|p ⇒ n = 1
∨

n = p. A
number which is not a prime is called a composite number. The Fundamental Theorem of Arithmetic (FTA)
says every integer larger than 1 can be expressed as a product of primes in a unique manner apart from their
order. Prime numbers are used in cryptography to calculate the public and private keys. Its strength heavily
depends on the difficulty of decomposing large integers into their factors. For instance, Diffie-Hellman used
prime numbers in his key exchange. He made use of a huge prime number p as a common modulus through
which two persons A1 and A2 can communicate in secured way with their undisclosed private keys. That
is, if A1 and A2 possess their private key respectively a1 and a2 and publicly share upon a key say b which
is smaller than p then one can send a message to the other as: A′1s message= m1 ≡ ba1 (mod p)and B′s
message= m2 ≡ ba2 (mod p) then ma2

2 (mod p)= ma2
1 (mod p)= ba1.a2 (modp) ≡ x is the message shared. The

security aspect in this communication depends on the difficulty to know the shared message without knowing
a1 and a2.

3. Mersenne prime numbers

An integer that is positive and denoted Mp = 2p − 1 is called a Mersenne prime if Mp is a prime integer.
It was already established in the literature that if 2p − 1 is a prime then p is a prime integer as well. But
the reverse implication is false. For example, p̂ = 11 is a prime integer but 211 − 1 = 2047 is not a prime
integer. These Mersenne primes can be easily represented in binary form without requiring additional space
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as a p-digit integer can hold upto 2p− 1 digits in a binary system. Nishimura and Matsumoto found an efficient
pseudorandom generating algorithm by making a good use of Mersenne primes [2].

4. Some results

Proposition 1. Suppose that p is a prime. Then p2 + p + 1 6= r3 for some r ∈ Z+.

Proof. Suppose that p2 + p + 1 6= r3 for some r ∈ Z+ then r3 − 1 = p(p + 1) implies p(p + 1) = (r− 1)(r2 +

r − 1). As p is a prime, by one of the properties of primes, we have either p|r − 1 or p|r2 + r + 1. . If p|r − 1
then clearly p ≤ r− 1. So p + 1 r → r3 (p + 1)3 > p2 + p + 1 = r3, a contradiction. Next if p|r2 + r + 1 implies
p = 3 and r = 1, else, p = 3L+ 1 for some L ∈ Z+. Hence p2 + p + 1 ≡ 3(mod9). But it can be easily seen that
a perfect cube cannot be written as 9t− 3 for some t ∈ Z+.

Proposition 2. Let p1, p2, p3 be odd primes and p2
1 + p1 + 1 = (p2

2 + p2 + 1)(p2
3 + p3 + 1) then either p2

2 + p2 + 1
or p2

3 + p3 + 1 is not a prime.

Proof. Suppose that both p2
2 + p2 + 1 and p2

3 + p3 + 1 are primes. Then one of (a) p1 ≡ p2(modp2
2 + p2 + 1) or

p1 ≡ p2
2(modp2

2 + p2 + 1) or (b) p1 ≡ p3(modp2
3 + p3 + 1) or p1 ≡ p2

3(modp2
3 + p3 + 1) hold good. Without loss of

generality assume that a) holds good. As p1 > p2 and p1 is a prime it readily follows that p1 6= p2
2. Further, the

other choice for p1 is p2
2 + p2 + 1 + p2 = (p2 + 1)2. As p2 is an odd prime (p2 + 1) is even and hence (p2 + 1)2

is also even, and contradiction. Finally, p1 also cannot be equal p2
2 + p2 + 1+ p2

2 = 2p2
2 + p2 + 1 as 2p2

2 + p2 + 1
is even. From this it follows that p1 ≥ 2(p2

2 + p2 + 1) + p2 > 2(p2
2 + p2 + 1). On similar lines we can also get

p2 ≥ 2(p2
3 + p3 + 1).So3(p2

2 + p2 + 1)(p2
3 + p3 + 1) = p2

1 + p1 + 1 > p2
1 > 4(p2

2 + p2 + 1)(p2
3 + p3 + 1). This is

again absurd. Hence one of the two p2
2 + p2 + 1, p2

3 + p3 + 1 is not a prime.

Proposition 3. Let p1, p2 be two distinct odd primes and p2
1 + p1 + 1 is also a prime. If p2

1 + p1 + 1|p2
2 + p2 + 1 then

p2
1 + p1 + 1 < p2/2.

Proof. It is easy to see that p2 = k(p2
1 + p1 + 1)− p1 or p2 = k(p2

1 + p1 + 1)− p2
1. Also p2 cannot be equal to

p2
1. Moreover P2 canot be equal to (p2

1 + p1 + 1)− p1 and (p2
1 + p1 + 1)− p2

1 as both these terms are even. So
we have p2 ≥ p1 + 2(p2

1 + p1 + 1) > p2
1 + p1 + 1.

Proposition 4. It is not possible to produce three odd primes p1, p2, and p3 with p2
1 + p1 + 1 and p2

2 + p2 + 1 primes
such that p2

3 + p3 + 1 = 3(p2
1 + p1 + 1)(p2

2 + p2 + 1).

Proof. Suppose we assume the contrary then by invoking Proposition 3 one can deduce (p2
1 + p1 + 1) < p3/2

and (p2
2 + p2 + 1) < p3/2. So, p2

3 + p3 + 1 = 3(p2
1 + p1 + 1)(p2

2 + p2 + 1) < 3(p3/2)(p3/2) = 3p2
3

4 < p2
3 + p3 + 1

yields a contradiction to conclude the proof.

5. Perfect numbers

We call a positive integer, a perfect number if it equals the sum of its proper divisors. Euclid about three
centuries before the Jesus Christ showed that 2p−1(2p − 1) is perfect if 2p − 1 is a prime number. After this
one has to wait for almost 2000 years to get one Euler to establish all perfect numbers that are even must be of
Euclid’s form. It is too wonderful to record that even till date we do not know how many such even perfect
numbers are there and also nothing is known about the existence or otherwise of an odd perfect number. See
[3,4]. Zelinsky [5] showed the following;

5.1. Wonderful result

Suppose that n is a perfect number that is odd. Let the distinct prime divisors of n be ω(n) in number and
let the total number of prime divisors of n by Ω(n). If gcd(3, n) = 1 then (302/113)(ω(n))− (285/113)(Ω(n)).
If n ≡ 0(mod3) then (66/25)(ω(n))− 5 ≤ Ω(n).
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5.2. Amicable number pairs

The sum of divisors is the function σ = ∑dn, where d varies over all positive factors of n including 1 and
n. For example σ(5) = 1 + 5 = 6, sigma(6) = 1 + 2 + 2 + 3 + 6 = 12. We call n a perfect number if σ(n) = 2n.
The case when sigma(n) < 2n, we call n deficient and the case when σ(n) > 2n, we call n abundant. We can
also call n, perfect if sigma(n) = n in which case we consider only proper divisors of n that excludes n. Note
that σ(mn) = σ(m)σ(n). This is because if d|mn then by unique decomposition we can write d uniquely as the
product of factor of m and a factor of n. So every term in σ(mn) occurs exactly once in σ(m) σ(n). Also every
such product is a factor of mn so they yield the same sum. Observe that if d|n then σ(d) < σ(n).

Proposition 5. If d∗|n then σ(d∗)
d∗ ≤

σ(n)
n and equality holds good only if d∗ = n.

Proof. If d|n then n = Ld for some L, so L = (n/d)|n. Hence σ(n) = ∑d|n d = ∑d|n
n
d = n ∑d|n

1
d . If d∗ is

proper factor of n then σ(n)/n = ∑d|n(1/d) > ∑d′ |d∗
1
d′ =

σ(d∗)
d∗ .

Proposition 5 implies that σ(n) = ∑d|n d = ∑d|n
n
d = n ∑d|n

1
d = 2n. So ∑d|n 1/d = 2 is n is perfect. Euclid

established that if 2n − 1 is a prime then 2n−1(2n − 1) is a perfect number. This is because, the only prime
divisors of 2n−1(2n − 1) are 2n − 1 and 2. So σ[2n−1(2n − 1)σ(2n−1)σ(2n − 1) =

(
2n−1
2−1

)
2n = 2{2n−1(2n − 1)}.

Similarly, 2n − 1 is a prime then n itself is a prime. This is because, yn − 1 = (y− 1)(yn−1 + yn−2 + ... + y + 1).
If n = Ln then 2n − 1 = (2L)m − 1 = (2L − 1)(1 + 2L + ... + (2L)m−1). Hence (2L − 1)|2n − 1, which is a
prime, a contradiction. Its converse is not true. For example, 11 is a prime but 211 − 1 = 2047 = 23× 89 is not
a prime. Perfect numbers have some interesting properties. We call a number a triangular number if it can be
arranged as a triangular lattice.

Proposition 6. If n is an even perfect number then it is triangular.

Proof. We deem L as a triangular number if L = ∑t−1
j=1 j = 1 + 2 + ... + (t− 1)t/2 for some t. However note

here that n∗ = 2n−1(2n − 1) = 1
2 (2

n)(2n − 1). So an even perfect number is triangular.

Proposition 7. n∗ = 2n−1(2n − 1) is perfect then n = 13 + 33 + ... + (2(n−1)/2 − 1)3.

Proof. We know that ∑n
j=1 = n2(n + 1)2/4. Let L = 2(n−1)/2. Then n = 13 + 33 + ... + (2L − 1)3 = (13 +

23 + ... + (2L)3)− (23 + 43 + ... + (2L)3) = [(2L)2(2L+ 1)2]/4− 23[(L)2(L2 + 1)2]/4(L)2(L2 − 1). Put L =

2(n−1)/2 to complete the proof.

Proposition 8. All even perfect numbers have its unit digit as 6 or 8.

Proof. Note that if p is an odd prime then it is either congruent to 1 (mod 4)or congruent to 3 (mod 4). Let it
be first congruent to 1 (mod 4). Then 2n−1(2n − 1) = 24L(24L+1 − 1) = 16L(2× 16L − 1) ≡ 6L(2× 6L − 1) ≡
6(12− 1) ≡ 6(mod10). In a similar way, 2n−1(2n − 1) = 4× 16L(8× 16L − 1) ≡ 4× 6(8× 6− 1) ≡ 4(8− 1) ≡
8(mod10). In both instances we made use of the fact that 6L ≡ 6(mod10).

A pair of integers (r, s) with r, s ∈ Z+ and r < s is called amicable if each of r and s is the sum of the
proper divisors of the other. Euler was the first mathematician to investigate amicable pairs in a systematic
manner. He looked at amicable pairs of the form (rm, rn) where r is a given known factor and m, n are
unknowns with gcd(m, n) = 1. By setting r = 2s, s ∈ Z+, m = pq, n = t with p, q, t are distinct primes, one can
obtain the forms of Thabit period. By taking r = 32 × 7× 13, m = pq and n = t, Euler got the first amicable
pair whose elements are odd, (32 × 7× 13× 5× 17 = 69615, 32 × 7× 13× 107 = 87633). A pair of positive
numbers (r1, r2) is called a breeder if r1 + r2x = σ(r1) = σ(r2)(x + 1) have a positive integer solution x. Borho
suggested a rule to find an amicable pair by using breeders. Suppose that (rd, r) be a breeder, with integer
solution x. If a pair of distinct prime numbers p1, p2 exist with gcd(r, p1 p2) = 1, fulfilling the bilinear equation
(p1− x)(p2− x) = (x + 1)(x + d) and if a third prime p3 exists with gcd(rd, p3) = 1 such that p3 = p1 + p2 + d
then (rdp3, rp1 p2) is an amicable pair. Another great mathematician Erdos suggested: for a given s ∈ Z+ if
xj, j = 1, 2, are solutions of σ(x) = s then any pair (xi, xk), i 6= k for which xi + xk = s is an amicable pair.
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We call a set of three integers m1, m2, m3 form an amicable triple if σ(m1) = m1 + m2,
σ(m2) = m2 + m2 and σ(m3) = m3 + m1, and a set of four integers m1, m2, m3 and m4

is said to form an amicable quadruple if σ(m1) = m2, σ(m2) = m3, σ(m3) = m4 and
σ(m4) = m1. Fig. 1 shows a python program to find perfect numbers, amicable pairs, amicable
triples and amicable quadruples. Accordingly we record that 6, 28, 496, 8128 are perfect numbers,
(220, 284), (1184, 1210), (2620, 2924), (5020, 5564) are amicable pairs, (1980, 2016, 2556), (9180, 9504, 11556), are
amicable triples and (1236402232, 1369801928, 1603118392, 1412336648) is an amicable quadruple.

It is worth to re-publicize the following open questions. 1) Are there an infinite number of amicable pairs
2) Is there an amicable pair whose elements are of different parity 3) Is there an amicable pair whose elements
are relatively prime 4) Are there amicable pairs whose elements have smallest but different prime divisors
Some of the amicable pairs are (1184, 1210), (2620, 2924), (5020, 5564) etc. These numbers have the feature that
one represents the other. This stands for love, harmony, friendship etc. There numbers have lot of applications
in astrology in casting horoscopes and magic.

6. Semiprimes

A semiprime number is a number that can be expressed as a product of two prime numbers [6]. Look at
35, it is easy to see that 5 and 7 are the only factors other than 1 and itself. Determination of prime factors of
a large number with millions of digits is a huge task. The difficulty in factoring forms the basis of security in
RSA encryption algorithms. The semiprime number serves as a public key to encrypt a message and its prime
factors act as private keys to decrypt a message.

When analyzing the logic gates, one can analyze both AND gate and OR gate together. This is because
both generate almost identical information. For any given state of AND or OR there is a 22% probability
that the state could be an error. This occurs when at least two I/O’s are defined at the same time. If one of
the I/O is defined there is 50% probability that at least one more I/O will be deduced. Given a gate with
random inputs and no error there is 62% chance that the gate is fully define. It is wonderful to observe that the
probability of error do not get altered while changing from the Full-Adder to Array Multiplier Cell. As the I/O
count increases, the ability to generate new information decreases. This is crucial to factorize the semiprime
numbers, because as the semiprimes grows, the complexity and I/O count of the array multiplier will grow
and result in lesser quantity of information generation. With a fully operating reversible array multiplier,
one can test a huge quanta of possibilities for the semiprime number and perform data analysis to quantity
the information generated. Python code is involved to generate prime numbers for various binary lengths,
from 2 bits to 512 bits. The prime numbers are then multiplied and fed into the output of the reversible array
multiplier. After deducing all information, it can be saved as a CSV file. Then one can depict it as a graph to
show the information as a function of the size of the semiprime number.

7. 7Π and primes

The most precious gem of India, Srinivasa Ramanujan in one of his shocking revelation formulae have
said that:

1/π = (2
√

29801)
∞

∑
n=0

4n!(1103 + 26390n)
(n!)4(306)4n .

The first term in the r.h.s of the above equation gives 7 digits of π. That is π = 9801
2206
√

2
≈ 3.14159273...

(7digits). Note that one can add eight correct digits with each additional term. The rate of convergence is also
unbelievably fast. Some more of wonderful expressions for π are π ≈ (3/

√
163ln(640320)) = 3.14159273... (15

digits) π ≈ (3/
√

67ln(5280)) = 3.141592653... (9 digits). It is amazing to observe that the first six digits 3.14159
is a prime. Infact, the first 38 digits of is also a prime. 3, 31, 314159, 31415926535897932384626433832795028841
are all primes. Here the reverse of first three primes viz., 3, 13, 951413 are also primes. It was checked up
to first 432 digits of and only the above four numbers are primes. It is till date unknown whether there is
another prime for more digits of . It is strikingly shocking that 314159 is a very unusual peculiar prime. The
complement number of this prime obtained by replacing each digit of this number by the difference of it with
10, viz., 796951 is also a prime. If this number is split into three two digit numbers viz., 31, 41 and 59 are
again prime numbers. The sum of them 31 + 41 + 59 = 131 is also a prime and the sum of the cube of them
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313+ 413+ 593 = 304091 is also a prime. There are lot of coincidences among and primes. May be much more
in depth relations exist between them and they are yet to be found.

8. Prime numbers as a physical system

Marshall and Smith [6] explored the prime numbers from different viewpoint. They treated prime
numbers as a physical system and represented it as a differential equation f ′(x) = − f (x f (x

√
x))/2x. f (x)

stands for the "density of primes at x". It predicts the known results regarding the distribution of primes.
They have said a deeper relation between number theory and feedback & control, a field in Engineering. They
assumed that the density of primes said above is a point density and not average density. They considered
two intervals. IA is the interval on R given by [x, x + dx]. IB is the square of IA: [x2, (x + dx)2]. Now
approximate the quantity f ((x + dx)2) − f (x2). Consider only the effect of primes on IA on the density
along IB. Every prime in IA changes the density on IB by a factor of 1 − 1/x. So every prime subtracts
f (x2)/x from density. There are f (x) dx primes in IA. The first approximation of the change in density on

IB is f ((x + dx)2) − f (x2) ≈ f (x2) f (x)dx
x . Another way to calculate the change in density on IB is through

derivatives. (x + dx)2− x2 = 2xdx + (dx)2. Change in density in IB is roughly evaluated at x2 times the length
of IB. So f ((x + dx)2) − f (x2) ≈ f ′(x2)x2dx By comparing these we get f ′(x2) = − f (x2) f (x)/2x2 and by
replacing x2 with x we get f ′(x) = − f (x) f (

√
x)/2x.

9. Conclusion

We have briefly discussed about the prime numbers and its variations and how their properties and
distribution reveal several interesting features and how they are exploited in different application areas of real
life scenario. A lot of things about primes are yet to be said and it holds a huge opportunity for researchers to
probe and bring out the unknown. We hope to revert more on this elsewhere.
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limit = int(input("enter upper limit printf("Enter 1st no. : "); SUMb=SUMb+i
for perfect number search: ")) scanf("%d",&a); i=i+1

i=1 printf("Enter 2nd no. : "); for i in range(1,c):
scanf("%d",&b); if(c%i==0):

while(i<limit+1): SUMc=SUMc+i
sumofdiv =0 if(check(a,b)) i=i+1

div=1 { if(SUMa==(c+b)):
while(div<i): printf("%d and %d are if(SUMb==(a+c)):
if not i % div: Amicable Numbers",a,b); if(SUMc==(a+b)):

sumofdiv += div } print( "AMICABLE
div=div+1 else TRIPLES",a,b,c)

if sumofdiv==i: { else:
print(i,’PERFECT printf("%d and %d are not print("NOT AMICABLE")

NUMBER’) Amicable Numbers",a,b);
i=i+1 } print(SUMa,SUMb,SUMc)

} print(b+c,a+c,a+b)
2.C amicable

#include<stdio.h> 3.amicable a=int(input("ENTER A
a=int(input("ENTER A NUMBER"))

int check(int a,int b) NUMBER")) b=int(input("ENTER A
{ b=int(input("ENTER A NUMBER"))

int s=0,i; NUMBER")) c=int(input("ENTER A
for(i=1;i<a;i++) SUMa=0 NUMBER"))

{ SUMb=0 d=int(input("ENTER A
if(a%i==0) for i in range(1,a): NUMBER"))

{ if(a%i==0): SUMa=0
s=s+i; SUMa=SUMa+i SUMb=0

} i=i+1 SUMc=0
} if(SUMa==b): SUMd=0

for i in range(1,b): for i in range(1,a-1):
if(s==b) if(b%i==0): if(a%i==0):

{ SUMb=SUMb+i SUMa=SUMa+i
s=0; i=i+1 i=i+1

for(i=1;i<b;i++) if(SUMb==a): for i in range(1,b-1):
{ print( "AMICABLE PAIR",a,b) if(b%i==0):

if(b%i==0) else: SUMb=SUMb+i
{ print("NOT AMICABLE") i=i+1

s=s+i; 4.amicable triples for i in range(1,c-1):
} a=int(input("ENTER A if(c%i==0):
} NUMBER")) SUMc=SUMc+i

b=int(input("ENTER A i=i+1
if(s==a) NUMBER")) for i in range(1,d-1):
return 1; c=int(input("ENTER A if(d%i==0):

else NUMBER")) SUMd=SUMd+i
return 0; SUMa=0 i=i+1

} SUMb=0 if(SUMa==b):
SUMc=0 if(SUMb==c):

return 0; if(SUMc==d):
} for i in range(1,a): if(SUMd==a):

if(a%i==0): print( "Aliquot 4
int main() SUMa=SUMa+i cycle",a,b,c,d)

{ i=i+1 else:
int a,b; for i in range(1,b): print("NOT Aliquot")

if(b%i==0):
Python Program for computing perfect number, amicable pair, amicable triple, amicable quadruple
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