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Abstract: The objective of this paper is to establish a theorem involving a pair of weakly compatible mappings
fulfilling a contractive condition of rational type in the context of dislocated quasi metric space. Besides
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1. Introduction and Preliminaries

T he concept of dislocated metric space was introduced by Hitzler [1] in an effort to generalize the
well known Banach contraction principle. Later his work was generalized by Zeyada [2] and

many papers covering fixed point results for a single and a pair of mappings satisfying various types of
contraction conditions are also published, see [2–4]. Similarly, Bhaskar and Lakshmikantham [5] introduced
the concept of coupled fixed point for non-linear contractions in partially ordered metric spaces. After wards,
Lakshmikantham and Ćirić [6] proved coupled coincidence and coupled common fixed point theorems for
nonlinear contractive mappings in a complete partially ordered metric space. This area of research has
attracted the interest of many researchers and a number of works has been published in different spaces,
see [7–10]. Most recently, Mohammad et al., [11] has obtained coupled fixed point finding in the context of
dislocated quasi metric space. In this paper, we have established and proved existence and uniqueness of
coupled coincidence and coupled common fixed points for a pair of maps in the context of dislocated quasi
metric spaces.

2. Preliminaries

Now, we present relevant definitions and results that will be retrieved in the sequel and throughout this
paper <+ will denote the set of non negative real numbers.

Definition 1. [1] Let X be a non-empty set and let d : X×X → <+ ∪{0} be a function satisfying the conditions
(i) d(x, y) = d(y, x) = 0⇒ x = y.
(ii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is known as dislocated quasi-metric on X and the pair (X, d) is called a dislocated quasi-metric
space.

Definition 2. [2] A sequence {xn} in a dislocated quasi metric space (X, d) is said to converge to a point x ∈ X
if and only if lim

n→∞
d(xn, x) = lim

n→∞
d(x, xn) = 0.

Definition 3. [2] A sequence {xn} in a dislocated quasi metric space (X, d) is called a Cauchy sequence if
for every ε > 0, there exists a positive integer n0 such that for m, n > n0, we have d(xn, xm) < ε. That is,

lim
n,m→∞

d(xn, xm) = 0.
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Definition 4. [2] A dislocated quasi metric space is called complete if every Cauchy sequence converges to an
element in the same metric space.

Definition 5. [12] Let (X, d) be a metric space and T : X → X be a self-map, then T is said to be a contraction
mapping if there exists a constant k ∈ [0, 1) called a contraction factor, such that d(Tx, Ty) ≤ kd(x, y)for all
x, y ∈ X.

Definition 6. [12] Let X be a nonempty set and T : X → X a self-map. We say that x is a fixed point of T if Tx
= x.

Theorem 7. [12] Suppose (X, d) be a complete metric space and T : X → X be a contraction, then T has a unique fixed
point.

Definition 8. [5] An element (x, y) ∈ X× X , where X is any non-empty set, is called a coupled fixed point of
the mapping F : X× X → X if F(x, y) = x and F(y, x) = y.

Definition 9. [6] An element (x, y) ∈ X×X is called a coupled coincidence point of the mappings F : X×X →
X and g : X → X if F(x, y) = g(x) and F(y, x) = g(y), and (gx, gy) is called coupled point of coincidence.

Definition 10. [6] An element (x, y) ∈ X×X, where X is any non-empty set, is called a coupled common fixed
point of the mappings F : X× X → X and and g : X → X if F(x, y) = g(x) = x and F(y, x) = g(y) = y.

Definition 11. [6] The mappings F : X × X → X and g : X → X are called commutative if g(F(x, y)) =

F(gx, gy) for all x, y ∈ X.

Definition 12. [6] The mappings F : X × X → X and g : X → X are called w-Compatible if g(F(x, y)) =

F(gx, gy) and g(F(y, x)) = F(gy, gx) whenever gx = F(x, y) and gy = F(y, x).

Theorem 13. [11] Let (X, d) be a complete dislocated quasi-metric space and T : X → X be a continuous mapping
satisfying the following rational type contractive condition

d[T(x, y), T(u, v)] ≤ a1 [d(x, u) + d(y, v)] + a2 [d (x, T(x, y)) + d(u, T(u, v))] + a3 [d (x, T(u, v)) + d (u, T(x, y))]

+ a4

[
d (x, T(x, y)) d (u, T(u, v))

d(x, u) + d(y, v)

]
+ a5

[
(d(x, u) + d(y, v))× (d (x, T(x, y)) + d (u, T(u, v)))

1 + d(x, u) + d(y, v)

]
+ a6

[
d (x, T(x, y)) + d (x, T(u, v))

1 + d (u, T(u, v)) d (u, T(x, y))

]
for all x, y, u, v ∈ X and a1, a2, a3, a4, a5, and a6 are non-negative constants with 2(a1 + a2 + a5)+ 4(a3 + a6)+ a4 < 1,
then T has a unique coupled fixed point in X× X.

3. Main results

At this stage, we state our theorem and come up with the main findings.

Theorem 14. Let (X, d) be a dislocated quasi-metric space and T : X × X → X and g : X → X be a continuous and
commutative mappings satisfying the following rational type contractive condition

d ((x, y), T(u, v)) ≤ a1 [d(gx, gu) + d(gy, gv)] + a2 [d (gx, T(x, y)) + d (gu, T(u, v))] + a3 [d(gx, T(u, v))

+d(gu, T(x, y))] + a4

[
d(gx, T(x, y))d(gu, T(u, v))

d(gx, gu) + d(gy, gv)

]
+ a5

[
(d(gx, gu) + d(gy, gv))× (d(gx, T(x, y)) + d(gu, T(u, v)))

1 + d(gx, gu) + d(gy, gv)

]
+ a6

[
d(gx, T(x, y)) + d(gx, T(u, v))

1 + d(gu, T(u, v))d(gu, T(x, y))

]
+ a7

[
d(gx, T(x, y))d(gu, T(u, v))

1 + d(gx, gu) + d(gu, T(u, v))

]
(1)
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where x, y, u, v ∈ X and a1, a2, a3, a4, a5, a6, a7 ∈ <+ with 2(a1 + a2 + a5) + 4(a3 + a6) + a4 + a7 < 1, T(X× X) ⊆
g(X), and g(X) is complete, then T and g have a unique coupled coincidence point. Moreover, if T and g are weakly
compatible, then T and g have unique coupled common fixed point of the form (u, u).

Proof. Let x0 and y0 ∈ X and set gx1 = T(x0, y0) and gy1 = T(y0, x0). This is possible since T(X × X) ⊆
g(X). Proceeding this way, we can construct two sequences {xn} and {yn} in X such that gxn+1 =

T(xn, yn) and gyn+1 = T(yn, xn). Consider d(gxn, gxn+1) = d
[
T(xn−1, yn−1), T(xn, yn)

]
. This is in order to

show that {gxn} and {gyn} are Cauchy sequences in g(X). Now applying (1), we get

d(gxn, gxn+1) ≤ a1 [d(gxn−1, gxn) + d(gyn−1, gyn)] + a2 [d(gxn−1, T(xn−1, yn−1)) + d(gxn, T(xn, yn))]

+ a3 [d(gxn−1, T(xn, yn)) + d(gxn, T(xn−1, yn−1))] + a4

[
d(gxn−1, T(xn−1, yn−1))d(gxn, T(xn, yn))

d(gxn−1, gxn) + d(gyn−1, gyn)

]
+ a5

[
(d(gxn−1, gxn) + d(gyn−1, gyn))×

(
d
(

gxn−1, T(xn−1, yn−1)) + d (gxn, T(xn, yn))
)

1 + d(gxn−1, gxn) + d(gyn−1, gyn)

]

+ a6

[
d(gxn−1, T(xn−1, yn−1)) + d(gxn−1, T(xn, yn))

1 + d(gxn, T(xn, yn))d(gxn, T(xn−1, yn−1))

]
+ a7

[
d(gxn−1, T(xn−1, yn−1))d(gxn, T(xn, yn))

1 + d(gxn−1, gxn) + d(gxn, T(xn, yn))

]
.

At this point, we are going to make use of the definitions of the sequences {gxn} and {gyn} to get

d(gxn, gxn+1) ≤ a1 [d(gxn−1, gxn) + d(gyn−1, gyn)] + a2 [d(gxn−1, gxn) + d(gxn, gxn+1)]

+ a3 [d(gxn−1, gxn+1) + d(gxn, gxn)] + a4

[
d(gxn−1, gxn)d(gxn, gxn+1)

d(gxn−1, gxn) + d(gyn−1, gyn)

]
+ a5

[
(d(gxn−1, gxn) + d(gyn−1, gyn))× (d(gxn−1, gxn) + d(gxn, gxn+1))

1 + d(gxn−1, gxn) + (gyn−1, gyn)

]
+ a6

[
d(gxn−1, gxn) + d(gxn−1, gxn+1)

1 + d(gxn, gxn+1)d(gxn, gxn)

]
+ a7

[
d(gxn−1, gxn)d(gxn, gxn+1)

1 + d(gxn−1, gxn) + d(gxn, gxn+1)

]
.

Applying the triangle inequality and the fact that d(x, y) ≥ 0, we obtain

d(gxn, gxn+1) ≤ a1
[
d(gxn−1, gxn) + d(gyn−1, gyn)

]
+ a2

[
d(gxn−1, gxn) + d(gxn, gxn+1)

]
+ a3

[
d(gxn−1, gxn) + d(gxn, gxn+1) + d(gxn−1, gxn) + d(gxn, gxn+1)

]
+ a4d(gxn, gxn+1)

+ a5
[
d(gxn−1, gxn) + d(gxn, gxn+1)

]
+ a6

[
d(gxn−1, gxn) + d(gxn, gxn+1) + d(gxn−1, gxn)

+ d(gxn, gxn+1)
]
+ a7d(gxn−1, gxn).

Simplification yields

αd(gxn, gxn+1) ≤ βd(gxn−1, gxn) + a1d(gyn−1, gyn)

where α = 1− (a2 + 2a3 + a4 + a5 + 2a6), and β = a1 + a2 + 2a3 + a5 + 2a6 + a7. It follows that

d(gxn, gxn+1) ≤ ηd(gxn−1, gxn) + θd(gyn−1, gyn). (2)

where η = β
α and θ = a1

α .

Similarly, we can show that

d(gyn, gyn+1) ≤ ηd(gyn−1, gyn) + θd(gxn−1, gxn). (3)

Adding (2) and (3), we get[
d(gxn, gxn+1) + d(gyn, gyn+1)

]
≤ λ

[
d(gxn−1, gxn) + d(gyn−1, gyn)

]
. (4)
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where λ = η + θ. Similarly, we have[
d(gxn−1, gxn) + d(gyn−1, gyn)

]
≤ λ

[
d(gxn−2, gxn−1) + d(gyn−2, gyn−1)

]
.

Also [
d(gxn−1, gxn) + d(gyn−1, gyn)

]
≤ λ2[d(gxn−3, gxn−2) + d(gyn−3, gyn−2)

]
.

Continuing this procedure, we obtain[
d(gxn, gxn+1) + d(gyn, gyn+1)

]
≤ λn[d(gx0, gx1) + d(gy0, gy1)

]
. (5)

Since 0 < λ < 1, we have λn → 0 as n→ ∞ and
[
d(gxn, gxn+1) + d(gyn, gyn+1)

]
→ 0. So d(gxn, gxn+1)→

0 and d(gyn, gyn+1)→ 0. Applying triangle inequality, using (5), and letting m > n ≥ 1, it follows that

[d(gxn, gxm) + d(gyn, gym)] ≤ [d(gxn, gxn+1) + d(gxn+1, gxn+2) + d(gxn+2, gxn+3) + ... + d(gxm−1, gxm)

+[d(gyn, gyn+1) + d(gyn+1, gyn+2) + d(gyn+2, gyn+3) + ... + d(gym−1, gym)

≤ λn [d(gx0, gx1) + d(gy0, gy1)] + λn+1[d(gx0, gx1) + d(gy0, gy1) + λn+2[d(gx0, gx1) + d(gy0, gy1) + ...

+λm−1[d(gx0, gx1) + d(gy0, gy1) ≤
λn

1− λ
[d(gx0, gx1) + d(gy0, gy1)].

It follows that
[
d(gxn, gxm) + d(gyn, gym)

]
→ 0 as n, m→ ∞ Hence d(gxn, gxm)→ 0 and d(gyn, gym)→ 0

as n, m → ∞. Thus, {gxn} and {gyn} are Cauchy sequences in g(X). By completeness of g(X) ∃ x, y ∈ g(X)

such that {gxn} and {gyn} converge to x and y respectively.Now, we prove that T(x, y) = gx and T(y, x) = gy.
Since T and g are commuting, it follows that

ggxn+1 = g
(
T(xn, yn)

)
= T(gxn, gyn) (6)

Using (6) and continuity of T and g, we have lim
n→∞

ggxn = lim
n→∞

T(gxn, gyn), implies g
(

lim
n→∞

gxn

)
=

T
(

lim
n→∞

gxn, lim
n→∞

gyn

)
. Hence g(x) = T(x, y).

Similarly, we can show that g(y) = T(y, x). Hence, (gx, gy) is coupled point of coincidence of T and g.
Now, we claim that (gx, gy) is the unique coupled point of coincidence of T and g. Suppose, we have another
coupled point of coincidence say (gx1, gy1) where (x1, y1) ∈ X2 with
gx1 = T(x1, y1) and gy1 = T(y1, x1).
Using (1), we have

d(gx, gx) = d [T(x, y), T(x, y)] ≤ a1 [d(gx, gx) + d(gy, gy)] + a2 [d(gx, gx) + d(gx, gx)] + a3 [d(gx, gx) + d(gx, gx)]

+ a4

[
d(gx, gx)d(gx, gx)

d(gx, gx) + d(gy, gy)

]
+ a5

[
[d(gx, gx) + d(gy, gy)][d(gx, gx) + d(gx, gx)]

1 + d(gx, gx) + d(gy, gy)

]
+ a6

[
d(gx, gx) + d(gx, gx)

1 + d(gx, gx)d(gx, gx)

]
+ a7

[
d(gx, gx)d(gx, gx)

1 + d(gx, gx) + d(gx, gx)

]
.

Now, we have

d(gx, gx) ≤ a1
[
d(gx, gx) + d(gy, gy)

]
+ a2

[
d(gx, gx) + d(gx, gx)

]
+ a3

[
d(gx, gx) + d(gx, gx)

]
+ a4d(gx, gx)

+ a5
[
d(gx, gx) + d(gx, gx)

]
+ a6

[
d(gx, gx) + d(gx, gx)

]
+ a7d(gx, gx).

It follows that
d(gx, gx) ≤ φd(gx, gx) + a1d(gy, gy) (7)

where φ = a1 + 2a2 + 2a3 + a4 + 2a5 + 2a6 + a7. Similarly

d(gy, gy) ≤ φd(gy, gy) + a1d(gx, gx). (8)
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Adding (7) and (8), we get[
d(gx, gx) + d(gy, gy)

]
≤ ψ

[
d(gx, gx) + d(gy, gy)

]
.

where ψ = φ + a1. This is possible only when d(gx, gx) + d(gy, gy) = 0 since ψ < 1 which implies that
d(gx, gx) = 0 and d(gy, gy) = 0. Similarly d(gx1, gx1) = 0 and d(gy1, gy1) = 0. Now, we shall show the
uniqueness of the coupled point of coincidence of T and g. For this task, we consider d(gx, gx1). Using (1), we
have

d(gx, gx1) = d [T(x, y), T(x1, y1)] ≤ a1 [d(gx, gx1) + d(gy, gy1)] + a2 [d(gx, T(x, y)) + d(gx1, T(x1, y1))]

+ a3 [d(gx, T(x1, y1)) + d(gx1, T(x, y))] + a4

[
d(gx, T(x, y))d(gx1, T(x1, y1))

d(gx, gx1) + d(gy, gy1)

]
+ a5

[
[d(gx, gx1) + d(gy, gy1)]× [d(gx, T(x, y)) + d(gx1, T(x1, y1))]

1 + d(gx, gx1) + d(gy, gy1)

]
+ a6

[
d(gx, T(x, y)) + d(gx, T(x1, y1))

1 + d(gx1, T(x1, y1))d(gx1, T(x1, y1))

]
+ a7

[
d(gx, T(x, y))d(gx1, T(x1, y1))

1 + d(gx, gx1) + d(gx1, T(x1, y1))

]
.

Using the fact that gx = T(x, y) and gx1 = T(x1, y1), we have

d(gx, gx1) ≤ a1 [d(gx, gx1) + d(gy, gy1)] + a2 [d(gx, gx) + d(gx1, gx1)] + a3 [d(gx, gx1) + d(gx1, gx)]

+ a4

[
d(gx, gx)d(gx1, gx1)

d(gx, gx1) + d(gy, gy1)

]
+ a5

[
[d(gx, gx1) + d(gy, gy1)][d(gx, gx) + d(gx1, gx1)]

1 + d(gx, gx1) + d(gy, gy1)

]
+ a6

[
d(gx, gx) + d(gx, gx1)

1 + d(gx1, gx1)d(gx1, gx1)

]
+ a7

[
d(gx, gx)d(gx1, gx1)

1 + d(gx, gx1) + d(gx1, gx1)

]
.

Thus, we have

d(gx, gx1) ≤ (a1 + a3 + a6)d(gx, gx1) + a1d(gy, gy1) + (a3 + a6)d(gx1, gx),

implies

(1− (a1 + a3 + a6))d(gx, gx1) ≤ a1d(gy, gy1) + (a3 + a6)d(gx1, gx). (9)

Similarly

(1− (a1 + a3 + a6))d(gy, gy1) ≤ a1d(gx, gx1) + (a3 + a6)d(gy1, gy). (10)

Adding (9) and (10) and then simplifying, we get[
d(gx, gx1) + d(gy, gy1)

]
≤ ω

[
d(gx1, gx) + d(gy1, gy)

]
(11)

where ω =
[

a3+a6
1−(2a1+a3+a6)

]
. Similarly

[
d(gx1, gx) + d(gy1, gy)

]
≤ ω

[
d(gx, gx1) + d(gy, gy1)

]
. (12)

Adding (11) and (12), we get[
d(gx1, gx) + d(gy1, gy) + d(gx, gx1) + d(gy, gy1)

]
≤ ω

[
d(gx1, gx) + d(gy1, gy) + d(gx, gx1) + d(gy, gy1)

]
.

(13)
So,

[
d(gx1, gx) + d(gy1, gy) + d(gx, gx1) + d(gy, gy1)

]
= 0, since ω < 1. It follows that d(gx1, gx) =

d(gy1, gy) = d(gx, gx1) = d(gy, gy1) = 0. Now, applying Definition (1), we get gx1 = gx and gy1 = gy. Thus,
(gx, gy) is the unique coupled point of coincidence of T and g.
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Next, we show that gx = gy.

d(gx, gy) = d
[
T(x, y), T(y, x)

]
≤ a1

[
d(gx, gy) + d(gy, gx)

]
+ a2

[
d
(

gx, T(x, y)
)
+ d
(

gy, T(y, x)
)]

+ a3

[
d
(

gx, T(y, x)
)
+ d
(

gy, T(x, y)
)]

+ a4

[
d
(

gx, T(x, y)
)
d
(

gy, T(y, x)
)

d(gx, gy) + d(gy, gx)

]

+ a5

[[
d(gx, gy) + d(gy, gx)

][
d(gx, T(x, y)) + d(gy, T(y, x))

]
1 + d(gx, gy) + d(gy, gx)

]

+ a6

[
d
(

gx, T(x, y)
)
+ d
(

gx, T(y, x)
)

1 + d
(

gy, T(y, x)
)
d
(

gy, T(y, x)
)]+ a7

[
d
(

gx, T(x, y)
)
d
(

gy, T(y, x)
)

1 + d(gx, gy) + d
(

gy, T(y, x)
)] .

Using (1) and the fact that gx = T(x, y) and gy = T(y, x), we have

d(gx, gy) ≤ a1
[
d(gx, gy) + d(gy, gx)

]
+ a2

[
d(gx, gx) + d(gy, gy)

]
+ a3

[
d(gx, gy) + d(gy, gx)

]
+ a4

[
d(gx, gx)d(gy, gy)

d(gx, gy) + d(gy, gx)

]
+ a5


[
d(gx, gy) + d(gy, gx)

][
d(gx, gx) + d(gy, gy)

]
1 + d(gx, gy) + d(gy, gx)


+ a6

[
d(gx, gx) + d(gx, gy)
1 + d(gy, gy)d(gy, gy)

]
+ a7

[
d(gx, gx)d(gy, gy)

1 + d(gx, gy) + d(gy, gy)

]
.

Thus, we have

d(gx, gy) ≤ σd(gy, gx), (14)

where σ =
[

a1+a3
1−(a1+a3+a6)

]
. Similarly, we can show that

d(gy, gx) ≤ σd(gx, gy). (15)

Adding (14) and (15), we have
[
d(gx, gy) + d(gy, gx)

]
≤ σ

[
d(gx, gy) + d(gy, gx)

]
. Since σ < 1, the above

inequality is only possible if d(gx, gy) = d(gy, gx) = 0. That is, gx = gy. Now, we show that T and g have
coupled common fixed point. To do so, first let u = gx = T(x, y). Due to the fact that T and g are weakly
compatible, we have gu = g(gx) = gT(x, y) = T(gx, gy) = T(u, u). Hence (gu, gu) is a coupled point of
coincidence and (u, u) is a coupled coincidence point of T and g. Applying the uniqueness property of coupled
point of coincidence of T and g, we get gu = u = gx = gy. Therefore T(u, u) = gu = u. That is (u, u) is a
coupled common fixed point of T and g. Now it remains to show the uniqueness of a coupled common fixed
point of T and g. Assume, we have another coupled common fixed point of T and g say (u1, u1) ∈ X2. It follows
that u1 = gu1 = T(u1, u1). Hence (gu, gu) and (gu1, gu1) are two coupled points of coincidence of T and g. But
due to the uniqueness of coupled point of coincidence, we get gu = gu1 and so u1 = T(u1, u1) = T(u, u) = u.
Therefore (u, u) is the unique coupled common fixed point of T and g.

Remark 1. If we take g = I (the identity map) and a7 = 0 in Theorem 14, we get Theorem 13 of [11].

The following example supports our main theorem.

Example 1. Let X = [0, 1) and d : X × X → <+ be defined by d(x, y) = |x − y|+ |y| for all x, y ∈ X. Then
(X, d) is dq-metric space. We define the functions T : X× X → X and g : X → X by

gx =

{
1
3 x if 0 ≤ x < 9

10 ,
3

10 if 9
10 ≤ x < 1,
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and

T(x, y) =



x+y
27 if 0 ≤ x, y < 9

10 ,
1

30 y if 9
10 ≤ x < 1 and 0 ≤ y < 9

10 ,
1

30 x if 9
10 < y < 1 and 0 ≤ x < 9

10 ,
1

15 if 9
10 ≤ x < 1 and 9

10 ≤ y < 1.

Clearly T and g are continuous, T(X × X) ⊆ g(X), and g(X) is complete. Following four cases will arise
for x, u, v, and y;

Case (1): 0 ≤ x, u, y, v < 9
10 .

Case (2): 9
10 ≤ x, u < 1 and 0 ≤ y, v < 9

10 .
Case (3): 9

10 < y, v < 1 and 0 ≤ x, u < 9
10 .

Case (4): 9
10 ≤ x, u < 1 and 9

10 ≤ y, v < 1.

Case 1: For 0 ≤ x, u, y, v < 9
10 , we have

d[T(x, y), T(u, v)] = d
(

x + y
27

,
u + v

27

)
=

∣∣∣∣ x + y
27
− u + v

27

∣∣∣∣+ ∣∣∣∣u + v
27

∣∣∣∣
=

∣∣∣ x
27

+
y
27
− u

27
− v

27

∣∣∣+ ∣∣∣ u
27

+
v

27

∣∣∣
≤

∣∣∣ x
27
− u

27

∣∣∣+ ∣∣∣ y
27
− v

27

∣∣∣+ ∣∣∣ u
27

∣∣∣+ ∣∣∣ v
27

∣∣∣
=

1
9

[(∣∣∣ x
3
− u

3

∣∣∣+ ∣∣∣u
3

∣∣∣)+ (∣∣∣y
3
− v

3

∣∣∣+ ∣∣∣v
3

∣∣∣)]
≤ 1

9
[
d(gx, gu) + d(gy, gv)

]
≤ 2

9
[
d(gx, gu) + d(gy, gv)

]
.

Similarly, for Cases (2) to (4), we obtain

d
[
T(x, y), T(u, v)

]
≤ 2

9
[
d(gx, gu) + d(gy, gv)

]
.

Hence all the conditions of Theorem 13 are satisfied with a1 = 2
9 , a2 = 1

120 , a3 = 1
64 , a4 = 1

80 , a5 = 1
100 , a6 =

1
128 , and a7 = 1

32 . Therefore, T and g have unique coupled point of coincidence and unique coupled common
fixed point which are (g0, g0) and (0, 0) respectively. This is due to the fact that gT(0, 0) = T(g0, g0) =

T(0, 0) = 0.

4. Conclusion

In 2018, Mohammed established the existence of coupled fixed point for mapping satisfying certain
rational type contraction condition in a complete dislocated quasi metric space. In this paper, we explored
the properties of dislocated quasi-metric spaces and also discuss the difference between metric space and
dislocated metric space. We established and proved existence of coupled coincidence point and existence and
uniqueness of coupled common fixed point theorem for a pair of maps T and g in the setting of dislocated quasi
metric spaces. Also, we provided an example in support of our main result. Our work extended coupled fixed
point result to common coupled fixed point result. The presented theorem extends and generalizes several
well-known comparable results in literature.
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