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Abstract: The main difficulty in dealing with the basic differential equations of fluid momentum is in
choosing an appropriate problem-solving methodology. In addition, it is necessary to correct minor errors
incurred by neglecting some losses. However, in many cases, such methodologies suffer from long processing
time (P-time). Therefore, this article focuses on the truncation technique involving an unsteady Eyring-Powell
fluid towards a shrinking wall. The governing differential equations are converted to the non-dimensional
from through similarity variables. It is seen that the present system is totally convergent in 8th-order
approximate solution together with h̄ = −0.875.
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1. Introduction

A nalyzing the rheological behavior of Eyring-Powell fluid models (at low and high shear rates),
which can be easily deduced from the molecular theory of rarefied gases [1], is very important

for pseudoplastic systems nowadays. Until recently, only such fluid flow problems, whether “steady” or
“unsteady”, have been concerned with finding the velocity and temperature distribution through the use
of some particular problem-solving methodologies [2–11]. However, from a mathematical viewpoint, it can
be desirable to have a series expansion which converges in the semi-infinite intervals faster than a series
expansion with a smaller interval of convergence. In this way, Khoshrouye Ghiasi and Saleh [12] employed a
rather convergent feature of homotopy analysis method (HAM) by adding to the truncation technique, namely,
tHAM, for solving the Falkner-Skan boundary value problem (FBVP) and spotting many errors. In fact, they
could give rigorous proof of their observations showing how the P-time can be minimized without any loss of
accuracy. Furthermore, it is to be mentioned here that some other types of technical problems [13–29] can be
solved quite simply through this starting point.

Unlike many side benefits of the truncation technique, the lack of tHAM for solving many flow problems
is pronounced yet. To this aim, an efficient tHAM for studying the laminar flow velocity distribution in
an Eyring-Powell fluid model subjected to inclined magnetic field is developed here. The obtained results
concerning the steady case are compared and validated with those simulations available in the open literature.
It is shown that the tHAM can be considered as a powerful tool for deriving high-accuracy approximations.

2. Problem formulation

Consider a two-dimensional unsteady laminar flow past a continuous stretching sheet of velocity Uw =
ax

1−bt where a > 0 and b ≥ 0 are the initial stretching rate and unsteadiness coefficient, respectively. Here an
inclined magnetic field strength B is applied across the conducting fluid at an acute angle θ below the free
surface.

According to the Eyring-Powell fluid model, the differential equations of mass and linear momentum
conservation for the assumed flow pattern can be expressed as,

u,x + v,y = 0,
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u̇ + uu,x + vv,y =

(
v +

1
ρΓΛ

)
u,yy −

1
2ρΓΛ3 u2

,yu,yy −
σB2sin2θ

ρ
u,

with the boundary conditions

u = Uw(x, t) =
ax

1− bt
, v = V(x, t) at y = 0,

u→ 0, v→ 0, as y→ ∞,

where v is the kinematic viscosity, ρ is the density, Γ and Λ are the material constants, σ is the electrical
conductivity and V(x, t) is the mass transfer rate. It is to be noted that the comma sign and dot-superscript
followed by independent variables signify the partial derivative involving ∂

∂x (or ∂
∂x ) and differentiation with

respect to the time , respectively.
Introducing these variables τ = y =

√
a

v(1−bt) , u = ax
1−bt ϕ,τ and v = − av

1−bt ϕ, the governing equations

and associated boundary conditions are given by

(1 + λ)ϕ,τττ − β(ϕ,τ +
1
2

τφ,ττ) + ϕϕ,ττ − ϕ2
,τ − λδϕ2

,ττ ϕ,τττ −M2sin2θϕ,τ = 0

ϕ = 0, ϕ,τ = 1, at τ = 0,

ϕ,τ = 0 as τ → ∞,

where λ = 1
ρΓΛ and δ = a3x2

2vΛ2 , are the Eyring-Powell fluid parameters, β = b
a is the unsteadiness parameter

and M =
√

σB2

ρa is the magnetic field parameter.
Here the dimensionless quantity skin friction coefficient C f is defined as,

√
RexC f = [(1 + λ)ϕ,ττ(0)−

1
3

λδϕ3
,ττ(0)],

where Rex = Uwx
v is the local Reynolds number.

3. Solution methodology

Let us denote the following nonlinear equation by,

N [ϕ(τ)] = 0,

where N is a nonlinear operator. Using q ∈ [0, 1] as an embedding parameter, the homotopy function H is
constructed as [30]

H( ˆϕ, q, h̄) = (1− q)L[ϕ(τ, q)− ϕ0(τ)] + qh̄N [ϕ̂(τ, q)], (1)

where ϕ̂ is an unknown function, h̄ 6= 0 is an auxiliary parameter, L 6= 0 is an auxiliary linear operator and ϕ0

is an initial guess of ϕ. It is to be noted that in the limit as approaches 0 and 1, ϕ̂(τ, q) varies from the initial
guess to the solution of ϕ(τ). In fact, as follows from Equation (1), ϕ̂(τ; 0) = ϕ0(τ) and ϕ̂(τ; 1) = ϕ(τ) are the
solution of H( ˆϕ; q, h)|q=0 = 0 and H( ˆϕ; q, h)|q=1 = 0, respectively. By expanding ϕ̂(τ; q) n the Taylor’s series
with respect to, one would get

ϕ̂(τ; q) = ϕ̂(τ; 0) +
∞

∑
j=1

1
j!

ϕ̂
(j)
,q (τ; q)|q=0 = 0 = ϕ0(τ) +

∞

∑
j=1

ϕj(τ)qj,

where ϕj is the jth-order deformation derivative. By setting H( ˆϕ; q, h) and q equal to zero, the zeroth-order
deformation equation is obtained as [30];

L[ϕ̂(τ; 0)− ϕ0(τ)] = 0.
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By differentiating H( ˆϕ; q, h), j times with respect to q, setting q = 0 and dividing it by j!, after dropping
the hats, the th-order deformation equation is constructed as

L[ϕj(τ)− xj ϕj−1(τ)] +
1

(j− 1)!
h̄N j−1

,q [ϕ(τ; q)]|q=0 = 0,

where

Xj =

{
0 if j ≤ 1,
1 if j > 1.

Here the initial guess and auxiliary linear operator are taken to be

ϕ0(τ) = 1− e−τ ,

L[ϕ(τ; q)] = ϕ,τττ(τ, q)− ϕ,q(τ, q),

with the property
L[α1 + α2eτ + α3e−τ ] = 0,

where α1 − α2 are the integration constants. Expanding α(τ; q) in the Taylor’s series gives the following series
expansion,

α(τ; q) = ϕ0(t) + qϕ1(t) + q2 ϕ2(t) + · · ·.

The nonlinear operator in this case is given by

N [α(t; q)] = (1 + λ)ϕ,τττ(τ, q)− β(α,τ(τ; q) +
1
2

τϕ,ττ(τ, q))− ϕ2(τ; q)

−λδϕ2
,ττ(τ, q)ϕ,τττ(τ; q)−M2sin2θϕ,τ(τ; q).

The zeroth-order deformation equation and associated boundary conditions are written in the form

ϕ,τττ(τ)− ϕ0,τ(τ) = 0,

ϕ(τ; q) = 0, ϕ,τ(τ; q) = 1 at τ = 0,

ϕ,τ(τ; q)→ ∞.

The th-order deformation equation is generated as

ϕj,τττ(τ)− ϕj,τ = Xj(ϕj−1,τττ(τ)− ϕj−1,τ(τ))−
1

j− 1!
h̄N j−1

,q [ϕ(τ, q)]|q=0 = 0 (2)

which goes to zero boundary conditions.
To find a more explicit way of representing the th-order deformation Equation (2), it is required to express

1
j−1! h̄N

j−1
,q [ϕ(τ, q)]|q=0 by a linear combination of independent functions. With an inner product of any two

independent functions in such a way that ψm, ψn =
∫ ∞

0 (τ)ψm(τ)ψn(τ)dτ m ≥ 1 and n ≤ r [30] where k
and τ are the weight function and number of truncation, respectively. The Schmidt-Gram procedure [31] as
well as the Kronecker delta functions can be applied to calculate r. Therefore, 1

j−1! h̄N
j−1
,q [ϕ(τ, q)]|q=0 will be

approximated by an orthonormal set of bases e1, e2, ...er at each point τ. It is to be noted here that after making
this substitution and then solving the p−th order deformation Equation (2), the th-order approximate solution
is achieved by

ϕp =
p

∑
j=0

ϕj(τ).

In theory, the square residual error at the th-order of approximation can be defined as [32];

∆p =
1

d + 1

d

∑
l=0

(
N
[

p

∑
z=0

ϕz(τ)

])2

.
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4. Results and discussion

As it was mentioned earlier, employing the tHAM for those problems lie in the semi-infinite intervals is
sufficient not just for a much faster rate of convergence, but also for the less obtained P-time. To do this, the
geometric and physical properties discussed in Section 2, unless stated otherwise, are given in Table 1. It is
to be noted here that if the order of approximation is selected as p = 8, the auxiliary parameter and square
residual error take the same values as before. This fact is presented in Table 2.

Table 1. Geometric and physical properties of the fluid.

λ β δ M θ

0.6 −0.5 0.1 0.2 45o [1ex]

Figure 1. Verification of the local velocity distribution

Table 2. Convergence and uniqueness of the series expansion by selecting an appropriate auxiliary parameter,
when the amount of P-time is rounded up to two digits.

p h̄ 4p P− times(s)

5 −0.864 6.403× 10−9 7.41
6 −0.871 5.179× 10−10 15.66
7 −0.875 2.436× 10−11 32.90
8 −0.875 2.436× 10−11 73.75
9 −0.875 2.436× 10−11 169.15

10 −0.875 2.436× 10−11 406.24

In view of the results given in Table 2, the 8th-order tHAM converges rapidly for h̄ = −0.875. However,
due to the loop-like behavior of the tHAM, the P-time is greatly enhanced by increasing the order of
approximation. According to the case reported by Zhao et al. [33], the main idea behind the truncation
technique is to reduce the computation of series expansion and P-time made of (two or more) independent
functions with a given k. Since the number of truncation can simply be calculated as k = 40 [12] therefore, the
square residual error will be minimized.



Eng. Appl. Sci. Lett. 2020, 3(4), 28-34 32

Table 3. Skin friction coefficient vs. those geometric and physical properties

λ β δ M θ [(1 + λ)ϕ,ττ(0)− 1
3 λδϕ3

,ττ(0)]

0.6 −0.5 0.1 0.2 30o 1.0191
0.7 0.9591
0.8 0.9262
0.8 −0.4 0.9280

−0.3 0.9516
−0.2 0.9733

0.8 −0.2 0.2 1.1170
0.3 1.1046
0.4 1.1776

0.8 −0.2 0.4 0.3 1.1046
0.4 1.1053
0.5 1.1061

0.8 −0.2 0.4 0.5 45o 0.9970
60o 0.9811
90o 0.9684

A comparison of the local velocity distribution obtained by different solution methodologies with
geometric and physical properties λ = 0.3 and θ = 90o is shown in Figure 1. According to this Figure 1,
the 8th-order tHAM gives accurate answers compared to those findings reported by Hayat et al. [34]; however,
the order of approximation in the case analyzed by Hayat et al. [21] is radically different. Furthermore, the local
velocity distribution for the same system without using the truncation is consistent with the tHAM results, but
instead takes more P-time to consistency (i.e., 996.43s). It is worth noting that, based on the results reported
in Table 2 and Figure 1, although the square residual error should be taken to optimize the value of auxiliary
parameter, the only way that the P-time can reduce appears in the combination of truncation technique with
the HAM.

Table 3 investigates the variation of skin friction coefficient versus different geometric and physical
properties presented in Section 2. It is seen that the skin friction coefficient enhances when β, δ and M are
increased in any case. In contrast to the previous observation, the skin friction coefficient is a diminishing
function of θ and λ. Hence, one can conclude that such findings involved in Table 3 are particularly useful for
developing thermodynamic characteristics of an Eyring-Powell fluid model with slip velocity at the wall.

5. Conclusions

Utilizing the tHAM for analyzing the unsteady Eyring-Powell fluid embedded in a shrinking wall under
inclined magnetic field was the main purpose of this article. Furthermore, the square residual error at each
order of approximation was minimized to accelerate the rate of convergence for the present system. It was
found that the 8th-order tHAM together with h̄0.875 and k = 40 can give high accurate results compared to
any other solution methodology simply because the P-time in this case is taken as 73.75s.

6. Nomenclature

• u, v ; Velocity components along x and y axes, respectively [ms−1]
• β ; Magnetic field strength [kgs−2 A−1]
• Uw ; Velocity at the wall [ms−1]
• t ; time [s]
• a ; Initial stretching rate [a]
• b ; Unsteadiness coefficient [b]
• V ; Mass transfer rate [s−1]
• M ; Magnetic field parameter
• C f ; Skin fiction coefficient
• Rex ; Reynolds number

Greeksymbols
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• v ; Kinematic viscosity [m2s−1]
• ρ ; Density [kgm3]
• Γ, Λ ; Material constants
• σ ; Electrical conductivity [Sm−1]
• θ ; Inclined angle of magnetic field
• η ; Similarity variable
• ϕ ; Similarity function
• λ, δ ; Eyring-Powell fluid parameter
• β ; Unsteadiness parameter
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