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Abstract: The purpose of this paper is to introduce and evaluate novel iterative methods for approximating
solutions to nonlinear equations, which leverage the power of the variational iteration technique. Specifically,
we present a comprehensive analysis of the proposed methods and demonstrate their effectiveness through
various examples. Moreover, we provide a comparative analysis with other existing methods and conclude
that the newly developed methods offer a competitive alternative. Our results highlight the potential of this
approach in generating a diverse set of iterative methods for solving nonlinear equations. Therefore, this
study contributes to the ongoing efforts to improve the efficiency and accuracy of nonlinear equation solving
techniques.
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1. Introduction

F inding roots of nonlinear equations efficiently has widespread applications in numerical analysis. Due
to such importance and significant applications in various branches of science, several methods are

being developed for solving f (x) = 0, using different techniques such as Taylor series, quadrature formulas,
homotopy perturbation method, Adomian decomposition and variational iteration technique [1–23]. Newton
method for a single nonlinear equation is written as

xn+1 = xn −
f (xn)

f ′(xn)
, n = 0, 1, 2, 3 · · · .

This is an important and basic method [21], which converges quadratically. To improve the local order of
convergence, many modified methods have been proposed, see [2,3] and [9–14].

In this paper, we use a novel technique suggested by He [6] for the development of iterative schemes
for linear and nonlinear problems. We implement He’s variational iteration technique to suggest and analyze
some new iterative methods for solving the nonlinear equations. We would like to mention that the variational
iteration technique was developed by He [6] and has been used to solve a wide class of problems arising
in various branches of pure and applied sciences. The variational iteration technique is very reliable and
efficient technique. See also Noor and Mohyud-Din [15] and the references therein. Essentially using the
idea and technique of He [6], Noor and Shah [16] has suggested and analyzed some iterative methods for
solving the nonlinear equations. Now we have used this technique to gain higher order convergent iterative
methods. An approximation technique to remove the higher derivative of the function is also introduced. We
show that the new methods include only first derivative of the functions and these are free from higher order
derivatives. Several examples are given to illustrate the efficiency and performance of these new methods and
their comparison with other iterative methods. These new methods can be considered as alternative to the
existing higher order methods.
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2. Construction of iterative methods

In this section, we use a special relation for the implementation of He’s variational iteration technique
[6]. We develop the main recurrence relation which generates efficient iterative schemes for the approximate
solution of nonlinear equation. Consider the nonlinear equation of the type

f (x) = 0. (1)

We assume that p is a simple root and γ is an initial guess sufficiently close to p. We consider the
approximate solution xn of (1) such that f (xn) ̸= 0.

Let g(xn) be any arbitrary function and λ be a parameter which is usually called the Lagrange’s multiplier
and can be identified by the optimality condition. Consider the following iterative relation

xn+1 = ϕ(xn) + λ [ f (ϕ(xn))g(ϕ(xn))], (2)

where ϕ(xn) is the arbitrary auxiliary function of order p ≥ 1. Relation (2) is a generalized relation. We note
that, if ϕ(xn) = I and p = 1, then (2) reduces to the following iterative relation

xn+1 = xn + λ [ f (xn)g(xn)], (3)

which was considered and analyzed by He [6]. See also Noor [11,13]. Thus we conclude that our scheme (2)
includes the He’s scheme as a special case. In this paper, our aim is to analyze the relation (2) for obtaining
higher order methods and for this, we will study the arbitrary auxiliary function for p = 2, and the generated
methods will be of fourth order. Using the optimality criteria, we can get the value of λ from (2) as

λ = − ϕ′(xn)

[g′(ϕ(xn)) f (ϕ(xn)) + g(ϕ(xn)) f ′(ϕ(xn))]
. (4)

From (2) and (4), we have

xn+1 = ϕ(xn)−
f (ϕ(xn))g(ϕ(xn))

[g′(ϕ(xn)) f (ϕ(xn)) + g(ϕ(xn)) f ′(ϕ(xn))]
. (5)

Let us consider

ϕ(xn) = yn = xn −
f (xn)

f ′(xn)
. (6)

Using (5) in (6), we obtain the following iterative relation for solving the nonlinear equations as:

xn+1 = yn −
f (yn)g(yn)

[ f ′(yn)g(yn) + f (yn)g′(yn)]
, (7)

where g(yn) is the auxiliary function. We observe that, If p is the root of f (x), then for x = p, we have f (p) = 0
and

g′(y)
g(y)

≈ g′(p)
g(p)

. (8)

Also we have
g′(x)
g(x)

=
g′(p)
g(p)

. (9)

Combining (8) and (9), and replacing in (7), we obtain the following iterative scheme

xn+1 = yn −
f (yn)g(xn)

[ f ′(yn)g(xn) + f (yn)g′(xn)]
. (10)

From the above scheme, for different values of the auxiliary function g(xn), one can obtain several iterative
methods of fourth order convergence for solving nonlinear equations. Here our aim is to improve the efficiency
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of the above iterative scheme by removing f ′(yn) from the main scheme. Using the Taylor series technique,
we have

f (yn) ≃ f (xn) + (yn − xn) f ′(xn) +
(yn − xn)2

2
f ′′(xn) =

[ f (xn)]2 f ′′(xn)

2[ f ′(xn)]2
. (11)

Let us approximate

f ′′(xn) ≃
[ f ′(yn)− f ′(xn)]

yn − xn
. (12)

Using (12) in (11) and simplifying, we obtain

f ′(yn) ≈
f ′(xn)

f (xn)
[ f (xn)− 2 f (yn)] . (13)

Using (13) in (10), we get the relation

xn+1 = yn −
f (xn) f (yn)g(xn)

f ′(xn)[ f (xn)− 2 f (yn)]g(xn) + f (xn) f (yn)g′(xn)
. (14)

This is the main iterative scheme for generating 4th order convergent methods. We will use some special
values of g(xn) and get the iterative methods as:
I. Let g(xn) = e−αxn . Then from (14), we obtain the following iterative method for solving the nonlinear Eq.
(1).

Algorithm 1. For a given x0, find the approximate solution xn+1 by the iterative scheme

yn =xn −
f (xn)

f ′(xn)
,

xn+1 =yn −
f (xn) f (yn)

f ′(xn)[ f (xn)− 2 f (yn)]− α f (yn) f (xn)
.n = 0, 1, 2, · · · .

If α = 0, then Algorithm 1 reduces to the well known Ostrowski method [17].
II. Let g(xn) = e−α f (xn). Then from (14), we have the following iterative scheme for solving the nonlinear Eq.
(1).

Algorithm 2. For a given x0 , find the approximate solution xn+1 by the iterative scheme

yn =xn −
f (xn)

f ′(xn)
,

xn+1 =yn −
f (xn) f (yn)

f ′(xn) ([ f (xn)− 2 f (yn)]− α f (yn) f (xn))
,

If α = 0, then Algorithm 2 reduces to the well known Ostrowski method [17].

III. Let g(xn) = e
α

f ′(xn) . Then g′(xn) = e
α

f ′(xn)
(
− α f ′′(xn)

[ f ′(xn)]2

)
.

Now from (14), we get after combining with (11), the following iterative method for solving the nonlinear
Eq. (1).

Algorithm 3. For a given x0, find the approximate solution xn+1 by the iterative scheme

yn =xn −
f (xn)

f ′(xn)
,

xn+1 =yn −
f (yn)[ f (xn)]2

f ′(xn) f (xn)[ f (xn)− 2 f (yn)]− 2α[ f (yn)]2
.

If α = 0, then Algorithm 3 reduces to the well known Ostrowski method [17].

IV. Let g(xn) = e
− α f (xn)

f ′(xn) . Then from (15), we have the following iterative scheme after combining with (11) for
solving the nonlinear Eq. (1).
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Algorithm 4. For a given x0 , find the approximate solution xn+1 by the iterative scheme

yn = xn −
f (xn)

f ′(xn)
,

xn+1 = yn −
f (xn) f (yn)

[ f (xn)− 2 f (yn)] [ f ′(xn)− α f (yn)]
.

If α = 0, then Algorithm 4 reduces to the well known Ostrowski method [17].

3. Convergence analysis

In this section, we consider the convergence criteria of the main iterative scheme (14) developed in §2.

Theorem 1. Assume that the function f : D ⊂ R→R for an open interval D has a simple root p∈D. Let f (x) be smooth
sufficiently in some neighborhood of the root and then (14) has fourth-order convergence.

Proof. Let p be a simple root of f (x). Since f is sufficiently differential, then expanding f (x) and f ′(x) in
Taylor’s series about p, we get

f (xn) = f ′(p)
[
en + c2e2

n + c3e3
n + c4e4

n + c5e5
n + c6e6

n + O(e7
n)
]

, (15)

and
f ′(xn) = f ′(p)

[
1 + 2c2en + 3c3e2

n + 4c4e3
n + 5c5e4

n + 6c6e5
n + O(e7

n)
]

. (16)

Where ck =
1
k!

f (k)(p)
f ′ (p)

, k = 2, 3, · · · . and en = xn − p.

From (15) and (16), we get

f (xn)

f ′(xn)
=en − c2e2

n + 2(c2
2 − c3)e3

n + (7c2c3 − 4c2
3 − 3c4)e4

n + (8c4
2
− 20c3c2

2

+ 6c2
3
+ 10c2c4 − 4c5)e5

n + (13c2c5 − 28c2
2c4 − 5c6 − 16c5

2 + 52c3
2c3

+ 17c3c4 − 33c2c2
3)e

6
n + O(e7

n). (17)

Using (17), we have

yn =p + c2e2
n − 2(c2

2 − c3)e3
n − (7c2c3 − 4c3

2 − 3c4)e4
n − (8c4

2 − 20c3c2
2 + 6c2

3

+ 10c2c4 − 4c5)e5
n + (13c2c5 − 28c2

2c4 − 5c6 − 16c5
2 + 52c3

2c3 + 17c3c4

− 33c2c2
3)e

6
n + O(e7

n). (18)

From (18), we obtain

f (yn) = f ′(p)[c2e2
n − 2(c2

2 − c3)e3
n − (7c2c3 − 5c3

2 − 3c4)e4
n − (12c4

2 − 24c3c2
2

+ 6c2
3 + 10c2c4 − 4c5)e5

n + O(e7
n)]. (19)

Now from (15) and (19), we get

f (xn)− 2 f (yn) = f ′(p)
[
en − c2e2

n + (4c2
2 − 3c3)e3

n + (14c2c3 − 10c3
2 −5c4)e4

n + O(e5
n)
]

, (20)

and
f (x) f (y)g(x) = [ f ′(p)]2

[
g(p)c2e3

n +
{

g′(p)c2 − g(p)c2
2
+ 2g(p)c3

}
e4

n + O(e5
n)
]

. (21)
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From (15), (20) and (21), we obtain

f ′(xn)[ f (xn)− 2 f (yn)]g(xn) + f (xn) f (yn)g′(xn) = [ f ′(p)]2
[

g(p)en + (g(p)c2 + g′(p))e2
n +

(
1
2

g′′(p)

+ 2g(p)c2
2

)
e3

n +

(
−1

2
g′′(p)c2 − 2g′(p)c3 +

1
6

g′′′(p) + 3g′(p)c2
2 − 2g(p)c3

2 − g(p)c4 + 5g(p)c2c3

)
e4

n + O(e5
n)

]
.

(22)

Now with the help of (21) and (22), we get

f (x) f (y)g(x)
f ′(xn)[ f (xn)− 2 f (yn)]g(xn) + f (xn) f (yn)g′(xn)

= c2e2
n + (2c3 − 2c2

2)e
3
n +

(
g′(p)
g(p)

c2
2 + 3c3

2 + c4 − 6c2c3

)
e4

n + O(e5
n). (23)

Now from (18) and (23), we get

xn+1 = p +

(
g′(p)
g(p)

c2
2 + 3c3

2 + c4 − 6c2c3

)
e4

n + O(e5
n). (24)

Finally, the error equation is

en+1 =

(
g′(p)
g(p)

c2
2 + 3c3

2 + c4 − 6c2c3

)
e4

n + O(e5
n). (25)

Thus we conclude that (14) has fourth-order convergence and subsequently all the methods derived from
(14) has also fourth order convergence.

4. Numerical results

We now present some examples to illustrate the efficiency of the new developed two-step iterative
methods (see Tables 1–6). We compare the Newton method (NM), Turab’s method (TM), Ostrowski method
(OM) Algorithm 1 (NR1), Algorithm 2 (NR2), Algorithm 3 (NR3) and Algorithm 4 (NR4) which are introduced
here in this paper. We also note that these methods do not require the computation of second derivative to
carry out the iterations. All computations are done using the MAPLE using 60 digits floating point arithmetics
(Digits: =60).

We will use ε = 10−32.The following stopping criteria are used for computer programs.
(i) |xn+1 − xn|< ε. (ii) | f (xn+1)|< ε.
The computational order of convergence p approximated for all the examples in Tables 1–6, (see [20]) by

means of

ρ ≈ ln (|xn+1 − xn|/|xn − xn−1|)
ln (|xn − xn−1|/|xn−1 − xn−2|)

,

along with the total number of functional evaluations (TNFE) as required for the iterations. We consider the
following nonlinear equations as test problems which are same as Noor and Noor [16].

f1(x) = sin2 x − x2 + 1,

f2(x) = x2 − ex − 3x + 2,

f3(x) = (x − 1)3 − 1,

f4(x) = x3 − 10,

f5(x) = xex2 − sin2 x + 3 cos x + 5,

f6(x) = ex2+7x−30 − 1.
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Table 1. ( f1, x0 = 1)

Methods IT TNFE xn | f (xn)| δ ρ
NM 7 14 1.404491648215341226 1.04e-50 7.33e-26 2.00003
TM 4 16 1.404491648215341226 0.00e-01 7.33e-26 4.29576
OM 4 12 1.404491648215341226 0.00e-01 5.64e-28 4.24367
Algorithm 1 4 12 1.404491648215341226 0.00e-01 2.14e-27 4.27401
Algorithm 2 4 12 1.404491648215341226 0.00e-01 4.20e-18 3.97200
Algorithm 3 4 12 1.404491648215341226 0.00e-01 3.48e-17 4.29898
Algorithm 4 4 12 1.404491648215341226 0.00e-01 2.00e-16 4.52494
NM 7 14 1.404491648215341226 1.04e-50 7.33e-26 2.00003
TM 4 16 1.404491648215341226 0.00e-01 7.33e-26 4.29576
OM 4 12 1.404491648215341226 0.00e-01 5.64e-28 4.24367
Algorithm 1 4 12 1.404491648215341226 0.00e-01 9.57e-23 4.25801
Algorithm 2 4 12 1.404491648215341226 0.00e-01 1.80e-43 3.87150
Algorithm 3 4 12 1.404491648215341226 0.00e-01 2.33e-22 4.34817
Algorithm 4 4 12 1.404491648215341226 0.00e-01 2.83e-24 4.09265

Table 2. ( f2, x0 = 2)

Methods IT TNFE xn | f (xn)| δ ρ
NM 6 12 0.2575302854398607 2.93e-55 9.10e-28 2.00050
TM 4 16 0.2575302854398607 1.00e-59 7.74e-56 3.86670
OM 4 12 0.2575302854398607 0.00e-01 2.70e-23 4.15500
Algorithm 1 4 12 0.2575302854398607 2.00e-59 4.23e-24 4.29911
Algorithm 2 4 12 0.2575302854398607 1.00e-59 2.26e-16 4.10939
Algorithm 3 4 12 0.2575302854398607 0.00e-01 2.60e-25 4.49624
Algorithm 4 4 12 0.2575302854398607 0.00e-01 1.35e-40 3.92927
NM 6 12 0.2575302854398607 2.93e-55 9.10e-28 2.00050
TM 4 16 0.2575302854398607 1.00e-59 7.74e-56 3.86670
OM 4 12 0.2575302854398607 0.00e-01 2.70e-23 4.55500
Algorithm 1 4 12 0.2575302854398607 0.00e-01 3.37e-40 3.85293
Algorithm 2 4 12 0.2575302854398607 0.00e-01 5.62e-18 4.91925
Algorithm 3 4 12 0.2575302854398607 1.00e-59 2.83e-24 4.52741
Algorithm 4 4 12 0.2575302854398607 1.00e-59 5.76e-27 3.96131

Table 3. ( f3, x0 = 3.5)

Methods IT TNFE xn | f (xn)| δ ρ
NM 8 16 2.0000000000000000 2.06e-42 8.28e-22 2.00025
TM 5 20 2.0000000000000000 0.00e-01 6.86e-43 3.86708
OM 5 15 2.0000000000000000 0.00e-01 2.21e-49 3.90897
Algorithm 1 5 15 2.0000000000000000 0.00e-01 1.00e-40 4.28367
Algorithm 2 6 18 2.0000000000000000 0.00e-01 1.40e-41 3.95934
Algorithm 3 4 12 2.0000000000000000 0.00e-01 4.30e-17 3.96235
Algorithm 4 4 12 2.0000000000000000 0.00e-01 1.43e-21 3.84029
NM 8 16 2.0000000000000000 2.06e-42 8.28e-22 2.00025
TM 5 20 2.0000000000000000 0.00e-01 6.86e-43 3.86708
OM 5 15 2.0000000000000000 0.00e-01 2.21e-49 3.90897
Algorithm 1 4 12 2.0000000000000000 0.00e-01 5.48e-24 3.85377
Algorithm 2 6 18 2.0000000000000000 0.00e-01 8.02e-57 3.97842
Algorithm 3 5 15 2.0000000000000000 0.00e-01 2.43e-53 3.98698
Algorithm 4 4 12 2.0000000000000000 0.00e-01 9.19e-17 3.83639
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Table 4. ( f4, x0 = 1.5)

Methods IT TNFE xn | f (xn)| δ ρ
NM 7 14 2.15443469003188 2.06e-54 5.64e-28 2.00003
TM 4 16 2.15443469003188 1.00e-58 5.64e-28 4.21798
OM 4 12 2.15443469003188 8.00e-59 3.73e-32 4.18546
Algorithm 1 4 12 2.15443469003188 8.00e-59 2.72e-20 5.14348
Algorithm 2 5 15 2.15443469003188 1.00e-58 2.82e-34 3.92450
Algorithm 3 4 12 2.15443469003188 1.00e-58 1.04e-50 3.92059
Algorithm 4 4 12 2.15443469003188 1.00e-58 8.17e-17 4.33019
NM 7 14 2.15443469003188 2.06e-54 5.64e-28 2.00003
TM 4 16 2.15443469003188 1.00e-58 5.64e-28 4.21798
OM 4 12 2.15443469003188 8.00e-59 3.73e-32 4.18546
Algorithm 1 4 12 2.15443469003188 8.00e-59 2.04e-32 4.46637
Algorithm 2 5 15 2.15443469003188 8.00e-59 8.44e-46 3.97295
Algorithm 3 4 12 2.15443469003188 8.00e-59 1.79e-36 4.04813
Algorithm 4 4 12 2.15443469003188 8.00e-59 3.63e-20 4.41414

Table 5. ( f5, x0 = −2)

Methods IT TNFE xn | f (xn)| δ ρ
NM 9 18 -1.207647827130918 2.27e-40 2.73e-21 2.000851
TM 5 20 -1.207647827130918 1.10e-58 2.73e-21 4.004843
OM 5 15 -1.207647827130918 8.00e-59 3.71e-43 4.136952
Algorithm 1 5 15 -1.207647827130918 8.00e-59 3.06e-24 4.012770
Algorithm 2 6 18 -1.207647827130918 1.10e-58 2.00e-22 4.02808 0
Algorithm 3 5 15 -1.207647827130918 8.00e-59 1.08e-48 4.520711
Algorithm 4 5 15 -1.207647827130918 8.00e-59 3.29e-48 3.975131
NM 9 18 -1.207647827130918 2.27e-40 2.73e-21 2.00085
TM 5 20 -1.207647827130918 1.10e-58 2.73e-21 4.00484
OM 5 15 -1.207647827130918 8.00e-59 3.71e-43 4.13695
Algorithm 1 5 15 -1.207647827130918 8.00e-59 1.36e-30 4.03378
Algorithm 2 7 21 -1.207647827130918 8.00e-59 4.13e-30 4.05656
Algorithm 3 5 15 -1.207647827130918 8.00e-59 5.78e-45 4.24036
Algorithm 4 5 15 -1.207647827130918 8.00e-59 4.57e-51 3.98835

Table 6. ( f6, x0 = 3.5)

Methods IT TNFE xn | f (xn)| δ ρ
NM 13 26 3.00000000000000 1.52e-47 4.21e-25 2.00023
TM 7 28 3.00000000000000 0.00e-01 4.21e-25 3.83827
OM 6 18 3.00000000000000 0.00e-01 6.93e-17 3.97578
Algorithm 1 6 18 3.00000000000000 0.00e-01 5.25e-23 4.03116
Algorithm 2 6 18 3.00000000000000 0.00e-01 5.14e-19 4.04841
Algorithm 3 6 18 3.00000000000000 0.00e-01 7.08e-18 4.15183
Algorithm 4 6 18 3.00000000000000 0.00e-01 5.14e-19 4.12008
NM 13 26 3.00000000000000 1.52e-47 4.21e-25 2.00023
TM 7 28 3.00000000000000 0.00e-01 4.21e-25 3.83827
OM 6 18 3.00000000000000 0.00e-01 6.93e-17 3.97578
Algorithm 1 6 18 3.00000000000000 0.00e-01 1.54e-19 3.98918
Algorithm 2 10 18 3.00000000000000 2.00e-58 1.13e-30 4.04841
Algorithm 3 6 18 3.00000000000000 2.00e-58 2.47e-17 4.05576
Algorithm 4 6 18 3.00000000000000 2.00e-58 4.96e-16 3.92802
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5. Conclusion

The focus of this study is to present new fourth-order convergent methods for solving nonlinear
equations. Notably, all of these methods are designed to be free from the need for second derivatives. To
evaluate their effectiveness, we compare these new methods with the standard Newton method, and our
findings indicate that the proposed methods generally exhibit superior performance. Furthermore, when
assessing the efficiency of these methods, we apply the definition of the efficiency index, as outlined in [4].
This allows us to provide a more comprehensive analysis of the strengths and limitations of these newly
proposed methods for solving nonlinear equations. Overall, our results suggest that these new methods
have the potential to provide valuable contributions to the field of numerical mathematics and to enable more
accurate and efficient solutions with the efficiency index [5] as p

1
m ,where p is the order of the method and m

is the number of functional evaluations per iteration required by the method, we have that all of the methods
obtained have the efficiency index equal to 4

1
3 ≈ 1.5874, which is better than the one of Newton’s method

2
1
2 ≈ 1.4142.
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