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1. Introduction

Q uantum Neurophysics is defined as the mechanics of a neural computational system at quantum-scale.
Computational Neurophysics occur in an entropic continuum in mathematical constants and terms,

which can advance development of neurology in quantum complexity and decision, as noted by Lowden.
[1] As the Computational Neural System [CNS] manages Neurophysical computational states, neuromorphic
computational machinery includes distributed transduction of electromagnetic phase states.

Cognition is defined as a computational modality that includes continuous wave decoherences to activate
central nervous systems utilizing the Schrodinger wave function for a time-dependent equation

iℏ d
dt
|Ψ(t)⟩ = H |Ψ(t)⟩. (1)

These computational advances can be defined in terms of a total complexity of the Computational Neural
System [CNS].

2. Methods

The piezoelectric propagation and relay of electromagnetic infrared range emissions has been
demonstrated by Bigu del Blanco and Romero-Sierra [2] and additionally these authors demonstrated for
spectrum conductance at approximately 8.95 Ghz. Infrared mechanics for quantum neurophysics are studied
in this research work by Callahan [sensilla and antennae], and Penrose and Hameroff [microtubulin and
microtubules of pyramidal neurons]. These physical mechanisms for the estimation formula probably include
the quantum potential in the total mass of the unit and the complexity and efficiency of the connecting
mechanisms, such as circuits, cells, synapses and tubulins. These work to break down perception into the most
efficient bits of information for the complete Computational Neural System [CNS] to process in the fastest and
most energy-efficient method possible over space and time criteria.

In the Materialist definition Computation is distinguished from the physical observer Universe, being
comprised of Neurophysical, such as quantumizable, electrophysical events and probability series in the
Computational Neural System [CNS]. Demonstrations of this hypothesis include functions such as photonic
relay across microtubulin, neurotubules, glia, axons, actin and synapses resulting in complex computational
sequences of amino acids and cellular neurophysics [3–5].

In this computational physical definition, Tiger Moths [Lepidoptera][6], Aviary insects, Lybia crabs, Aviates
[Corvus moneduloides], Chiroptera, Reptilia [Pit vipers], and Cetaceans [7] have evolved two-state, quantum
tunneling Computational Neural System [CNS] utilizing infrared-range computational mechanics for the
purpose of increasing physical ability to complete evolutionary algorithms of problem-solving challenges in
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their environments. Advancing Pribram, Bohm and Gabor’s research in Holonomic Brain Theory [HBT],
thematically-sequential holographic associative memory, later hypotheses demonstrated by Hawkins and
George’s Hierarchical Temporal Memory [HTM] illustrate for a theoretical structure for autowaves affecting
analogous neurophysical clique topologies [8].

3. Mathematical theory

Regarding problem-solving and charting and Computational Neural System [CNS] development, sensory
algorithmic methods are therefore demonstrated as an applied basis for the proposed Dynamic Global
Workspace Theory-Intelligent Computational System Organization [DGWT-ICSO]. This hypothesis advances
in computable einselection and decoherence, orthogonal pointer states [9] where

HΨ(t) = Tr(pΨ(t)logpΨ(t)), (2)

from bifringement patterns in evolving state/phase vectors. [10,11]. Zurek has advanced the mathematical
physics for quantum stochasticity [12] where

|Ψ(t)⟩ = exp
(
−iH

t
h̄

)
Ψ(0)⟩ f or Ψ(0)⟩ = ψ⟩|A0⟩ = ai|si⟩|A0⟩ → ai|si⟩|Ai⟩ = Ψ(t)⟩, (3)

essentially
|Ψt⟩ = ai|si⟩|Ai⟩ = bi|ri⟩|Bi⟩. (4)

The propagation path of the wavicle is demonstrated by boolean operations on the real physical
worldvolume until

∆x ∼
(

h̄
∆p0

)
eΛt or th̄ ≃ Λ−1 ln (∆p0χ) . (5)

These can be read at Wigner-space where

a = d × d p =
h̄
×̄

h̄
L

P =
h̄2

I
, (6)

where I ≃ LP is the classical action. The quantum conditional mechanics are

Ψ0⟩ =ψ↑⟩A0⟩,
=aisi⟩A0⟩,

i−→ aisi⟩Ai⟩,
=Ψt⟩.

The reduction of the state vector is

∆H = H(ρup)− H(ρc) = −(ᾱ2 lg |α|2 + β̄2 lg |β|2) [units], (7)

and environmentally correlated where

|Φc⟩|E⟩ = (α| ↑⟩|d⟩+ β| ↓⟩|d⟩)|E⟩ ⇒ α| ↑⟩|d⟩|E⟩+ β| ↓⟩|d⟩|E⟩ = |Ψ⟩. (8)

Hiley advances q-monadic sheaves are described in Topological Quantum Field Theory [TQFT] as
quasi-paradoxical Duron time, essentially

∆T = t2 − t1 for [T1, T2] → T1 T2 → ψL(t1)EaψR(t2). (9)

On a generic tesselation spacetime of the Wpw or relativistic quantum and monadic wavicle of
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lim
∆x,∆t→0

∆t. (10)

Connes advances this notion from Heisenberg where

Xmn(t) = Rmn exp[i(νm − νn)t]. (11)

In the Computational Neural System [CNS] the evolutionary or pragmatical purpose for directed
hippocampal complexifying clique topologies [ibid] is for maximal granular information processing. This
can be studied in the optogenetic approach in the pyramidal neurons to test Graph automorphisms, and for
the purpose of advancing new algorithms against various evolutionary development fitness landscapes and
adaptive systems. Ultrametrics in automata algorithms have been advanced in complex adaptive systems. [14]

4. Autowave fields

Autowave reverberations in memristors and spintronics, have been hypothesized and advanced. Initially
operating as a Cellular Neural Network studied by Albrecht-Buehler, [15,16] Autowaves can also be studied
in the multivalent logic of complex nonlinear systems and generic Computational Neural Systems [CNS],
topological mapping in Radio Memory Cellular Neural Networks [RMCNN], and theoretically as algorithmic
continuous spatial automata. [17] M.T. Greshova indicated that:

Autowaves (AW) are distributed analogues of the self-oscillation observed in pointwise systems. [18]
Regarding Computational Neural System [CNS] quantum information transfer regimes of autowaves via

Extremely Low Frequency [ELF]-amplitude in infrared range, P.S. Callahan has demonstrated the photonic
field-disturbance in infrared communication dynamics of Lepidoptera and Formicidae:

This work on Cabannes and Rayeligh scattering of coherent radiation reinforces other work on photon
storage in biological systems.[19]

Figure 1. Autowave: Action potential. Schematic of an electrophysiological recording of an action potential
showing the various phases that occur as the wave passes a point on a cell membrane. Wikimedia

Classical and Non-Classical Wave Formulations

In a classical dissipative system autowave nonlinear systems utilize a general formula

dx/dt = R(x, P),

and where
P(t) = t0/M,

is therefore mapped

Φ : R∧u>>S∧1. (12)

However, in the mathematical physics of a non-classical quantum dissipative system, fractional wave
equations on the two-state quantum system on a complex Hilbert space can be demonstrated where
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x eH lim
n→∞

lim inf
(x−xn ,x−xn)

= 0. (13)

Furthermore, in box-counting for dimensions on the iterative function space of fractional drums, a general
formula can be built where for

∆ u+Λ u=0 u | δ D=0
and from

P(A) = π + pj + · · ·+ pk. (14)

This formula can be computed as two-state or multi-state variable automata series on a probability density
function generally for

Œ(x) = (2π)−
1
2 e−

x2
2 . (15)

Weyl demonstrated

N(R)− (2π)− dΩVRd/2_1/4(2π)− d + lΩd − 1AR(d − 1)/2_0(R(d − 1)/2). (16)

The Peter-Weyl function density, and nonlinear thermodynamic radiation entrainment, turbulence and
harmonic oscillation, sympathetic resonance, topological entanglement entropy in quantum mechanics is
formulated

SL ≫≫ αL-γ + o(L-v), v ≫ 0. (17)

5. Mechanics of the ternary multivalent logic on a graph

Multivalent logic, after Łukasiewicz, is by definition and practice, composed of three, or ternary
operations of logic in the element and set tables, allowing for more complexity in determination of value [True,
False, Unknown]. In Quantum Physical terms, this Ternary quantum probability field can be formulated as
infrared-driven Quantum Cellular Automata [QCA] where k = 2α/πfN [Handel] and where S (f) ∝ 1/f α.

In Information Physics terms of the Quantum Neurophysical system, the multivalent set variable values
can be projected as eigenvalues from isofractal and isospectral value. These can be derived from the
multifractional Ultrametric field of primes [20] where the inequality holds for Multivalent logic for Gassmann
triples, such that

d(x, z) ≤ max d(y, z), d(y, z) in G = SL3(F2). (18)

In isospectral Riemannians and special cases, such as Ramanujan graphs for Zeta infinites on eigenvalues
limits these inequalities can be demonstrated from

lim
n→∞

G ∈ GdnΛ(G) ≥ 2
√

d − 1, (19)

given

Λ1 ≥ 2
√

d − 1 − 2
√

2 − 1 − 1
⌊m/2⌋ . (20)

The Z-transform can be applied generally where the Topological Quantum Field Theory [TQFT] from the
unilateral

X(z) = Z{x[n]} = ∞ ∑
n=0

x[n]z−n. (21)

This bridged topology has been demonstrated by McPherson and Schweinhart. [21] Additional
Topological Quantum Field Theory [TQFT] state entropy dynamics, hypergeometric functions, and Gaussian
processes are studied as multifractional systems, where s (x> + a>) - s(x>) ∼ ah(x>), for given fractional
integration and differentiation regimes. These can be demonstrated as autoregressive fractionally-integrated
moving averages [AFIMA] where symplectically
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(1 − p∑i=1ΦiBi)(1 − B)dXt = (1 + q∑i=1θiBi)Et. (22)

Therefore noise-radiation and thermoentropic-radiation in dissipative systems [Heszler] can be
demonstrated where in general formula

dV(x(t))
dt

≤ u(t) · y(t), (23)

for ferroelectronic circuit fluctuations and extended values of wandering sets. Hiley and Callaghan [22]
demonstrate the quantum phase space event in the Clifford algebra, where if Cli,j and Φ L (r,t) and Φ R(r,t) =
∼ Φ L(r,t) then

Pc(r, t) = ΦL(r, t) ∼ ΦL(r, t) for iγ∂µΦL − mΦL = 0 and iΦR∂µγ + mΦR = 0 . (24)

This system can be compared in Pauli particle-wavefunctions and exclusionary zones [23] to a
quantization of phase where

|Ψn(t)⟩ = eiγn(t)e−i/h̄H ∫ t
0 dt′ En(R(t′))|n(R(t))⟩, (25)

in the nonlinear system

Γn(t) = i
∫ t

t0

dt′⟨n(R(t′))| d
dt′

|n(R(t′))⟩ = i
∫ R(t)

R(t0)
dR⟨n(R)|∇R|n(R)⟩, (26)

and therefore

Ωn,µv(R) = i ∑
n′ ̸=n<n

∣∣∣∣∆H
∆R

∣∣∣∣
n′>n

∣∣∣∣∆H
∆R

v
∣∣∣∣
n>n

− (v<nv>nµ)

(E − En′)2 . (27)

Dirac particle-wavefunctions are demonstrated to have additional respective spin phase space event

H = −1
2

J ∑
i,j

Si · Sj − gµB ∑
i

H · Si. (28)

These interior spin and Cartan-Weyl group particle-wave events can be therefore applied to torsional
photonic streams for the given nonlinear system.

6. Naive proof of the ternary multivalent logic from binary

Given a binary unit interval [0,1], the Gassmann Triples as component variances are demonstrated where
d(x,z) ≤ max {d(x,y),d(y,z)}. Łukasiewicz triplets are defined using an undefined and irrational variable in the
formula or atom of category monadic value, on the quantum first order logic. Therefore given quantumizable
entropy in the nonlinear system the topological quantum field Clifford Lie Algebra

Cli, j and Φ L(r, t) and Φ R(r, t) = ∼ΦL(r, t) then ρc(r, t) = ΦL(r, t)∼ΦL(r, t), (29)

in n-valued Multivalent Logic, the Time variable is introduced T where T1, T2, . . . , Tp, for all L and R wave
function distributions in the Multivalent triplet logic [T,F,U], that 0 ≤ T + U + F ≤ 3.

These multivalent sets can also be represented as Cantor sets where

∞

∑
i=1

ϵi

3i for 0 or 2 on the real interval[0, 1], (30)

and can be further expanded to 3D or 4D continuum and quantum geometric entropies-in-system.

7. Discussion of the Quantum mathematics

Hensellian data sets as mutually-unbiased naive operator formula ZhatXhat = ω Xhat Zhat are
hypothesized in toposdynamics from topos-sheaves, site-categories, and quantum phase-spaces, such as n3
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= n × n2. When the potential for probability in computational aggregation is present in the computational
algorithm, these states are inherent in pyramidal neurons at the nm-scale microtubulin and neurotubulin
computation ranges as demonstrated by Hameroff and Penrose [24]. Therefore, inversely, it can be stated
for a computation space outside the ultrametric, (−n)3 = −(n3) and on the extended topos-sheaf. These
seeming paradoxes can be invoked when referring to problems of quantum-entangled quantum phase regimes
to properly measure and predict eigenstates of quantum tunneling, and subsequent solutions in Dynamic
Global Workspace Theory-Intelligent Computational System Organization (DGWT-ICSO).

These apparent paradoxes can be addressed in the mathematical formalism when utilizing atomic
grammar and quantum probability phase projection-space. Here, the computational algebra is presented
as related in computational ancestry to Hilber’t syzygy problem, and exactness of sequences for phase
projection and probability spaces of monoidal functions of Qp sheaves. The sheaves are posited as inherent
in H-spaces and CW complexes for quantum computational challenges of infinitesimal generators where
generally f : Rn → R.

Similarly, various interacting particle systems can be demonstrated for Hensellian lemmas or p-Adic
number fields [25] from

f′(x) =
f (x∆)− f (x)

∆x
, (31)

on some Spernerian Hypergraph. These algorithmic functions can be represented by Hilbert’s theorem where
in a p-Adically-closed field

f1, . . . , fm, g ∈ K[X1, . . . , Xn] then gN = λ1f1 + · · ·+ λmfm with R, K[X1, . . . , Xn], (32)

with

Λi ∈ R[K[X1, . . . , Xn]] and R =
Φ

1 + pΨ
and R such that Φ, Ψ ∈ OK[Γ(K(X1, . . . , Xn))].[ibid]. (33)

8. Summary

Dragovich has demonstrated q-Adic, p-Adic, or n-Adic discrete maths variants on the path integrals
at approximately Planckscale which can be applied to quantum topological phenomena. [26] A 5-adic
Cantor set and fractional algorithm have been demonstrated. [27] It is hypothesized from testing of high
energy hadronic showers [28], and Huygens and Ampere waves on Gaussian and Fourier analysis. From
Hameroff-Penrose, and Pribram-Bohm, Holonomic Brain Theory [HBT] can extend the quantum neurology
from ordinal Computational Neural System [CNS] phase spaces in the p-adic and ultrametric, whence a
Homogeneous coordinate ring where

R = K[X0, X1, X2, . . . , XN ]/I. (34)

These physical wavefunctions are utilized through Neurophysical sensory operations to to generate
allomatic and automatic [Gestalt-Inverse-Gestalt] modules of computational problem-solving. The
neurophysical modules are existent from whence ideation, praexology and mechanistics present in Cognitive
cycling [0-390 ms] [29] advance, essentially as real-time, nm+ scale, orders of magnitudes in Modular sheaf
operations in computational information physical dynamics from nm-to-cm scale. Decoding Computational
Neural System [CNS] phase spaces as neurophysical processes explains a function or functions of
thermodynamic state horizon events, in which the [perceived] future is experientiated via time inversion and
local entropy as present Object-interactive-time from quantum locality elements, such as Schrodinger’s two-state
vector formalism, and quantum entanglement regimes via Bell’s Theorems [30,31].

Additionally, Gestalt critera of Emergence; Reification; Multiobject Stasis; Invariance; Multiobject Group
Dynamics; and Fuzzy Trace Theory advance for a Two-state theoretical system. This system utilizes the
computational ability of symbol-value calculation and representation comprehension. Here isomorphism is
utilized as a Mathematical Structural function topos of quantum probability phenomena, meaning syntactical
proper and accurate computation and operation of given symbol values in global or concurrent sets operate.
These can be studied in number theory in Lyapunov fractional mechanics and dynamics [32]. These challenges
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also appear in Quantum phase estimation algorithms and quantum chemical criticality of the phase transition,
in quantum Fourier and is demonstrated in repeated squaring [33].

Dynamic Global Workspace Theory-Intelligent Computational System Organization [DGWT-ICSO] as
a quantum cognitive programming statement can be applied to Quantum Zeno, as an answer to a given
algorithmic statement. Engineered computational complexity utilizes neuromorphic [34,35], and quantum
multiplexing [36]. These technologies can be engineered from Computational Neural System [CNS] scalar and
quantum values of given quantum entanglement and decoherence regimes [37].
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