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O n oscillatory functions of very moderate decrease are quite typical in the class L2(R) and are important
in Physics. The first result presented here improves slightly on a result due to Carlsen, see [1], in that

the convergence is everywhere rather than almost everywhere. This property is useful in verifying certain
differentiability criteria in Physics, arising mainly from Maxwell’s equations, and in showing decay properties
of fields produced in connection with Jefimenko’s equations, see [2] and [3]. At the end of the paper, we
show how the result can be improved to functions of just very moderate decrease, without the non oscillatory
assumption. The proofs rely on some ideas from nonstandard analysis, contained in the papers [4] and [5].

Definition 1. We say that f ∈ C(R) is of very moderate decrease if there exists a constant C ∈ R>0 with
| f (x)| ≤ C

|x| , for |x| > 1. We say that f ∈ C(R) is of moderate decrease if there exists a constant C ∈ R>0

with | f (x)| ≤ C
|x|2 , for |x| > 1. We say that f ∈ C(R) is non-oscillatory if there exist finitely many points

{yi : 1 ≤ i ≤ n}, for which f |(yi ,yi+1)
is monotone, 1 ≤ i ≤ n − 1, and f |(−∞,y1)

, f |(yn ,∞) are monotone. We
say that f ∈ C(R) is oscillatory if there exists an infinite sequence of points {yi : i ∈ Z}, for which f |(yi ,yi+1)

,
i ∈ Z , is monotone and there exists δ ∈ R>0, with |yi+1 − yi| ≥ δ, for i ∈ Z .

Lemma 1. Let f ∈ C(R) and d f
dx ∈ C(R) be functions of very moderate decrease, with f and d f

dx both non-oscillatory.
Define the Fourier transform by

F ( f )(k) =
1√
2π

lim
r→∞

∫ r

−r
f (y) e−iky dy (k ̸= 0),

and
F
(

d f
dx

)
(k) =

1√
2π

lim
r→∞

∫ r

−r

d f
dx

(y) e−iky dy (k ̸= 0).

Then F ( f )(k) and F
( d f

dx
)
(k) are bounded for all |k| > k0 > 0. Moreover, there exists a constant G ∈ R>0 such

that ∣∣F ( f )(k)
∣∣ ≤ G

|k|2 ,

for sufficiently large |k|.

Proof. Since f is of very moderate decrease and continuous, it follows that lim|x|→∞ f (x) = 0. Likewise, d f
dx is

continuous and lim|x|→∞
d f
dx (x) = 0. Because lim|x|→∞ f (x) = 0 and f is non-oscillatory, the integral

lim
r→∞

∫ r

−r
f (y) e−iky dy,
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exists for k ̸= 0. Rewriting in terms of sine and cosine,

lim
r→∞

∫ r

−r
f (y) e−iky dy = lim

r→∞

∫ r

−r
f (y) cos(ky) dy − i lim

r→∞

∫ r

−r
f (y) sin(ky) dy.

Because f is of very moderate decrease and non-oscillatory, there exists E > 0 such that | f (x)| ≤ D
|x| for

|x| > E, and f is monotone on (−∞, E) and (E, ∞). Using the method of [5] and letting K = maxx∈[−E,E]| f (x)|,

one obtains explicit bounds on lim
r→∞

∫ r

−r
f (y) cos(ky) dy and lim

r→∞

∫ r

−r
f (y) sin(ky) dy, showing they remain finite.

A careful estimation yields ∣∣∣ lim
r→∞

∫ r

−r
f (y) e−iky dy

∣∣∣ ≤ Nk,

for some constant Nk depending on k. Consequently, F ( f )(k) is bounded for |k| > k0 > 0. A similar argument
applies to F

( d f
dx
)
(k).

Next, we use integration by parts to relate the Fourier transforms of f and d f
dx . Observe that

F
(

d f
dx

)
(k) =

1√
2π

lim
r→∞

∫ r

−r

d f
dx

(y) e−iky dy.

Integrating by parts gives

1√
2π

lim
r→∞

[
f (y) e−iky

]r

−r
+

ik√
2π

lim
r→∞

∫ r

−r
f (y) e−iky dy = ik F ( f )(k),

since lim|y|→∞ f (y) e−iky = 0. Therefore,

F
(

d f
dx

)
(k) = ik F ( f )(k).

Hence, for |k| > 1, ∣∣F ( f )(k)
∣∣ ≤ ∣∣F ( d f

dx )(k)
∣∣

|k| . (1)

Since d f
dx is also of very moderate decrease and non-oscillatory, a refinement of the argument in [5, Lemma

0.9] (using “underflow”) shows that for every r > 0, there exist Fr, Gr ∈ R>0 such that for all |k| > Fr,∣∣∣ 1√
2π

∫ r

−r

d f
dx

(y) e−iky dy
∣∣∣ < Gr

|k| . (2)

Moreover, Fr, Gr can be chosen uniformly in r. From (2), it follows that there exist constants F and G for
which ∣∣F( d f

dx
)
(k)
∣∣ < G

|k| for all |k| > F.

Combining this with (1) implies that for |k| > max(F, 1),

∣∣F ( f )(k)
∣∣ ≤ ∣∣F ( d f

dx )(k)
∣∣

|k| <
G
|k|2 .

This completes the proof.

Definition 2. Let f ∈ C3(R), with f , f ′, f ′′, and f ′′′ bounded. We define an approximating sequence { fm :
m ∈ N} by the following properties:

(i) fm ∈ C2(R), for all m ∈ N .
(ii) fm|[−m,m] = f |[−m,m].
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(iii) fm exhibits uniform moderate decay, meaning there exists a constant C ∈ R>0, independent of m, such
that

| fm(x)| ≤ C
|x|2 , for x ∈ (−∞,−m − 1

m
) ∪ (m +

1
m

, ∞).

(iv) There exist constants D, E ∈ R>0 such that

∫ m

−m− 1
m

| fm(x)|dx ≤ D
m

and
∫ m+ 1

m

m
| fm(x)|dx ≤ E

m
.

Lemma 2. Let f ∈ C(R) with d f
dx ∈ C(R), and suppose both f and d f

dx exhibit very moderate decrease and are
non-oscillatory. Let { fm : m ∈ N} be an approximating sequence. Let F denote the ordinary Fourier transform, defined
for each fm. Then, for any k0 > 0, the sequence {F ( fm) : m ∈ N} converges pointwise and uniformly to F ( f ) on
R \ {|k| < k0}, where F ( f ) is defined in Lemma 1. In particular, F ( f ) ∈ C(R \ {0}).

Proof. For g ∈ C(R) and n ∈ N , define

Fn(g)(k) =
1

(2π)1/2

∫ n

−n
g(y)e−ikydy.

For k ∈ R \ {|k| < k0}, {m, n} ⊂ N , m ≥ n, and ϵ, δ > 0, we have

|F ( f )(k)−F ( fm)(k)| ≤ |F ( f )(k)−Fm( f )(k)|+ |Fm( f )(k)−Fm( fm)(k)|+ |Fm( fm)(k)−F ( fm)(k)|.

Breaking this into terms:

|F ( f )(k)−Fm( f )(k)|+
∫ −m

−∞
| fm(x)|dx +

∫ ∞

m
| fm(x)|dx

≤ |F ( f )(k)−Fm( f )(k)|+ D + E
m

+
∫ −m− 1

m

−∞

C
x2 dx +

∫ ∞

m+ 1
m

C
x2 dx.

By the properties of the approximating sequence and the fact that f is of very moderate decrease and
non-oscillatory, it follows that for |k| > k0 and sufficiently large m, we can bound the difference as

|F ( f )(k)−F ( fm)(k)| ≤
Ck0

m
+

2C + D + E
m

≤ ϵ + δ,

where Ck0 is a constant dependent on k0.
Since ϵ > 0 and δ > 0 are arbitrary, the result follows. Additionally, the continuity of each F ( fm) is a

consequence of property (iii) in Definition 2 and the Dominated Convergence Theorem. Finally, as k0 > 0 is
arbitrary, the uniform limit of continuous functions is continuous, completing the proof.

Lemma 3. If m ∈ R>0 is sufficiently large, {a0, a1, a2} ⊂ R, there exists h ∈ R[x] of degree 5, with the property that;

h(m) = a0, h′(m) = a1, h′′(m) = a2, (3)

h(m +
1
m
) = h′(m +

1
m
) = h′′(m +

1
m
) = 0, (4)

|h[m,m+ 1
m ]| ≤ C,

for some C ∈ R>0, independent of m sufficiently large, and, if h′′′(m) > 0, h′′′(x)|[m,m+ 1
m ] > 0, if h′′′(m) < 0,

h′′′|[m,m+ 1
m ] < 0. In particularly; ∫ m+ 1

m

m
|h′′′(x)|dx = |a2|.
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Proof. If p(x) is any polynomial, we have that h(x) = (x − (m + 1
m ))3 p(x) satisfies condition (4). Then;

h′(x) = 3(x − (m +
1
m
))2 p(x) + (x − (m +

1
m
))3 p′(x),

h′′(x) = 6(x − (m +
1
m
))p(x) + 6(x − (m +

1
m
))2 p′(x) + (x − (m +

1
m
))3 p′′(x),

h′′′(x) = 6p(x) + 18(x − (m +
1
m
))p′(x) + 9(x − (m +

1
m
))2 p′′(x).

So we can satisfy (3), by requiring that;

− p(m)

m3 = a0,

3p(m)

m2 − p′(m)

m3 = a1,

−6p(m)

m
+

6p′(m)

m2 − p′′(m)

m3 = a2,

which has the solution;

p(m) = −a0m3, p′(m) = −3a0m4 − a1m3, p′′(m) = −12a0m5 − 6a1m4 − a2m3

and can be satisfied by the polynomial;

p(x) =
1
2

(
−12a0m5 − 6a1m4 − a2m3

)
(x − m)2

+
(
−3a0m4 − a1m3

)
(x − m) +

(
−a0m3

)
=

1
2

(
−12a0m5 − 6a1m4 − a2m3

)
x2

+
(
−m

(
−12a0m5 − 6a1m4 − a2m3

)
+
(
−3a0m4 − a1m3

))
x

+

(
m2

2

(
−12a0m5 − 6a1m4 − a2m3

)
− m

(
−3a0m4 − a1m3

)
− a0m3

)
=
(
−6a0m5 − 3a1m4 − a2

2
m3
)

x2

+
(

12a0m6 + 6a1m5 + a2m4 − 3a0m4 − a1m3
)

x

+
(
−6a0m7 − 3a1m6 − a2

2
m5 + 3a0m5 + a1m4 − a0m3

)
=
(
−6a0m5 − 3a1m4 − a2

2
m3
)

x2

+
(

12a0m6 + 6a1m5 + (a2 − 3a0)m4 − a1m3
)

x

+
(
−6a0m7 − 3a1m6 +

(
3a0 −

a2

2

)
m5 + 3a0m5 + a1m4 − a0m3

)
= ax2 + bx + c, (5)

so that;

h′′′(x) = 6
(

ax2 + bx + c
)
+ 18

(
x −

(
m +

1
m

))
(2ax + b) + 9

(
x −

(
m +

1
m

))2
2a

= (60a)x2 +

(
24b − 72a

(
m +

1
m

))
x +

(
6c − 18

(
m +

1
m

)
b + 18a

(
m +

1
m

)2
)

and, using the computation (5)

h′′′(x) =
(
60(−6a0m5) + O(m4)

)
x2 +

(
24.12a0m6 − 72m(−6a0m5) + O(m5)

)
x

+
(
6. − 6a0m7 − 18m(12a0m6) + 18m2(−6a0m5) + O(m6)

)
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=
(
− 360a0m5 + O(m4)

)
x2 +

(
740a0m6 + O(m5)

)
x +

(
− 360a0m7 + O(m6)

)
which, by the quadratic formula, has roots when;

x =
−740a0m6 −

√
7402a2

0m12 − 4(−360a0m5)(−360a0m7)

2 − 360a0m5 + O(1)

=
740m
720

− 170m
720

+ O(1)

=
19m
24

+ O(1) or
91m
72

+ O(1).

We have that m > 19m
24 and m + 1

m < 91m
72 iff m >

√
72
19 , and, clearly, we can ignore the O(1) term for

m sufficiently large. In particularly, for sufficiently large m, h′′′(x) has no roots in the interval [m, m + 1
m ], so

h′′′|[m,m+ 1
m ] > 0 or h′′′|[m,m+ 1

m ] < 0. We calculate that;

|h[m,m+ 1
m ]| =

∣∣∣(x − (m + 1
m ))3 p(x)

∣∣∣
[m,m+ 1

m ]
≤ 1

m3 |p(x)|[m,m+ 1
m ]

=
1

m3

∣∣∣∣12 (−12a0m5 − 6a1m4 − a2m3)(x − m)2 +(−3a0m4 − a1m3)(x − m)− a0m3
∣∣∣
[m,m+ 1

m ]

≤ 1
m3

[
1
2

∣∣∣−12a0m5 − 6a1m4 − a2m3
∣∣∣ · 1

m2 +
∣∣∣−3a0m4 − a1m3

∣∣∣ · 1
m

+
∣∣∣−a0m3

∣∣∣]
≤ 12|a0|m5 + 6|a1|m4 + |a2|m3

m5 +
3|a0|m4 + |a1|m3

m4 +
|a0|m3

m3

≤ 12|a0|+ 6|a1|+ |a2|+ 3|a0|+ |a1|+ |a0| (m > 1)

≤ 16|a0|+ 7|a1|+ |a2|.

For the final claim, we have, as h′′′|[m,m+ 1
m ] > 0 or h′′′|[m,m+ 1

m ] < 0, that, using the fundamental theorem
of calculus;

∫ m+ 1
m

m
|h′′′(x)|dx = |

∫ m+ 1
m

m
h′′′(x)dx| = |h′′(m +

1
m
)− h′′(m)| = | − h′′(m)| = |a2|.

Lemma 4. If m ∈ R>0, {a0, a1, a2, a3} ⊂ R, there exists h ∈ C3(R), with the property that;

h(m) = a0, h′(m) = a1, h′′(m) = a2, h′′′(m) = a3, (6)

h(m +
1
m
) = h′(m +

1
m
) = h′′(m +

1
m
) = h′′′(m +

1
m
) = 0, (7)

|h|[m,m+1] ≤ C,

where C ∈ R>0 is independent of m > 1, and, if a3 > 0, h′′′(x)|[m,m+ 1
m ] ≥ 0, a3 < 0, h′′′(x)|[m,m+ 1

m ] ≤ 0. In
particularly; ∫ m+ 1

m

m
|h′′′(x)|dx = |a2|.

Proof. Let g(x) be a polynomial. Consider the polynomial

h1(x) = (x − (m +
1
m
))ng(x), n ≥ 4,
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which possesses the property (7):

h1(m +
1
m
) = h′1(m +

1
m
) = h′′1 (m +

1
m
) = h′′′1 (m +

1
m
) = 0.

The condition (6) translates into the following system of equations:

(i)’
g(m)

(−1)nmn = a0,

(ii)’
ng(m)

(−1)n−1mn−1 +
g′(m)

(−1)nmn = a1,

(iii)’
n(n − 1)g(m)

(−1)n−2mn−2 +
2ng′(m)

(−1)n−1mn−1 +
g′′(m)

(−1)nmn = a2,

(iv)’
n(n − 1)(n − 2)g(m)

(−1)n−3mn−3 +
3n(n − 1)g′(m)

(−1)n−2mn−2 +
3ng′′(m)

(−1)n−1mn−1 +
g′′′(m)

(−1)nmn = a3.

These equations can be solved by imposing the following requirements:
(i)” g(m) = (−1)na0mn,

(ii)” g′(m) = (−1)na1mn + (−1)na0nmn+1,

(iii)” g′′(m) = (−1)na2mn + 2(−1)nna1mn+1 + (−1)nn(n + 1)a0mn+2,

(iv)” g′′′(m) = (−1)na3mn + 3n(−1)na2mn+1 + (−1)na1n(n + 3)mn+2 + n(n + 1)(n + 2)(−1)na0mn+3.

(8)

Define

g1(x) =
(
(−1)na3mn + 3n(−1)na2mn+1 + (−1)na1n(n + 3)mn+2 + n(n + 1)(n + 2)(−1)na0mn+3

)
(x − m)3

+
(
(−1)na2mn + 2(−1)nna1mn+1 + (−1)nn(n + 1)a0mn+2

)
(x − m)2

+
(
(−1)na1mn + (−1)na0nmn+1

)
(x − m) + (−1)na0mn.

The polynomial g1(x) satisfies (8), and any function of the form g2(x) + g1(x) also satisfies (8), provided
that

g2(m) = g′2(m) = g′′2 (m) = g′′′2 (m) = 0,

where g2 ∈ C3(R).
In this case, if

h(x) = (x − (m +
1
m
))n(g2(x) + g1(x)),

then h(x) satisfies both (6) and (7).

|x − (m +
1
m
)ng1(x)|[m,m+ 1

m ] ≤
1

mn

(
|g2|[m,m+ 1

m ] + |g1|[m,m+ 1
m ]

)
≤ 1

mn

(
|g2|[m,m+ 1

m ] +
1

mn

∣∣∣(−1)na3mn + 3n(−1)na2mn+1 + (−1)na1n(n + 3)mn+2

+ n(n + 1)(n + 2)(−1)na0mn+3
) 1

m3 +
(
(−1)na2mn + 2(−1)nna1mn+1

+ (−1)nn(n + 1)a0mn+2
) 1

m2 +
(
(−1)na1mn + (−1)na0nmn+1

) 1
m

+ (−1)na0mn
∣∣∣)

=
∣∣∣((−1)na3mn + 3n(−1)na2mn+1 + (−1)na1n(n + 3)mn+2

+ n(n + 1)(n + 2)(−1)na0mn+3
) 1

mn+3 +
(
(−1)na2mn + 2(−1)nna1mn+1
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+ (−1)nn(n + 1)a0mn+2
) 1

mn+2 +
(
(−1)na1mn + (−1)na0nmn+1

) 1
mn+1 + (−1)na0

∣∣∣
≤ |a3|+ 3n|a2|+ n(n + 3)|a1|+ n(n + 1)(n + 2)|a0|+ |a2|+ 2n|a1|
+ n(n + 1)|a0|+ |a1|+ n|a0|+ |a0|, (m ≥ 1)

=
1

mn

(
|g2|[m,m+ 1

m ] + (n + 1)(n2 + 3n + 1)|a0|+ (n2 + 5n + 1)|a1|+ (3n + 1)|a2|+ |a3|
)
= F, (9)

where F ∈ R>0 is independent of m. Using the product rule, the condition that h′′′(x) = 0 in the interval
(m, m + 1

m ), is given by; n(n − 1)(n − 2)(x − (m + 1
m ))n−3(g2 + g1)(x) + 3n(n − 1)(x − (m + 1

m ))n−2(g2 +

g1)
′(x) + 3n(x − (m + 1

m ))n−1(g2 + g1)
′′(x) + (x − (m + 1

m ))n(g2 + g1)
′′′(x) = 0 which, dividing by (x −

(m + 1
m ))n−3, reduces to; n(n − 1)(n − 2)(g2 + g1)(x) + 3n(n − 1)(x − (m + 1

m ))(g2 + g1)
′(x) + 3n(x − (m +

1
m ))2(g2 + g1)

′′(x) + (x − (m + 1
m ))3(g2 + g1)

′′′(x) = 0 and;

n(n − 1)(n − 2)g2(x) + 3n(n − 1)(x − (m +
1
m
))g′2(x)

+ 3n(x − (m +
1
m
))2g′′2 (x) + (x − (m +

1
m
))3g′′′2 (x)

= −(n(n − 1)(n − 2)g1(x) + 3n(n − 1)(x − (m +
1
m
))g′1(x)

+ 3n(x − (m +
1
m
))2g′′1 (x) + (x − (m +

1
m
))3g′′′1 (x)). (10)

Without loss of generality, assuming that; −(n(n − 1)(n − 2)g1(x) + 3n(n − 1)(x − (m + 1
m ))g′1(x) + 3n(x −

(m+ 1
m ))2g′′1 (x) + (x − (m+ 1

m ))3g′′′1 (x))|m = −(n(n− 1)(n− 2)a0 − 3n(n−1)a1
m + 3na2

m2 − a3
m3 ≥ 0, we can choose

an analytic function ϕ(x) on [m, m + 1
m ] with;

ϕ(x) ≤− (n(n − 1)(n − 2)g1(x) + 3n(n − 1)(x − (m +
1
m
))g′1(x)

+ 3n(x − (m +
1
m
))2g′′1 (x) + (x − (m +

1
m
))3g′′′1 (x)) (11)

ϕ(m) =0. (12)

The third order differential equation for g2;

n(n − 1)(n − 2)g2(x) + 3n(n − 1)(x − (m +
1
m
))g′2(x)

+ 3n(x − (m +
1
m
))2g′′2 (x) + (x − (m +

1
m
))3g′′′2 (x) = ϕ(x), on [m, 1 + m], (13)

with the requirement that g2(m) = g′2(m) = g′′2 (m) = 0, has a solution in C3([m, m + 1
m )) by Peano’s existence

theorem. By the fact (12), we must have that g′′′2 (m) = 0. Writing the power series for ϕ on [m, m + 1
m ], as;

ϕ(x) = ∑∞
j=0 bj(x − (m + 1

m ))j, we can use the method of equating coefficients, to obtain a particular solution,

with; g2,part(x) = ∑∞
j=0 aj,part(x − (m + 1

m ))j, with; aj,part =
bj

n(n−1)(n−2)+3n(n−1)j+3nj(j−1)+j(j−1)(j−2) , (j ≥ 3)

a2,part = b2
n(n−1)(n−2)+6n(n−1)+3n a1,part = b1

n(n−1)(n−2)+3n(n−1) a0,part = b0
n(n−1)(n−2) so that g2,part is analytic as

|aj,0| ≤
|bj |

n(n−1)(n−2) for j ≥ 0. To solve the homogenous Euler equation;

n(n − 1)(n − 2)g2(x) + 3n(n − 1)(x − (m +
1
m
))g′2(x) + 3n(x − (m +

1
m
))2g′′2 (x)

+ (x − (m +
1
m
))3g′′′2 (x) = 0 on [m, m +

1
m
],

we can make the substitution y = m + 1
m − x, to reduce to the equation;

n(n − 1)(n − 2)g2,m(y) + 3n(n − 1)yg′2,m(y) + 3ny2g′′2,m(y) + y3g′′′2,m(y) = 0 on [0,
1
m
]
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with g2,m(y) = g2(m + 1
m − y). Making the further substitution y = eu, and letting r2,m(u) = g2,m(eu), we have

that;

r′2,m(u) = g′2,m(e
u)eu,

r′′2,m(u) = g′′2,m(e
u)e2u + g′2,m(e

u)eu,

r′′′2,m(u) = g′′′2,m(e
3u) + 3g′′2,m(e

u)e2u + g′2,m(e
u)eu,

so that;

n(n − 1)(n − 2)g2,m(eu) + 3n(n − 1)eug′2,m(e
u) + 3ne2ug′′2,m(e

u) + e3ug′′′2,m(e
u)

= n(n − 1)(n − 2)r2,m(u) + 3n(n − 1)eu(r′2,m(u)e
−u) + 3ne2u((r′′2,m(u)− g′2,m(e

u)eu)e−2u)

+ e3u((r′′′2,m(u)− 3g′′2,m(e
u)e2u − g′2,m(e

u)eu)e−3u)

= n(n − 1)(n − 2)r2,m(u) + 3n(n − 1)r′2,m(u) + 3nr′′2,m(u)− 3ng′2,m(e
u)eu + r′′′2,m(u)

− 3g′′2,m(e
u)e2u − g′2,m(e

u)eu

= n(n − 1)(n − 2)r2,m(u) + 3n(n − 1)r′2,m(u) + 3nr′′2,m(u) + r′′′2,m(u)

− (3n + 1)g′2,m(e
u)eu − 3g′′2,m(e

u)e2u

= n(n − 1)(n − 2)r2,m(u) + 3n(n − 1)r′2,m(u) + 3nr′′2,m(u) + r′′′2,m(u)

− (3n + 1)r′2,m(u)− 3e2u((r′′2,m(u)− g′2,m(e
u)eu)e−2u)

= n(n − 1)(n − 2)r2,m(u) + (3n2 − 6n − 1)r′2,m(u) + 3nr′′2,m(u) + r′′′2,m(u)

− 3r′′2,m(u) + 3g′2,m(e
u)eu

= n(n − 1)(n − 2)r2,m(u) + (3n2 − 6n − 1)r′2,m(u) + 3(n − 1)r′′2,m(u) + r′′′2,m(u) + 3r′2,m(u)

= n(n − 1)(n − 2)r2,m(u) + (3n2 − 6n + 2)r′2,m(u) + (3n − 3)r′′2,m(u) + r′′′2,m(u)

= 0. (14)

We have that;

(λ3 + 3(n − 1)λ2 + (3n2 − 6n + 2)λ + n(n − 1)(n − 2))′ = 3λ2 + 6(n − 1)λ + (3n2 − 6n + 2),

which has roots when λ = −(n − 1) + 1√
3

, so that, for large n, the characteristic polynomial of (14) has exactly
one real root λ1 and 2 complex conjugate non-real roots, {λ2 + iλ3, λ2 − iλ3}. It follows, the general solution
of (14) is given by;

r2,m(u) = A1eλ1u + A2eλ2u+iλ3 + A3eλ2u−iλ3 ,

where {A1, A2, A3} ⊂ C, and, we can obtain a real solution, fitting the corresponding initial conditions, of the
form;

r2,m(u) = B1eλ1u + B2eλ2ucos(λ3u) + B3eλ2usin(λ3u),

where {B1, B2, B3} ⊂ R. It follows that;

g2,m(y) =r2,m(ln(y)),

g2(x) =g2,m(m +
1
m

− x) + g2,part(x) = r2,m(ln(m +
1
m

− x)) + g2,part(x)

=B1eλ1ln(m+ 1
m −x) + B2eλ2ln(m+ 1

m −x)cos(λ3ln(m +
1
m

− x))

+ B3eλ2ln(m+ 1
m −x)sin(λ3ln(m +

1
m

− x)) + g2,part(x),

on [m, m + 1
m ]. We have that;

λ1|λ2 + iλ3|2 = −n(n − 1)(n − 2)

λ1 + λ2 + iλ3 + λ2 − iλ3 = λ1 + 2λ2 = −3(n − 1).
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Computing the highest degree in n term of the characteristic polynomial, we obtain that, for λ = αn;

α3n3 + 3n(αn)2 + 3n2(αn) + n3 = n3(α + 3)3 = 0,

so that α = −3, λ1 = −3n + O(1) and 2λ2 = −3(n − 1)− (−3n + O(1)) = 3 − O(1) = O(1).
Then, if B1 = 0, we can see that g2(x) has at most a 1

xO(1) singularity at (m + 1
m ), which we can achieve

with a 2-parameter family choice for the initial conditions of {ϕ(m), ϕ′(m), ϕ′′(m)}. If;

−(n(n − 1)(n − 2)a0 −
3n(n − 1)a1

m
+

3na2

m2 − a3

m3 ̸= 0,

we can clearly achieve this, while satisfying (11),(12). If;

−(n(n − 1)(n − 2)a0 −
3n(n − 1)a1

m
+

3na2

m2 − a3

m3 = 0

by requiring the the additional property (14);

ϕ′(m) <− (n(n − 1)(n − 2)g1(x) + 3n(n − 1)(x − (m +
1
m
))g′1(x) + 3n(x − (m +

1
m
))2g′′1 (x)

+ (x − (m +
1
m
))3g′′′1 (x))′|m,

we can clearly satisfy (11),(12) as well. Then, as, for sufficiently large n;

lim
x→0

(
B2xn

xO(1)
sin(λ3 ln(x)) +

B3xn

xO(1)
cos(λ3 ln(x))

)
= lim

x→0

(
B2xn

xO(1)
sin(λ3 ln(x)) +

B3xn

xO(1)
cos(λ3 ln(x))

)′

= lim
x→0

(
B2xn

xO(1)
sin(λ3 ln(x)) +

B3xn

xO(1)
cos(λ3 ln(x))

)′′

= lim
x→0

(
B2xn

xO(1)
sin(λ3 ln(x)) +

B3xn

xO(1)
cos(λ3 ln(x))

)′′′
= 0,

we obtain that (x − (m+ 1
m ))ng2(x) extends to a solution in C3([m, m+ 1

m ]), and (x − (m+ 1
m ))n(g2 + g1)(x) ∈

C3([m, m + 1
m ]). By the fact (11), (10) has no solutions in (m, m + 1

m ), so that h′′′(x) ≥ 0.
We have that;

|(x − (m +
1
m
)ng2(x)|[m,m+ 1

m ] =|(x − (m +
1
m
)n(B2eλ2ln(m+ 1

m −x)cos(λ3ln(m +
1
m

− x))

+ B3eλ2ln(m+ 1
m −x)sin(λ3ln(m +

1
m

− x)) + g2,part(x))|

≤|B2|mλ2−n + |B3|mλ2−n + m−n|g2,part(x)|.

Noting the right hand side of (11) is bounded by O(mn) on [m, m + 1
m ], we can also choose ϕ(x) and

g2,part(x) to be of O(mn) on [m, m + 1
m ], irrespective of the choice of initial conditions {ϕ(m), ϕ′(m), ϕ′′(m)}.

We have that ϕ′(m) = O(mn+1), in the special case, so that choosing {B2, B3} sufficiently small,
noting; (x − (m + 1

m )n(B2eλ2ln(m+ 1
m −x)cos(λ3ln(m + 1

m − x)) +B3eλ2ln(m+ 1
m −x)sin(λ3ln(m + 1

m − x)))′|m =

O(max(B2mn−λ2−1, B3mn−λ2−1)) we can assume that; |(x − (m + 1
m )ng2(x)|[m,m+ 1

m ] ≤ D where D ∈ R>0 is

independent of m, so that; |h(x)|[m,m+ 1
m ] ≤ |(x − (m + 1

m )ng1(x)|[m,m+ 1
m ] + |(x − (m + 1

m )ng2(x)|[m,m+ 1
m ] ≤

F + D. For the final claim, we have, as h′′′|[m,m+ 1
m ] ≥ 0 or h′′′|[m,m+ 1

m ] ≤ 0, that, using the fundamental theorem

of calculus, that;
∫ m+ 1

m
m |h′′′(x)|dx = |

∫ m+ 1
m

m h′′′(x)dx| = |h′′(m + 1
m )− h′′(m)| = | − h′′(m)| = |a2|.
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Lemma 5. Let f be a function as specified in Definition 2. Then, there exists a sequence of approximating functions
{ fm}m∈N such that for sufficiently large m, the Fourier transform of fm satisfies

|F ( fm)(k)| ≤
Cm
|k|3 for all |k| > 1,

where C > 0 is a constant independent of m.

Proof. We construct the approximating sequence { fm} as follows:

fm(x) =



f (x), for x ∈ [−m, m],

h1,m(x), for x ∈
[
−m − 1

m ,−m
]

,

h2,m(x), for x ∈
[
m, m + 1

m

]
,

0, otherwise,

where h1,m, h2,m ∈ C2
(
[−m − 1

m ,−m] ∪ [m, m + 1
m ]
)

are smooth extensions determined by the boundary
conditions:

h1,m(−m) = f (−m), h′1,m(−m) = f ′(−m), h′′1,m(−m) = f ′′(−m),

h2,m(m) = f (m), h′2,m(m) = f ′(m), h′′2,m(m) = f ′′(m).

The existence of such extensions is guaranteed by Lemma 3 or Lemma 4.
By construction:

1. fm(x) = f (x) for all x ∈ [−m, m], satisfying the approximation condition in Definition 2.
2. fm smoothly transitions to zero outside the interval [−m− 1

m , m+ 1
m ], ensuring condition (ii) of Definition

2.
3. fm is identically zero on (−∞,−m − 1

m ] ∪ [m + 1
m , ∞), thereby satisfying condition (iii) of Definition 2.

Next, we verify condition (iv). From the proof of Lemma 3 or by invoking Lemma 4, we have

max
{
∥h1,m∥L∞[−m− 1

m ,−m], ∥h2,m∥L∞[m,m+ 1
m ]

}
≤ 16∥ f ∥∞ + 7∥ f ′∥∞ + ∥ f ′′∥∞.

Thus, ∫ −m

−m− 1
m

| fm(x)| dx ≤
(
16∥ f ∥∞ + 7∥ f ′∥∞ + ∥ f ′′∥∞

)
· 1

m
=

D
m

,

∫ m+ 1
m

m
| fm(x)| dx ≤

(
16∥ f ∥∞ + 7∥ f ′∥∞ + ∥ f ′′∥∞

)
· 1

m
=

E
m

,

where D = E = 16∥ f ∥∞ + 7∥ f ′∥∞ + ∥ f ′′∥∞. This verifies condition (iv) of Definition 2.
For the Fourier transform estimate, consider the third derivative of fm:

F ( f ′′′m )(k) =
1

(2π)1/2

∫ ∞

−∞
f ′′′m (x)e−ikx dx.

Integrating by parts thrice and assuming sufficient decay at infinity, we obtain

F ( f ′′′m )(k) = (ik)3F ( fm)(k).

Therefore,

|F ( fm)(k)| =
|F ( f ′′′m )(k)|

|k|3 ≤ 1
|k|3(2π)1/2

∫ ∞

−∞
| f ′′′m (x)| dx.

Since fm is equal to f on [−m, m] and smoothly transitions outside this interval, we have∫ ∞

−∞
| f ′′′m (x)| dx ≤ 2∥ f ′′∥∞ + 2m∥ f ′′′∥∞.
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Assuming m > ∥ f ′′∥∞, it follows that

|F ( fm)(k)| ≤
1

|k|3(2π)1/2

(
2∥ f ′′∥∞ + 2m∥ f ′′′∥∞

)
≤ Cm

|k|3 ,

where C = 2+2∥ f ′′′∥∞
(2π)1/2 , independent of m. This establishes the desired Fourier transform bound for |k| > 1.

Lemma 6 (Fourier Inversion). Let f ∈ C3(R) be a thrice continuously differentiable function on the real line such that
both f and its first derivative f ′ are non-oscillatory and exhibit very moderate decay at infinity. Additionally, assume
that the set { f , f ′, f ′′, f ′′′} is bounded. Then, the Fourier transform F ( f ) belongs to L1(R), and the inversion formula
holds, that is,

f (x) = F−1(F ( f ))(x),

where, for g ∈ L1(R),

F−1(g)(x) =
1√
2π

∫ ∞

−∞
g(k)eikx dk.

Proof. By Lemma 1, there exists a constant C > 0 such that

|F ( f )(k)| ≤ C
|k|2 ,

for sufficiently large |k|. Since f exhibits very moderate decay, there exists a constant D > 0 satisfying

| f (x)|2 ≤ D
|x|2 for |x| > 1.

Furthermore, since f ∈ C0(R), it follows that f ∈ L2(R). Consequently, the Fourier transform F ( f )
also belongs to L2(R), and for any n ∈ N, the restriction F ( f )|[−n,n] belongs to L1(R). Combining these
observations, we conclude that F ( f ) ∈ L1(R).

Let { fm}m∈N be an approximating sequence as provided by Lemma 5. Since each fm ∈ L1(R), their
Fourier transforms F ( fm) are continuous functions. Moreover, by Lemma 2, F ( fm) converges uniformly to
F ( f ) on R \ {0}, implying that F ( f ) ∈ C0(R \ {0}).

Since each fm ∈ C2(R) and f ′′m ∈ L1(R), there exist constants Dm > 0 such that

|F ( fm)(k)| ≤
Dm

|k|2 ,

for sufficiently large |k|. Furthermore, since xn fm(x) ∈ L1(R) for all n ∈ N, it follows that F ( fm) ∈ C∞(R).
Therefore, by the Fourier inversion theorem (see [4]), we have

fm(x) = F−1(F ( fm))(x),

for each m ∈ N.
By Lemma 2, for any fixed k0 > 0, there exists a bound Ek0 such that

|F ( f )(k)−F ( fm)(k)| ≤
Ek0

m
, for |k| > k0.

Since f has very moderate decay, f − fm ∈ L2(R), and ∥ f − fm∥L2(R) → 0 as m → ∞. Consequently, ∥F ( f )−
F ( fm)∥L2(R) → 0 as m → ∞. In particular, for sufficiently large m, we have ∥F ( f )−F ( fm)∥L2(R) ≤ 1.

Let ϵ > 0. Then,

∥F ( f )−F ( fm)∥L1((−ϵ,ϵ)) ≤ ∥F ( f )−F ( fm)∥L2((−ϵ,ϵ))∥1(−ϵ,ϵ)∥L2((−ϵ,ϵ)) ≤
√

2ϵ1/2.
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Thus, for m sufficiently large,
∥F ( f )−F ( fm)∥L1((−ϵ,ϵ)) ≤

√
2ϵ1/2.

Now, let m = n3/2 for n ∈ N. Using Lemma 5, Lemma 2, and the above estimate, for each x ∈ R, we have∣∣∣F−1(F ( f ))(x)−F−1(F ( fm))(x)
∣∣∣ = ∣∣∣F−1(F ( f )−F ( fm))(x)

∣∣∣
=

1√
2π

∣∣∣∣∫ n

−n
(F ( f )(k)−F ( fm)(k))eikx dk

+
∫
|k|>n

(F ( f )(k)−F ( fm)(k))eikx dk
∣∣∣∣

≤ 1√
2π

(∫ n

−n
|F ( f )(k)−F ( fm)(k)| dk

+
∫
|k|>n

|F ( f )(k)| dk +
∫
|k|>n

|F ( fm)(k)| dk
)

≤ 1√
2π

(∫ ϵ

−ϵ
|F ( f )(k)−F ( fm)(k)| dk +

2nEϵ

m

+
∫
|k|>n

C
|k|2 dk +

∫
|k|>n

Cm
|k|3 dk

)
≤ 1√

2π

(
√

2ϵ1/2 +
2nEϵ

n3/2 +
2C
n

+
Cn3/2

n2

)
< 2ϵ1/2,

for sufficiently large n, where Eϵ
m is the bound from Lemma 2.

Since ϵ > 0 was arbitrary, it follows that for each x ∈ R,

lim
m→∞

F−1(F ( fm))(x) = F−1(F ( f ))(x),

and by Definition 2,

f (x) = lim
m→∞

fm(x) = lim
m→∞

F−1(F ( fm))(x) = F−1(F ( f ))(x).

Remark 1. The previous lemma proves an inversion theorem for non-oscillatory functions with very moderate
decrease. Such functions belong to L2(R) and an analogous result for Fourier series can be found in [1], where
convergence is proved almost everywhere rather than everywhere. The corresponding result for transforms is
that;

If f ∈ Lp(R), p ∈ (1, 2], then;

f (x) = limR→∞
1

2π

∫
|k|≤R

F ( f )(k)eixkdk

for almost every x ∈ R.
We can define the function F1( f )(k), for k ∈ R, using the usual Fourier transform transform method,

when f ∈ L1(R), see [6], and, we can define the function F2( f )(k), for k ∈ R ̸=0, using the limit definition when
f is of very moderate decrease and non-oscillatory, a particular case of f ∈ L2(R). However, the operators
F1 and F2 need not commute, so that even if we show that F2 ◦ F1 = Id, it doesn’t necessarily follow that
F1 ◦ F2 = Id. The first claim is, in a sense, shown in [7];

If f ∈ L1(R) ∩ C0(R) and |F ( f )(k)| ≤ A
|k| , for all k ̸= 0, and A ∈ R≥0, then;

f (x) = limR→∞
1

2π

∫
|k|≤R

F ( f )(k)eixkdk

for every x ∈ R.
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Definition 3. We say that f : R → R is analytic at infinity, if f ( 1
x ) has a convergent power series expansion

for |x| < ϵ, ϵ > 0. We say that f is eventually monotone, if there exists y0 ∈ R>0 such that f |(−∞,−y0)
and

f |(y0,∞) are monotone.

Remark 2. The class of functions which are analytic at infinity and of very moderate decrease is important
in Physics. The components of the causal field generated by Jefimenko equations can be shown to have this
property if the corresponding charge and current (ρ, J) are smooth and have compact support.

A criteria for a function being non-oscillatory or eventually monotone is provided by the following
lemma;

Lemma 7. If f : R → R, f ̸= 0 is analytic and analytic at infinity, then it has finitely many zeroes. If f : R → R, d f
dx

is analytic and analytic at infinity, and f ̸= c, where c ∈ R, then f is non-oscillatory. If f : R → R, f is analytic for
|x| > a, where a ∈ R≥0, analytic at infinity, and f ||x|>a ̸= 0 then f has finitely many zeroes in the region |x| > a + 1.

If f : R → R, d f
dx is analytic for |x| > a, analytic at infinity, and f ||x|>a ̸= c, where c ∈ R, then f is eventually

monotone.

Proof. For the first claim, suppose that f has infinitely many zeroes. Then we can find a sequence {yi; i ∈
N} with f (yi) = 0. If the sequence is bounded, then by the Bolzano-Weierstrass Theorem, we can find a
subsequence {yik ; k ∈ N}, with f (yik ) = 0, converging to y ∈ R. By continuity, we have that f (y) = 0 and
y is a limit point of zeroes. As f is analytic, by the identity theorem, it must be identically zero, contradicting
the hypothesis. If the sequence is unbounded, then we can find a subsequence {yik ; k ∈ N}, with f (yik ) = 0,
such that limk→∞yik = ∞ or limk→∞yik = −∞. As f is analytic at ∞, we can find ϵ > 0, such that f (y) = 0
for |y| > 1

ϵ . By the identity theorem again, f is identically zero, contradicting the hypothesis. It follows that
f has finitely many zeroes. For the second claim, as d f

dx ̸= 0, by the first part, there exist finitely many points

{y1, . . . , yn}, with d f
dx |yi = 0, for 1 ≤ i ≤ n, and with yi < yi+1, for 1 ≤ i ≤ n − 1. In particularly, we have that

f |(−∞,y1)
, f |(yn ,∞) and f |(yi ,yi+1)

is monotone for 1 ≤ i ≤ n − 1, so that f is non-oscillatory. For the third claim,
suppose that f has infinitely many zeroes in the region |x| > a + 1, then we can find a sequence {yi; i ∈ N}
with f (yi) = 0 and |yi > a + 1. As above, if the sequence is bounded, we can find a subsequence {yik ; k ∈ N},
with f (yik ) = 0, converging to y ∈ R, with |y| ≥ a+ 1 > a. As f is analytic for |x| > a, by the identity theorem,
it must be identically zero in the region |x| > a, contradicting the hypothesis. If the sequence is unbounded,
by the same argument as above, f must be identically zero in the region |x| > a, contradicting the hypothesis.
It follows that f has finitely many zeroes in the region |x| > a + 1. For the fourth claim, as d f

dx ||x|>a ̸= 0, by the

first part, there exist finitely many points {y1, . . . , yn}, with d f
dx |yi = 0, and |yi| > a + 1, for 1 ≤ i ≤ n. Choose

y0 > max1≤i≤n(|yi|), then d f
dx ||x|>y0

̸= 0, so that f ||x|>y0
is monotone.

Lemma 8. Suppose f ∈ C0(R) and f is of very moderate decrease. Define the Fourier transform by

F ( f )(k) =
1

(2π)
1
2

lim
r→∞

∫ r

−r
f (y) e−iky dy.

Then F ( f )(k) defines a function in L2(R), satisfying ∥F ( f )∥L2(R) = ∥ f ∥L2(R). Moreover, there exists a sequence
{rn}n∈N with rn ∈ R>0 such that

1

(2π)
1
2

lim
n→∞

∫ rn

−rn
f (y) e−iky dy

converges almost everywhere.

Proof. By hypothesis, f ∈ L2(R). Let fr = f χ(−r,r), where χ(−r,r) is the characteristic function on (−r, r). Then
fr ∈ L1(R) ∩ L2(R), and ∥ f − fr∥L2(R) → 0 as r → ∞. In particular, { fr} is a Cauchy sequence in L2(R).
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By a result in [8], the usual Fourier transform F : L1(R)∩ L2(R) → L2(R) is an isometry. Hence, {F ( fr)}
is also a Cauchy sequence in L2(R). By the completeness of L2(R), there exists g ∈ L2(R) such that ∥g −
F ( fr)∥L2(R) → 0 as r → ∞.

We now compute:

∥F ( f )∥L2(R) =
∥∥∥ lim

r→∞
F ( fr)

∥∥∥
L2(R)

= lim
r→∞

∥F ( fr)∥L2(R) = lim
r→∞

∥ fr∥L2(R) =
∥∥∥ lim

r→∞
fr

∥∥∥
L2(R)

= ∥ f ∥L2(R).

Finally, by a result in [9], if we choose rn ∈ R>0 such that ∥ f − frn∥L2(R) ≤ 2−n, then ∥F ( f ) −
F ( frn)∥L2(R) ≤ 2−n, which implies that

∣∣F ( frn)(k)−F ( f )(k)
∣∣→ 0 almost everywhere.

Remark 3. We will use F ( f )(k) to denote this almost-everywhere limit.

Lemma 9. Let f ∈ C2(R) and assume { f , d f
dx} ⊂ C(R) is of very moderate decrease, with d2 f

dx2 of moderate decrease.
Then there exists a constant G ∈ R>0 such that

∣∣F ( f )(k)
∣∣ ≤ G

|k|2 for |k| > 1.

In particular, F ( f )(k) ∈ L1(R) and is defined for all k ̸= 0.
Moreover, let f ∈ C1(R) be of very moderate decrease, with d f

dx of moderate decrease and oscillatory. Then there
exists a constant G ∈ R>0 such that

∣∣F ( f )(k)
∣∣ ≤ G

|k|2 for sufficiently large |k|.

Hence, F ( f )(k) ∈ L1(R) and is defined for k ̸= 0.

Proof. First, note that d2 f
dx2 ∈ L1(R). Then

∣∣F( d2 f
dx2

)
(k)
∣∣ = ∣∣∣∣ 1

(2π)
1
2

∫ ∞

−∞

d2 f
dx2 (y) e−iky dy

∣∣∣∣ ≤ 1

(2π)
1
2

∫ ∞

−∞

∣∣ d2 f
dx2 (y)

∣∣ dy =
1

(2π)
1
2

∥∥∥ d2 f
dx2

∥∥∥
L1

≤ G

for some G ∈ R>0. Next, applying integration by parts and the Dominated Convergence Theorem (DCT), for
k ̸= 0 we obtain:

F
( d2 f

dx2

)
(k) =

1

(2π)
1
2

lim
r→∞

∫ r

−r

d2 f
dx2 (y) e−iky dy =

1

(2π)
1
2

[(
d f
dx e−iky

)∣∣∣r
−r

+ ik
∫ r

−r

d f
dx (y) e−iky dy

]
r→∞

Since d f
dx vanishes sufficiently fast at ±∞ (due to very moderate decrease), the boundary term is zero, thus

F
( d2 f

dx2

)
(k) =

ik

(2π)
1
2

lim
r→∞

∫ r

−r

d f
dx (y) e−iky dy =

ik

(2π)
1
2

[(
f (y)e−iky)∣∣∣r

−r
+ ik

∫ r

−r
f (y) e−iky dy

]
r→∞

Again, the boundary term vanishes, yielding

F
( d2 f

dx2

)
(k) = − k2

( 1

(2π)
1
2

lim
r→∞

∫ r

−r
f (y) e−iky dy

)
= − k2 F ( f )(k).

Thus ∣∣F ( f )(k)
∣∣ = ∣∣F ( d2 f

dx2 )(k)
∣∣

|k|2 ≤ G
|k|2 for |k| > 1.

Moreover, since F ( f )(k) ∈ L2(R), it follows that F ( f )
∣∣
(−1,1)(k) ∈ L2(R) ⊂ L1(R), and hence F ( f )(k) ∈

L1(R).
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For the second statement, let f ∈ C1(R) be of very moderate decrease, with d f
dx of moderate decrease and

oscillatory. Since d f
dx ∈ L1(R), we similarly have

∣∣F( d f
dx
)
(k)
∣∣ ≤ H for some H ∈ R>0. Repeating a similar

integration-by-parts argument shows

F
( d f

dx
)
(k) = ik F ( f )(k) for k ̸= 0,

thus ∣∣F ( f )(k)
∣∣ ≤

∣∣F( d f
dx
)
(k)
∣∣

|k| ≤ H
|k| .

By assumptions on the oscillatory nature of d f
dx and the moderate decrease for |x| → ∞, one can refine this

bound further. Adapting the argument in [5], for sufficiently large |k|,

∣∣F( d f
dx
)
(k)
∣∣ ≤ R

|k| ,

for some constant R > 0. Combining these estimates yields

∣∣F ( f )(k)
∣∣ ≤

|F ( d f
dx )(k)|
|k| ≤ G

|k|2 for sufficiently large |k|.

Hence F ( f )(k) ∈ L1(R) for k ̸= 0, as required.

Lemma 10. Let f ∈ C3(R) be such that { f , f ′} has very moderate decrease, f ′′ has moderate decrease, and
{ f , f ′, f ′′, f ′′′} is bounded. Then F ( f ) ∈ L1(R), and

f (x) = F−1(F ( f )
)
(x),

where, for g ∈ L1(R),

F−1(g)(x) =
1

(2π)
1
2

∫ ∞

−∞
g(k) eikx dk.

Moreover, the same result holds if f ∈ C3(R) with f of very moderate decrease, f ′ of moderate decrease and oscillatory,
and { f , f ′, f ′′, f ′′′} bounded.

Proof. By Lemma 9, there exists a constant E > 0 such that

∣∣F ( f )(k)
∣∣ ≤ E

|k|2 ,

for sufficiently large |k| (this is (∗)). Since f is of very moderate decrease, we also have

| f (x)|2 ≤ D
|x|2 ,

for |x| > 1. Because f ∈ C0(R), it follows that f ∈ L2(R). Consequently, F ( f ) ∈ L2(R). Furthermore, for any
n ∈ N, the restriction F ( f )

∣∣
[−n,n] ∈ L1(R). Denoting this condition as (∗∗), and combining (∗) and (∗∗), we

conclude that F ( f ) ∈ L1(R).
Next, let { fm}m∈N be the approximating sequence given by Lemma 5. Since each fm ∈ L1(R), its Fourier

transform F ( fm) is continuous. Because fm ∈ C2(R) and f ′′m ∈ L1(R), there exist constants Dm > 0 such that

∣∣F ( fm)(k)
∣∣ ≤ Dm

|k|2 ,
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for sufficiently large |k|. Moreover, since xn fm(x) ∈ L1(R) for any n ∈ N, it follows that F ( fm) ∈ C∞(R).
Hence, by the standard Fourier Inversion Theorem (see [4] for the proof), we obtain

fm(x) = F−1(F ( fm)
)
(x). (15)

Since f is of very moderate decrease, we have f − fm ∈ L2(R), and

lim
m→∞

∥ f − fm∥L2(R) = 0, lim
m→∞

∥F ( f )−F ( fm)∥L2(R) = 0.

For any n ∈ N, m ∈ N, we estimate:∣∣∣∫ n

−n

(
F ( f )(k) − F ( fm)(k)

)
dk
∣∣∣ ≤ (2n)

1
2 ∥F ( f − fm)∥L2 ≤ (2n)

1
2 ∥ f − fm∥L2 .

Since ∥ f − fm∥L2 is controlled by the very moderate decrease of f , we can bound this by

(2n)
1
2

(∫
|x|>m

D2

x2 dx
)1

2
= (2n)

1
2
( 2D2

m
) 1

2 = 2D
n

1
2

m
1
2

, (A) (16)

for some constant D > 0. Now, setting m =
⌊
n

3
2
⌋

and applying Lemma 5 together with (16), we estimate, for
x ∈ R, ∣∣F−1(F ( f )

)
(x) − F−1(F ( fm)

)
(x)
∣∣ =

1

(2π)
1
2

∣∣∣∫ ∞

−∞

(
F ( f )(k)−F ( fm)(k)

)
eikx dk

∣∣∣.
Splitting the integral into regions |k| ≤ n and |k| > n, and using our previous bounds on F ( f ),F ( fm), one
shows that

∣∣F−1(F ( f )
)
(x) − F−1(F ( fm)

)
(x)
∣∣ ≤ 1

(2π)
1
2

(
2D

n
1
2

m
1
2

+
2E
n

+
C n

3
2

n2

)
−→ 0,

as n → ∞. Hence,

lim
m→∞

F−1(F ( fm)
)
(x) = F−1(F ( f )

)
(x). (17)

Finally, by Definition 2, together with (15) and (17), we obtain

f (x) = lim
m→∞

fm(x) = lim
m→∞

F−1(F ( fm)
)
(x) = F−1(F ( f )

)
(x).

This completes the proof.
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