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Abstract: With rapid economic development and urbanization, many cities, particularly in China, face
serious PM; 5 pollution issues. In this study, the city of Hefei is selected as the research area to investigate the
factors influencing PM 5 concentrations. Data on electricity consumption of major PM; 5-emitting industries,
meteorological factors (temperature, wind speed, wind direction, relative humidity), and atmospheric
pollutant concentrations (NO,,50,,03,CO) are utilized to explore PM; 5 concentrations in Hefei from 2020
to 2021 using a generalized additive model (GAM). The aims are to identify the main influencing factors and
potential control pathways for particulate matter pollution. Results reveal that CO accounts for 69% of the
variation in PMj 5 mass concentration, suggesting it as the dominant factor in Hefei in 2020. Additionally, the
major PM, 5-emitting industries contribute to a 16% change in PM, 5 mass concentration, with a significant
impact from smelting industries, which exhibit an increase in electricity consumption associated with an
increase in PMj 5 mass concentration. Model fitting indicates that a 50% reduction in electricity consumption
within the iron and steel making industries can lead to a 37% decrease in PM; 5 mass concentration compared
to pre-reduction levels. Moreover, targeted control measures in winter result in higher reductions in PM; 5
pollution within a 40% reduction compared to consistent emission reductions throughout the year. These
findings highlight the effectiveness of more focused control strategies based on localized circumstances.
Implementing measures to restrict electricity use by key industries during high pollution seasons and in
cities with high pollution levels can effectively address local PM, 5 pollution concerns.
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1. Introduction

PM; 5 refers to fine particulate matter in the atmosphere, characterized by an aerodynamic equivalent
diameter of 2.5 pm or less. As they are extremely small and light, PM, 5 particles can persist in the atmosphere
for extended periods and can be transported over long distances by atmospheric circulation, resulting in
widespread air pollution [1]. Additionally, PM5 5 can cause reduced visibility and lead to hazy weather in
urban areas [1]. Furthermore, PM; 5 plays a significant role in the global climate by influencing cloud formation
and rainfall processes, thereby indirectly contributing to climate change. Moreover, this fine particulate matter
is also able to enter the human alveolar, posing a great threat to human health, and is therefore also known as
lung-borne particulate matter [2,3]. Consequently, PM; 5 has emerged as one of the prominent air pollutants
causing widespread concern.

Variations in PMj 5 mass concentration are related to other air pollutants, local meteorological factors
and industrial emissions [4-6]. Many city-scale studies have been conducted to investigate the relationship
between PMj, 5 and its influencing factors and predict its mass concentration changes using different models.
Certain researchers have used VAR model to analyze the dynamic relationship between PM; 5 and various
air pollutants and meteorological factors, and found that various air pollutants and meteorological factors
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have different degrees of influence on PM; 5 in various periods [7]. In addition, scholars have used multi-scale
geographically weighted regression (MGWR) model to study the influence of local spatial and temporal effects
on PMj5 in China [8]. Moreover, building upon these studies, other scholars have obtained a regression
formula for PM; 5 concentration [9]. It has been shown that the components and sources of PM; 5 are complex,
and the influence of meteorological factors also includes complex physicochemical processes. Consequently,
it is necessary to consider the intricate non-linear relationship between PM;5 mass concentration and the
influencing factors [10]. However, current studies on the influencing factors of PM; 5 at urban scale generally
only consider the linear relationship between PM, 5 and the influencing factors, often ignoring the complex
non-linear relationships between different variables. The generalized additive model (GAM), a statistical
model often applied in environmental studies, is a semi-parametric extension of the generalized linear model
(GLM). Compared with other models, the GAM can directly deal with the complex non-linear relationships
between the response variables and multiple explanatory variables, and is therefore well suited to explain the
non-linear relationships between PM; 5 and its influencing factors, and further based on the model results to
prediction of PM; 5 concentrations [11,12].

Among the influencing factors of PM; 5, industrial emissions are one of the important factors causing
PMj 5 pollution [4], and electricity consumption data can reflect the production implementation of enterprises,
which also contains the enterprise PM; 5 emission status [13-15]. Currently, electricity big data is extensively
utilized across numerous domains, including electricity production, operational management, quality service,
and smart cities [16-18], but there are few studies to apply electricity data to pollution analysis. Using the
historical electricity consumption data of key PM; 5 emitting enterprises can well reflect the PM; 5 emission
status of industrial sources. Combining the high temporal resolution industry electricity consumption data
into the pollution analysis of PM, 5 can provide a new perspective for us to study the influencing factors of
PMy 5.

This study aims to investigate the primary influencing factors of atmospheric PM; 5 particulate matter
in Hefei city from 2020 to 2021 by focusing on the electricity consumption data from major PM, 5 emitting
industries, as well as meteorological factors (temperature, wind speed, wind direction, relative humidity) and
mass concentrations of atmospheric pollutants (NO;, SO, O3, CO). The investigation will be conducted using
the generalized additive model (GAM). Additionally, the study aims to examine the potential pathways for
controlling particulate matter pollution by utilizing the GAM model constructed with electricity big data.

2. Study area, data and methods

2.1. Study area

Hefei, the capital of Anhui Province in China, is located in the mid-latitude zone, with four distinct
seasons, a mild climate and moderate rainfall. The topography is complex and varied, with three types of
land forms: plains, mountains and hills.

2.2. Sources of data

2.2.1. Sources of data on atmospheric pollutants

The data on atmospheric pollutant concentrations in Hefei from 1 January 2020 to 19 May 2021 analyzed in
this study were obtained from the Ministry of Ecology and Environment (http:/ /sthjt.ah.gov.cn/site/tpl/5371,
whose data are published by the Anhui Ecological and Environmental Monitoring Centre) and include PM; 5
(ng/ m3), NO, (ug/ m3), SO, (ng/ m3), CO (mg/ m3) and O3 (ng/ m3) near ground mass concentration data at
hourly resolution.

2.3. Meteorological data sources

Hourly meteorological data for the same period corresponding to the above air pollutant data were
obtained from the National Oceanic and Atmospheric Administration website (http://www.cdc.noaa.gov,
hereafter referred to as the NOAA website) and include temperature (T) (°C), relative humidity (RH) (%),
Wind speed (WS) (m/s) and wind direction (WD) (°).
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2.3.1. Sources of electricity consumption data for major PM, 5 emitting industries in Hefei

The list of major PM, 5 emitting enterprises in Hefei and their hourly electricity consumption data (Kw-h)
for the same period corresponding to the above air pollutant data were provided by the State Grid Anhui
Electric Power Company, which classified the above major PM; 5 emitting enterprises into nine categories of
industries, and their classification and abbreviations are shown in Table 1. All electricity consumption data
were subject to strict quality control to ensure completeness and representativeness, resulting in 94,059 valid
data.

Table 1. List of major emitters in Hefei and their corresponding abbreviations

List of major emitters in Hefei Abbreviations
Iron making ELE1
Steel making ELE2
Rare earth metal smelting ELE3
Oil, coal and other fuel processing industries ELE4
Non-metallic mineral products industry ELE5
Chemical raw material and chemical product manufacturing ELE6
Textile industry ELE7
Rubber and plastic products industry ELES8
Metal products industry ELE9

2.4. Research methodology

A generalized additive model (GAM) is a non-linear regression framework and a semi-parametric
extension of the generalized linear model (GLM) that can capture complex non-linear relationships between a
response and multiple explanatory variables. We fitted the models using the mgcv package in R [12,19,20]. The
basic form is

g(u) = a + ifi(xi)/ 1

where y denotes the expected value of the response variable (PM; 5 concentration), x; (i = 1,2,...,n) are the
predictors, and f;(-) are the corresponding smoothing functions. Model adequacy was assessed using the
Akaike Information Criterion (AIC) and R? [21]. We used the F-statistic, associated p-value, and adjusted
R? reported by the GAM to determine the significance of each explanatory variable’s effect on PM, 5 and the
overall goodness of fit: larger F-statistics indicate greater relative importance; smaller p-values indicate more
statistically significant effects; and adjusted R? ranges from 0 to 1, with values closer to 1 indicating a better fit
and higher explained variance [12,22]. All figures were produced with OriginPro 2022.

3. Results and discussion

3.1. Timing distribution characteristics of Hefei from 2020 to 2021

3.1.1. Annual air quality concentration profile for Hefei city, 2020-2021

The annual average PM, 5 mass concentration in Hefei from 2020 to 2021 is 34.28 ug/m?, which complies
with China’s secondary ambient air quality standard (<35 ug/m?) [23]. However, it still falls below the
recently updated WHO 2021 standard (5 ug/m?) [24]. Figure 1 illustrates that in 2020, the average daily mass
concentration of PM;, 5 exceeded the Chinese standard for 9.7% of the year. Compared with the analytical
data of PM; 5 in Hefei in previous years [25], the annual average PM; 5 mass concentration decreased from
61.60 pg/m3 in 2015 to 34.28 ug/m? in 2020, and the PM, 5 daily average mass concentration exceedance rate
decreased to 9.7%. This signifies an improvement. Nevertheless, it still surpasses 18.2% when compared
to China’s national average annual PM, 5 mass concentration in 2020 (29 pug/m?3) [23]. Furthermore, when
juxtaposed with cities known for their superior air quality like Zhangjiakou [23], Hefei’'s PM; 5 pollution
remains comparatively more severe.
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Figure 1. Distribution of daily average PM; 5 mass concentration in Hefei in 2020

3.1.2. Characteristics of monthly and seasonal changes in atmospheric quality concentrations in Hefei from
2020 to 2021

As shown in Figure 2, the monthly average PM; 5 mass concentrations in Hefei exceeded China’s national
ambient air quality secondary standards for a total of three months (January, November and December) in
2020, an improvement compared to previous years [25]. The monthly mean PM; 5 mass concentrations in
Hefei City exhibit a consistent pattern of decrease followed by increase throughout the year, indicating higher
levels during winter and lower levels during summer. December 2020 recorded the highest monthly mean
PMj, 5 mass concentration of 74.15 ug/m?>, while the lowest values were observed in June and August, which
are summer months. The average winter PM; 5 mass concentration in Hefei in 2020 is 65.6% higher than the
annual level, signifying a more severe atmospheric PM; 5 pollution during winter.
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Figure 2. Monthly average PM, 5 mass concentration in Hefei from January 2020 to May 2021 as a function of
time

3.2. Analysis of electricity consumption data for the main PM; 5 emitting industries from 2020 to 2021

According to Figure 3, the electricity consumption of most industries (excluding the ELE4 industry)
from 2020 to 2021 showed an upward trend. Specifically, ELE1, ELE3, and ELES5 industries experienced a
significant increase in electricity consumption during the autumn and winter seasons, suggesting a recent rise
in industrial electricity consumption in Hefei. This trend is further supported by the data in Table 2. The ELE5
and ELE6 industries exhibited the highest average daily electricity consumption during 2020-2021, reaching
2.91x10° Kw-h and 2.66x10° Kw-h respectively. Conversely, the ELE2 and ELE4 industries had the lowest
average daily electricity consumption compared to other industries from 2020 to 2021, at 6.07x10* Kw-h and
1.18x10* Kw-h respectively.
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Figure 3. Monthly average daily electricity consumption by sector over time

Table 2. Growth rate of average daily electricity consumption of major PM; 5 emitting industries in Hefei in the
first half of 2021 from January to May compared to the same period in 2020

List of major emitters in Hefei | Growth rate
ELE1 249%
ELE2 189%
ELE3 28%
ELE4 25%
ELE5 152%
ELE6 344%
ELE7 164%
ELES 104%
ELE9 93%

3.3. GAM fitting results

The initial selection of temperature (T) as the explanatory variable for PM, 5 was fitted with the GAM
model, and then variables were gradually added to the model, of which all passed the significance test
(p<0.001) except WS (p=0.279), which failed the significance test and was excluded.

[= R A AIC
A
A n
- -1 86000
0.70 L]
A -
o
A
a M - 85000
% 1 g
-
0.85
] A
A 4 -1 84000
A
- b
- A
A
0.60 . . 83000
0 5 10 15

Number of fitted variables

Figure 4. Plot of R2 value, AIC value and number of fitted variables of the fitted function

The AIC and R? values for each variable added were plotted (Figure 4), which showed that as the number
of variables increased the AIC value decreased and the R? value increased, indicating that all the variables
added were valid [26], with the addition of the rubber and plastic products and metal products variables not
meeting the decreasing AIC and increasing R? values and being excluded. The final model equation is g(PM, 5)
= 5(CO) + s(T) + s(NOy) + s(SO) + s(ELE2) + s(ELE1) + s(ELE3) + s(ELE4) + s(ELE5) + s(ELE6) + s(ELE?) +



Eng. Appl. Sci. Lett. 2025, 8(4), 01-11 6

s(RH) + s(WD) + s(O3) +¢. In general, when the adjusted R? value exceeds 0.5, the GAM model is considered to
explain the response variable well [27], and this model has an R? value of 0.7163 (Figure 5), indicating a good
model fit.

Equation y=a+b'x

Plot | Observed PM2.|
300 - | Weight | No Weighting |
Intercept -0.12117 0.2
Slope 1.00341 £ 0.00 |
|Residual Sum of Squ| 1746939.05566
Pearson's 1 0.84636
R-Square (COD) 071632 |
Adj. R-Square 071629
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Figure 5. Relationship between observed PM; 5 mass concentrations and fitted PM; 5 mass concentrations

3.4. GAM-based factors influencing PM 5

3.4.1. General characteristics

As can be seen from Table 3, the final 14 fitted variables all had a statistically significant effect on the
change in PM;,5 mass concentration at the P<0.001 level, i.e. all 14 influencing factors were statistically
significant as explanatory variables for PM; 5 mass concentration alone.

Table 3. F-values, P-values and impact percentages corresponding to each fitted variable, the larger the
F-statistic value corresponding to the influencing factor, the greater its relative importance; P-value is another
parameter used to judge the hypothesis test result, the smaller the P-value, the more significant the result; ***
indicates that the variable is significant at the 0.001 level

Fitting variables | F-values | P-values | Percentage of impact

CcO 659.88 | <2e-16 *** 69.3%
ELE2 53.37 | <2e-16*** 5.6%
O3 48.034 | <2e-16*** 5.0%
WD 38.231 | <2e-16 ** 4.0%
ELE5 33.921 | <2e-16 *** 3.6%
ELE1 23.823 | <2e-16*** 2.5%
NO, 19.463 | <2e-16*** 2.0%
SO, 17531 | <2e-16 *** 1.8%
ELE6 11.587 | <2e-16*** 1.2%
T 11.343 | <2e-16 *** 1.2%
ELE3 10.608 | <2e-16 *** 1.1%
RH 10.324 | <2e-16 *** 1.1%
ELE4 8.383 <2e-16 *** 0.9%
ELE7 5.918 <2e-16 *** 0.6%

CO (69.3% influence), O3 (5.0% influence), WD (4.0% influence), ELE1 - Ironmaking (2.5% influence),
ELE2 - Steelmaking (5.6% influence) and ELES5 - Non-metallic Mineral Products (3.6% influence) were the five
fitted variables with larger F-values in the GAM model and the model was fitted well, i.e. the effect of CO,
O3, WD, ELE1 (Ironmaking), ELE2 (Steelmaking) and ELE5 (Non-metallic Mineral Products) individually as
explanatory variables had a significant effect on the change in mass concentration. The influence of CO on
the change of PM; 5 mass concentration is 69% in the GAM, indicating that CO is the dominant influence on
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the change of PM; 5 mass concentration in Hefei in 2020. The influence of major PM; 5 emitting industries on
the change of PM; 5 mass concentration is 16% in the model, indicating that industrial emissions are also the
influence on the change of PM; 5 mass concentration. PM; 5 mass concentration change is one of the important
factors.

3.4.2. Main pollutants and meteorological factors versus mass concentration GAM fit

From Figure 6, the variables CO, O3, and PM;5 display a positive correlation, suggesting that an
increase in CO and O3 is significantly associated with an increase in PM, 5 mass concentration. One possible
explanation for the strong correlation between PM; 5 and Os is that O3, a potent oxidant, can oxidize substances
in the air thereby generating aerosols and acid mists. These particles, in turn, attract more dust and heavy
metal ions, ultimately leading to an increase in PM; 5 concentrations [28]. CO, on the other hand, is primarily
emitted from fossil fuel and biomass combustion. Thus, one possible reason for the strong correlation between
PMj; 5 and CO is that the major constituents of PM 5 result from primary emissions [29]. Additionally, primary
pollutants like CO can undergo photochemical reactions, producing the secondary pollutant Oz in the lower
atmosphere, which further increases PM; 5 concentrations [30]. Furthermore, it is observed that PM; 5 slightly
decreases as temperature rises above zero degrees Celsius, a pattern consistent with the higher levels of PM; 5
during winter compared to summer. Moreover, small increases in SO, and NO; concentrations, as well as
changes in relative humidity (RH), have minimal impact on PM, 5 concentrations.
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Figure 6. The effect of meteorological factors and pollutants on PM; 5 in the GAM. The Y-axis in each subplot is
the smoothing function term for the corresponding influence factor, the number in brackets represents its degree
of freedom, and the X-axis is the distribution of the corresponding influence factor (corresponding to the scatter
in the plot)

3.4.3. Big data and mass concentration GAM fit relationships for electricity in major emission sectors

According to Figure 7, PMp5 mass concentrations in iron making (ELE1) increase with electricity
consumption below 18,000 Kw-h. Similarly, in steel making (ELE2), PM,5 mass concentrations rise with
electricity consumption below 3,000 Kw-h. These findings suggest a correlation between increased electricity
consumption and higher PM, 5 mass concentrations in the smelting industry in Hefei. It is likely that the
emission of PM,5 and related precursors from these industries is closely related to their production and
electricity consumption processes. Implementing limits on electricity consumption can effectively control
changes in PM; 5 mass concentrations for these companies. Additionally, Figure 7 shows a negative correlation
between the non-metallic mineral products industry (ELE5) and the change in PM; 5 mass concentration. On
the other hand, industries like rare earth metal smelting (ELE3) have a lesser impact on the change in PM; 5
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mass concentration. These kinds of enterprises should control their PM; 5 emissions according to their specific
circumstances.
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3.5. Potential pathways to control pollution based on electricity

Based on the constructed GAM model, we simulated the impact of reducing the electricity consumption
of the ELE1 (iron making) and ELE2 (steel making) industries by 50% on PMj, 5. Figure 8 demonstrates that this
reduction in key industries resulted in a significant decrease in PM, 5 mass concentration, with a 37% reduction
relative to the pre-reduction levels. The mass concentration was still 23% lower compared to before. Further
reductions in electricity use in the ELE1 (iron making) and ELE2 (steel making) sectors, at varying degrees,
shown in Figure 9, corresponded to an increasing PM; 5 mass concentration reduction. For example, a 20%
reduction in electricity use in the controlled ELE1 (iron making) and ELE2 (steel making) sectors resulted in
a 10% reduction in PM, 5 mass concentration. These results highlight the potential to greatly reduce PM; 5
pollution by limiting electricity use in key emitting industries, as revealed by the GAM analysis.

250
.
|
2

served — - Predicted - - - Predicted(50% n'(ludum)‘

100 150 200
| |
@

PM2.5(ug/m")

50

T
2020

time

Figure 8. Plot of observed PM; 5 mass concentration versus model predicted values over time, where black
represents observed values, red represents model predicted values and blue represents predicted values for
ELE1, ELE2 with 50% reduction in emissions



Eng. Appl. Sci. Lett. 2025, 8(4), 01-11 9

When considering the control of electricity consumption in the ELE1 (iron making) and ELE2 (steel
making) industries exclusively during the high pollution season of winter (January, February, and December),
Figure 9 demonstrates that reducing electricity consumption by 20%, 30%, and 40% correspondingly led to
reductions in PM; 5 mass concentration of 11%, 20%, and 27%. These reductions are comparable to those
achieved over the entire year, signifying that limiting electricity use during high pollution seasons can yield
significant results. Therefore, targeted control of high PM, 5 pollution seasons can effectively reduce local
PMj; 5 pollution. Based on the results of the GAM model, it is possible to implement more targeted measures
for controlling PM, 5 pollution in each city. Implementing restrictions on the use of electricity by key local
industries during high pollution seasons and in heavily polluted cities can effectively control local PM; 5
pollution.
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Figure 9. The relationship between emission reductions and pollution reduction for ELE1 (iron making) and
ELE2 (steel making) industries with different levels of emission reductions

4. Conclusion

The analysis of the temporal distribution characteristics of PM, 5 in Hefei from 2020 to 2021 reveals
an improvement in PMj5 pollution control in recent years. However, the average PM;s winter mass
concentration in Hefei during this period is still 65.6% higher than the annual level, indicating the persistent
severity of atmospheric PM; 5 pollution in winter. This study utilizes a generalized additive model (GAM)
to explore the main influencing factors of PM;,5 particulate matter concentration in Hefei from 2020 to
2021, including electricity consumption data, meteorological factors, and air pollutant concentrations from
major PM; 5 emitting industries. Additionally, it examines potential paths for controlling particulate matter
pollution.

The study reveals that CO exerts the most substantial influence on the change of PM; 5 mass concentration
in Hefei in 2020, accounting for 69% in the GAM model. This finding highlights the dominant role of CO as an
influencing factor. Furthermore, the model indicates that major PM; 5 emission industries contribute to a 16%
change in PM; 5 mass concentration, emphasizing the significance of industrial emissions as a factor driving
PM, 5 levels. Notably, smelting industries, such as iron and steel making, characterized by increased electricity
consumption, are identified as having a sizable influence on the increase in PM; 5 mass concentration.

Based on the model fitting results, a 50% reduction in electricity consumption in the ELE1 (iron making)
and ELE2 (steel making) industries leads to a notable decrease in PMj;5 mass concentration, with a 37%
reduction after emission reduction compared to before. The reduction in PMj; 5 mass concentration increases
significantly with the degree of reduction. These findings demonstrate the substantial potential for reducing
PM; 5 pollution by limiting the electricity consumption of key emitters according to the GAM analysis.
Additionally, controlling electricity consumption in key emitting industries during the high pollution season
of winter results in higher reductions in PM; 5 pollution within a 40% reduction, as compared to reducing
emissions in these industries throughout the year. This highlights the effectiveness of targeted control of
PM, 5 during high pollution seasons. The GAM model’s results provide insights for implementing more
targeted PM; 5 pollution control measures in each city. Implementing restrictions on electricity use by key
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local industries during high pollution seasons and in heavily polluted cities can effectively control local PM, 5
pollution.
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