
Open J. Discret. Appl. Math., Vol. 1(2018), No. 1, pp. 01 - 07

Website: https://pisrt.org/psr-press/journals/odam/

ISSN: 2617-9687 (Online) 2617-9679 (Print)

http://dx.doi.org/10.30538/psrp-odam2018.0001

A NOTE ON THE ZEROTH-ORDER GENERAL RANDIĆ

INDEX OF POLYGONAL CACTI

JIACHANG YE, YUEDAN YAO1

Abstract. The zeroth-order general Randić index of a simple connected
graph G is defined as R0

α(G) =
∑

u∈V (G)

(

d(u)
)α

, where d(u) is the degree

of u and α 6∈ {0, 1} is a real number. A k-polygonal cactus is a connected
graph in which every edge lies in exactly one cycle of length k. In this
paper, we present the extremal k-polygonal cactus with n cycles for k ≥ 3
with respect to the zeroth-order general Randić index.

Mathematics Subject Classification: Primary: 05C15; Secondary: 05C12.
Key words and phrases: Cactus; Zeroth-order general Randić index; ex-
tremal graph.

1. Introduction

Throughout this paper, G denotes a simple connected undirected graph with
vertex set V (G) and edge set E(G). Let dG(u) and NG(u) be the degree and
neighbor set of vertex u in G, respectively. nG(j) is the number of the vertices
with degree j in G. For a connected graph G with u ∈ V (G), if G − u is not
connected, then u is called a cut-vertex of G. Let X be a subset of V (G), we
use G[X ] to denote the subgraph of G induced by X .
A cactus graph, or cactus for short, is a connected graph in which no edge lies in
more than one cycle. Consequently, each block of a cactus is either an edge or a
cycle. A cycle of length k is denoted by Ck, and Ck is always called a k-polygon
in the sequel. If each block of a cactus G is a k-polygon, then G is called a
k-polygonal cactus. Hereafter, if there is no risk of confusion, we always call a
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k-polygon as a polygon, and we always simplify dG(u) and NG(u) as d(u) and
N(u), respectively.
Let Gn,k be the class of k-polygonal cacti with n ≥ 3 blocks. Suppose that
G ∈ Gn,k . If Ck contains exactly one cut-vertex, then Ck is called a pendent

polygon. While Ck is called a non-pendent polygon if Ck contains at least two
cut-vertices.
A cactus chain is a special k-polygonal cactus graph such that each polygon has
at most two cut-vertices, and each cut-vertex is shared by exactly two polygons.
When G is a cactus chain, then the number of polygons is called the length of G.
For convenience, we use the notation Tn,k to denote the class of cactus chains
of length n such that each polygon is a k-polygon. From the definition, each
cactus chain of Tn,k has exactly n − 2 non-pendent polygons and two pendent
polygons. When k = 3 and n ≥ 3, it is easy to see that the cactus chain of Tn,k
is unique. However, when k ≥ 4 and n ≥ 3, Tn,k is not unique.
A star-like cactus Wn,k is a special k-polygonal cactus graph with n polygons
such that all polygons have a common vertex. From the definition, Wn,k is
unique and all polygons of Wn,k are pendent polygons and Wn,k contains ex-
actly one vertex with degree being equal to 2n and the degree of all the other
vertices of Wn,k is equal to two.
Among all the vertex-degree-based graph invariants, the first Zagreb indexM1(G)
[1] and zeroth-order Randić index R0(G) [2] are two famous topological indices,
where

M1(G) =
∑

u∈V (G)

(

d(u)
)2
, and R0(G) =

∑

u∈V (G)

(

d(u)
)− 1

2 .

In what follows, α always denotes a real number such that α 6∈ {0, 1}. As a
generalization of M1(G) and R0(G), Li and Zheng [3] put forward the concept
of first general Zagreb index R0

α(G), where

R0
α(G) =

∑

u∈V (G)

(

d(u)
)α

.

From the definition, it is easy to see that M1(G) = R0
2(G) and R0(G) = R0

− 1

2

(G).

In some literature, R0
α(G) is also called the zeroth-order general Randić index of

G [4, 5, 6].
In what follows, denote by

Φ(n, k, α) =
(

n− 1
)

4α+
(

nk− 2n+2
)

2α, and Ψ(n, k, α) =
(

2n
)α

+n
(

k− 1
)

2α.

Recently, the research on zeroth-order general Randić index of cacti had at-
tracted more and more attention. For instance, Ali et al. [4] characterized
the extremal polyomino chains with respect to the zeroth-order general Randić
index, Hua et al. [6] identified the extremal unicycle graphs with maximum
and minimum zeroth-order genenral Randić index and Hu et al. [5] determined
the extremal connected (n,m)-graphs with minimum and maximum zeroth-order
general Randić index. In this paper, we shall determine the extremal k-polygonal
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cactus with n ≥ 3 cycles for k ≥ 3 with respect to the zeroth-order general
Randić index, that is,

Theorem 1.1. Let G be a cactus of Gn,k, where n ≥ 3, k ≥ 3 and α is a real

number.

(i) If α < 0 or α > 1, then Φ(n, k, α) ≤ R0
α(G) ≤ Ψ(n, k, α), where the left

equality holds if G ∈ Tn,k and the right equality holds if and only if G ∼= Wn,k.

(ii) If 0 < α < 1, then Ψ(n, k, α) ≤ R0
α(G) ≤ Φ(n, k, α), where the left

equality holds if and only if G ∼= Wn,k and the right equality holds if G ∈ Tn,k.

Remark 1.2. It is easy to see that Tn,k is unique for k = 3 and n ≥ 3, but not
unique for k ≥ 4 and n ≥ 3. By Theorem 1.1, R0

α(G) = Φ(n, k, α) holds for

every cactus G ∈ Tn,k. Furthermore, the cacti of Tn,k are not all the extremal

cacti of Theorem 1.1, to see this, let G1 and G2 be the two cacti as shown in Fig.

1. By an elementary computation, we have R0
α(G1) = R0

α(G2) = Φ(4, 6, α), but
G2 6∈ T4,6.

Figure 1. The Graphs G1 and G2.

2. The proof of Theorem 1.1

This section dedicates to the proof of Theorem 1.1.

Lemma 2.1. Let f(x) = xα − (x − 2)α. If x > 2, then f(x) is decreasing for

0 < α < 1 and increasing for α < 0 or α > 1.

Proof. By Lagrange’s mean value theorem, f ′(x) = α
(

xα−1 − (x− 2)α−1
)

=

2α(α − 1)Θα−2, where x > 2 and x− 2 < Θ < x. It is easy to see that f ′(x) is
negative for 0 < α < 1 and f ′(x) is positive for α < 0 or α > 1. Thus, the result
holds. �

Recall that Tn,k is the class of cactus chains of length n such that each polygon
is a k-polygon. From the definition, if k = 3 and n ≥ 3, then Tn,k is unique.
However, when k ≥ 4 and n ≥ 3, Tn,k is not unique. On the other hand, Wn,k is
always unique when k ≥ 3 and n ≥ 3. The following result implies that R0

α(G)
is a constant for either G ∈ Tn,k or G ∼= Wn,k.

Lemma 2.2. Let k ≥ 3 and n ≥ 1 be two integers. (i) If G ∈ Tn,k, then

R0
α(G) =

(

n − 1
)

4α +
(

nk − 2n + 2
)

2α. (ii) If G ∼= Wn,k, then R0
α(G) =

(

2n
)α

+ n
(

k − 1
)

2α.
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Proof. (i) If G ∈ Tn,k, then nG(4) = n− 1 and nG(2) = nk − 2n+ 2. Thus, we
have

R0
α(G) =

∑

u∈V (G)

(d(u))α =
(

n− 1
)

4α +
(

nk − 2n+ 2
)

2α.

(ii) If G ∼= Wn,k, then nG(2n) = 1 and nG(2) = n(k − 1). Thus, we have

R0
α(G) =

∑

u∈V (G)

(d(u))α =
(

2n
)α

+ n
(

k − 1
)

2α.

This completes the proof of this result. �

To prove our main results, we need to introduce more definitions, which were

raised in [7]: Suppose that G ∈ Gn,k and C
(1)
k , C

(2)
k , . . . , C

(s)
k are s cycles of

length k inG, where k ≥ 3, s ≥ 1 and n ≥ 3. Let V1 = V
(

C
(1)
k

)

∪V
(

C
(2)
k

)

∪· · ·∪

V
(

C
(s)
k

)

and let u1 be a cut-vertex of C
(1)
k in G such that u1 is not a cut-vertex

of G
[

V1

]

. If G
[

V1

]

is a cactus chain and each k-polygon of
{

C
(1)
k , C

(2)
k , . . . , C

(s)
k

}

has at most two cut-vertices in G, C
(s)
k is a pendent polygon of G, the degree

of each vertex of V1 \ {u1} is at most four in G, then G
[

V1

]

is called a pendent

cactus chain of length s of G. Furthermore, if G
[

V1

]

is a pendent cactus chain

of length s ≥ 2, then C
(s−1)
k is called a neighbor polygon of the pendent cactus

chain. Hereafter, we denote Ls,k as a pendent cactus chain of length s in a
k-polygonal cactus. From the definition, if G

[

V1

]

is a pendent cactus chain of

length s ≥ 2, then for 1 ≤ i ≤ s−1 and 2 ≤ j ≤ s−1, each C
(i)
k contains exactly

two cut-vertices in G and the degree of every cut-vertex of C
(j)
k is equal to four

in G.

Definition 2.3. [7] Let G be a cactus of Gn,k and let C
(1)
k , C

(2)
k , . . . , C

(s+t)
k be

s+ t cycles of length k of G such that G
[

V
(

C
(1)
k

)

∪ V
(

C
(2)
k

)

∪ · · · ∪ V
(

C
(s)
k

)]

and G
[

V
(

C
(s+1)
k

)

∪ V
(

C
(s+2)
k

)

∪ · · · ∪ V
(

C
(s+t)
k

) ]

are two pendent cactus

chains of length s ≥ 1 and t ≥ 1, respectively.

(i) If u0 ∈ V
(

C
(1)
k

)

∩V
(

C
(s+1)
k

)

and dG(u0) ≥ 6, then u0 is called a singular

vertex of G.
(ii) If C

(0)
k is a k-polygon of G with at least three cut vertices in G such

that V
(

C
(1)
k

)

∩ V
(

C
(0)
k

)

= {v0} and V
(

C
(s+1)
k

)

∩ V
(

C
(0)
k

)

= {w0} with

dG(w0) = dG(v0) = 4, then C
(0)
k is called a special polygon of G.

Lemma 2.4. Let G be a cactus of Gn,k, where k ≥ 3 and n ≥ 3. If G contains

a singular vertex, then R0
α(G) is neither minimum for α < 0 or α > 1 and not

maximum for 0 < α < 1 in Gn,k.
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Proof. By contradiction, we assume that R0
α(G) is minimum for α < 0 or α > 1

and maximum for 0 < α < 1 in Gn,k. Let u0 be a singular vertex of G with
dG(u0) = 2r, where r ≥ 3. For convenience, we suppose that u0 is a common
vertex of two pendent cactus chains Lt,k and Ls,k in G, where s ≥ t ≥ 1. Suppose

that C
(t)
k = u1u2 · · ·uku1 and C

(s)
k = w1w2 · · ·wkw1 are the pendent polygons of

Lt,k and Ls,k, respectively, such that u1 and w1 are two cut-vertices of G. Let
G′ = G− u1u2 − u1uk + w2u2 + w2uk. By the definition of G′, it it easy to see
that
Observation 1. If t ≥ 2, then u0 is also a singular vertex of G′ such that u0 is
a common vertex of two pendent cactus chains Lt−1,k and Ls+1,k in G′.
We consider the following two cases:
Case 1. t = 1.
From the definition, we have

R0
α(G)−R0

α(G
′) = (2r)α + 2α − (2r − 2)α − 4α = (2r)α − (2r − 2)α − (4α − 2α).

By lemma 2.1, since 2r ≥ 6 > 4, it is easy to see that R0
α(G) > R0

α(G
′) for α < 0

or α > 1 and R0
α(G) < R0

α(G
′) for 0 < α < 1. No matter which case happens,

we can reach a contradiction.
Case 2. t ≥ 2.
If t ≥ 2, then from the definition, we have

R0
α(G) −R0

α(G
′) = 4α + 2α − 2α − 4α = 0

Now, by Observation 1 and above equality, there exists a cactus G′ of Gn,k such
that R0

α(G) = R0
α(G

′), u0 is also a singular vertex of G′ and u0 is a common
vertex of two pendent cactus chains Lt−1,k and Ls+1,k in G′. By repeating the
above process, we can conclude that there exists a cactus G1 of Gn,k such that
R0

α(G) = R0
α(G1), u0 is also a singular vertex of G1 and u0 is a common vertex

of two pendent cactus chains L1,k and Ls+t−1,k in G1.
Now, from the above arguments and Case 1, we can conclude that there exists
cactus G0 of Gn,k such that R0

α(G) > R0
α(G0) for α < 0 or α > 1 and R0

α(G) <
R0

α(G0) for 0 < α < 1, and G0 contains no singular vertex, a contradiction.
Thus, the result holds. �

Lemma 2.5. Let G be a cactus of Gn,k, where n ≥ 4 and k ≥ 3. If G contains

a special polygon, then there exists G0 ∈ Gn,k such that R0
α(G0) ≤ R0

α(G) for

α < 0 or α > 1 and R0
α(G0) ≥ R0

α(G) for 0 < α < 1 and G0 contains no special

polygon.

Proof. Let C
(0)
k be a special polygon, and let Lt,k and Ls,k be two pendent cactus

chains ofG such that V
(

Lt,k

)

∩V
(

C
(0)
k

)

= {u0} and V
(

Ls,k

)

∩V
(

C
(0)
k

)

= {w0},

where s ≥ t ≥ 1. Suppose that C
(t)
k = u1u2 · · ·uku1 and C

(s)
k = w1w2 · · ·wkw1

are the pendent polygons of Lt,k and Ls,k, respectively, such that u1 and w1

are two cut-vertices of G. Let G′ = G − u1u2 − u1uk + w2u2 + w2uk. By the
definition of G′, it it easy to see that
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Observation 1. If t ≥ 2, then C
(0)
k is also a special polygon of G′ and that

Lt−1,k and Ls+1,k are two pendent cactus chains of G′ such that V
(

Lt−1,k

)

∩

V
(

C
(0)
k

)

= {u0} and V
(

Ls+1,k

)

∩ V
(

C
(0)
k

)

= {w0}.

We consider all cases as follows, by the definition of G′, we have

R0
α(G)−R0

α(G
′) = 4α + 2α − 2α − 4α = 0. (1)

Apparently, if t ≥ 2, by observation 1 we can conclude that there exists a cactus

G′ of Gn,k such that R0
α(G) = R0

α(G
′), where C

(0)
k is also a special polygon of G′

such that Lt−1,k and Ls+1,k are two pendent cactus chains of G′, V
(

Lt−1,k

)

∩

V
(

C
(0)
k

)

= {u0} and V
(

Ls+1,k

)

∩ V
(

C
(0)
k

)

= {w0}. By repeating the above

process, we can also conclude that there exists a cactus G1 of Gn,k such that

R0
α(G) = R0

α(G1), where C
(0)
k is also a special polygon of G1 such that L1,k and

Ls+t−1,k are two pendent cactus chains of G1, V
(

L1,k

)

∩ V
(

C
(0)
k

)

= {u0} and

V
(

Ls+t−1,k

)

∩ V
(

C
(0)
k

)

= {w0}. And now for t = 1, through the operation

illustrated before and (1), we can construct the corresponding graph G2 such
that G2 ∈ Gn,k, R

0
α(G) = R0

α(G2) and one pendent chain will disappear in G2.
By repeating the above arguments, we can conclude that there exists G0 ∈ Gn,k

such that R0
α(G0) ≤ R0

α(G) for α < 0 or α > 1 and R0
α(G0) ≥ R0

α(G) for
0 < α < 1 and G0 contains no special polygon for k ≥ 3. Thus, the result
holds. �

Lemma 2.6. [7] Let G be a cactus of Gn,k, where k ≥ 3 and n ≥ 3. If G contains

neither singular vertex nor special polygon, then G must be a cactus chain.

Lemma 2.7. Let G be a cactus of Gn,k. If k ≥ 3 and n ≥ 3, then R0
α(G) ≤

Ψ(n, k, α) for α < 0 or α > 1 and R0
α(G) ≥ Ψ(n, k, α) for 0 < α < 1, where

either equality holds if and only if G ∼= Wn,k.

Proof. Let G be a cactus of Gn,k such that G is an extremal graph of Gn,k,
namely, R0

α(G) is as large as possible for α < 0 or α > 1, and R0
α(G) is as small

as possible for 0 < α < 1. We suppose that the degree of vertex u0 is largest
among all vertices in G and dG(u0) = 2r1. If 2r1 = 2n, then G ∼= Wn,k, and
hence the result already holds. Otherwise, 2r1 < 2n.

Furthermore, we suppose that C
(1)
k is a pendent polygon with u1 being its cut-

vertex such that N(u1)∩V (C
(1)
k ) = {w1, wk} and dG(u1) = 2r2, where u1 6= u0.

Then it is easy to see that 2 ≤ r2 ≤ r1 ≤ n. Now, we let G1 = G − u1w1 −
u1wk + u0w1 + u0wk. By an elementary computation, it follows that

R0
α(G) −R0

α(G1) = (2r1)
α + (2r2)

α − (2r1 + 2)α − (2r2 − 2)α

= (2r2)
α
− (2r2 − 2)

α
−
(

(2r1 + 2)α − (2r1)
α
)

.

Since 2r1 ≥ 2r2 ≥ 4, by lemma 2.1 we have R0
α(G) < R0

α(G1) for α < 0 or α > 1,
and R0

α(G) > R0
α(G1) for 0 < α < 1, which is contrary with the choice of G.
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Thus, u0 is the cut-vertex of any pendent polygon. Since G is a cactus in Gn,k,
we have G ∼= Wn,k. �

Next, we turn to prove Theorem 1.1.

Proof. By Lemma 2.2, R0
α(G) = Φ(n, k, α) holds for G ∈ Tn,k, and R0

α(G) =
Ψ(n, k, α) holds for G ∼= Wn,k. Now, we consider the following two cases:

Case 1. α < 0 or α > 1. Then, Lemmas 2.4–2.6 imply that R0
α(G) is minimum

if G ∈ Tn,k. Combining this with Lemma 2.7, we can conclude that R0
α(G) is

maximum if and only if G ∼= Wn,k. Thus, (i) holds.

Case 2. 0 < α < 1. By Lemmas 2.4–2.6, R0
α(G) is maximum if G ∈ Tn,k.

Taking Lemma 2.7 into consideration, we can conclude that R0
α(G) is minimum

if and only if G ∼= Wn,k. Thus, (ii) also holds. �
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