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Abstract. For an undirected graph G, a zero-sum flow is an assignment

of nonzero integers to the edges such that the sum of the values of all
edges incident to each vertex is zero, and we call it a zero-sum k-flow if

the absolute values of edges are less than k. We define the zero-sum flow

number of G as the least integer k for which G admits a zero sum k-flow.
In this paper we have given complete zero-sum flow and zero sum number

for octagonal grid, generalized prism and book graph.
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1. Introduction

The nowhere-zero flows were defined by Tutte in [1]. The definition of nowhere-
zero flows on signed graphs naturally comes from the study of embedding of
graphs in non-orientable surfaces, where nowhere-zero flows emerge as the dual
notion to local tensions. There is a close relationship between nowhere-zero flows
and circuit covers of graphs as every nowhere-zero flow on a graph G determines
a covering of G by circuits. This relationship is maintained for signed graphs,
although a signed version of the definition of circuit is required.
Let G be a directed graph. A nowhere-zero flow on G is an assignment of non-
zero integers to each edge of G such that for every vertex the Kirchhoff current
law holds, which says that, the sum of the values of incoming edges is equal to the
sum of the values of outgoing edges. A nowhere-zero k-flow is a nowhere-zero flow
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using edge labels with maximum absolute value k−1. Since for a directed graph
that admits nowhere-zero flows is independent of the choice of the orientation,
therefore one may consider such concept over the underlying undirected graph.
A celebrated conjecture of Tutte in 1954 says that every bridge less graph has
a nowhere-zero 5-flow. Jaeger showed in 1979 that every bridgeless graph has a
nowhere-zero 8-flow [2], and Seymour proved that every bridgeless graph has a
nowhere-zero-6-flow [3] in 1981. However the original Tutte conjecture remains
open, see for more result [4, 5, 6].
As an analogous concept of a nowhere-zero flow for directed graphs, we consider
zero-sum flow number for undirected graphs in this paper.

Definition 1.1. For an undirected graph G, a zero-sum flow is an assignment
of non-zero integers to the edges such that the sum of the values of all edges
incident with each vertex is zero. A zero-sum k-flow is a zero-sum flow whose
values are integers with absolute value less than k.

Note that from algebraic point of view finding such zero-sum flows is the same
as finding nowhere zero vectors in the null space of the incidence matrix of the
graph. Akbari et al. raised a conjecture for zero-sum flows similar to the Tutte
5-flow Conjecture for nowhere-zero flows as follows:

Conjecture 1. (Zero-Sum 6-Flow Conjecture) If G is a graph with a zero
sum flow, then G admits a zero-sum 6-flow.

It was proved in 2010 by Akbari et al. in [7] that the above zero-sum 6-flow
Conjecture is equivalent to the Bouchet 6-flow Conjecture for bidirected graphs.
In literatures a more general concept flow number, which is defined as the least
integer k for which a graph may admit a k-flow, has been studied for both
directed graphs and bi directed graphs. Wang and Hu in [8, 9] extend the
concept in 2011 to the undirected graphs and call it zero-sum flow number, and
also considered general constant-sum flows for regular graphs.
In the study of nowhere-zero flows of directed graphs (bidirected graphs) one
considers a more general concept, namely, the least number of k for which a
graph may admit a k-flow. In [9], Wang and Hu considered similar concepts for
zero-sum k-flows.

Definition 1.2. Let G be an undirected graph. The zero-sum flow number
F (G) is defined as the least number of k for which G may admit a zero-sum
k-flow. F (G) =∞ if no such k exists.

It is well known that grids are extremely useful in all areas of computer science.
One of the main usage, for example, is as the discrete approximation to a contin-
uous domain or surface. Numerous algorithms in computer graphics, numerical
analysis, computational geometry, robotics and other fields are based on grid
computations. In [10] and [11] the authors calculated the zero-sum flow number
of triangular and hexagonal grids.
In this paper, we calculate zero-sum flow number of octagonal grid, generalized
prism and book graph.
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2. Zero-Sum Flow Number of Octagonal Grid

In [12], Kamran et al. considered this octagonal grid and computed the exact
value of total edge irregularity strength for octagonal grid. For n,m ≥ 2 we
denote octagonal grid by Om

n , the planar map labeled as in Figure 1 with m
rows and n columns of octagons. The symbols V (Om

n ) and E(Om
n ) denote the

vertex set and the edge set of Om
n , respectively.

V (Om
n ) = {xj

i ; 1 ≤ i ≤ 2n − 1, i odd and 1 ≤ j ≤ 3m + 1} ∪ {x3j−2
i ; 1 ≤ i ≤

2n; i even and 1 ≤ j ≤ m + 1} ∪ {x3j−1
2n , x3j

2n; 1 ≤ j ≤ m},

V (Om
n ) = {xj

i ; 1 ≤ i ≤ 2n− 1, i odd and 1 ≤ j ≤ 3m + 1}
∪{x3j−2

i ; 1 ≤ i ≤ 2n; i even and 1 ≤ j ≤ m + 1}
∪{x3j−1

2n , x3j
2n; 1 ≤ j ≤ m}.

E(Om
n ) = {xj

ix
j+1
i ; 1 ≤ i ≤ 2n− 1; i odd and 1 ≤ j ≤ 3m}

∪{x3j−2
i x3j−2

i+1 ; 1 ≤ i ≤ 2n− 1; i odd and 1 ≤ j ≤ m + 1}
∪{x3j−2

i x3j−1
i+1 ; 1 ≤ i ≤ 2n− 2; i even and 1 ≤ j ≤ m}

∪{x3j
i x3j+1

i−1 ; 3 ≤ i ≤ 2n− 1; i odd and 1 ≤ j ≤ m}
∪{xj

2nx
j+1
2n ; 1 ≤ j ≤ 3m}.

|V (Om
n )| = (4m + 2)n + 2m and |E(Om

n )| = (6m + 1)n + m.

Theorem 2.1. The zero-sum flow number F (Om
n ) of Om

n is 3 for all n,m ≥ 2.

Proof. Note that there are 4n + 4m vertices of degree 2 and 4mn − 2n − 2m
vertices of degree 3 in Om

n , so a zero-sum flow edge assignment from {−1, 1} is
not possible. Therefore F (Om

n ) is at least 3. To prove the converse inequality
we consider the following edge labeling ϕ : E(Om

n )→ {1,−1, 2}.

ϕ(x3j−2
i x3j−2

i+1 ) =

{
1, j = 1, m + 1, i is odd and 1 ≤ i ≤ 2n− 1
2, 2 ≤ j ≤ m, i is odd and 1 ≤ i ≤ 2n− 1

ϕ(x3j−1
i x3j

i ) =

{
1, i = 1, 2n, 1 ≤ j ≤ m
2, 1 ≤ j ≤ m, i is odd and 3 ≤ i ≤ 2n− 1

For i odd, 1 ≤ i ≤ 2n− 1 and 1 ≤ j ≤ m,

ϕ(x3j
i x3j+1

i ) = ϕ(x3j−2
i x3j−1

i ) = −1,

For i even, 1 ≤ i ≤ 2n and 1 ≤ j ≤ m,

ϕ(x3j−2
i x3j−1

i+1 ) = −1,

For i odd, 3 ≤ i ≤ 2n and 1 ≤ j ≤ m,

ϕ(x3j
i x3j+1

i−1 ) = −1,

We can see that ϕ is an edge labeling from E(Om
n ) to {1,−1, 2}. Now we will

find the weight of each vertex and the weight of a vertex is the sum of all labels
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Figure 1. The Octagonal grid Om
n

of edges adjacent to it.

wt(x3j−2
i ) = ϕ(x3j−2

i x3j−2
i+1 ) + ϕ(x3j−2

i x3j−1
i )

= 0, for 1 ≤ i ≤ 2n− 1, and i odd, j = 1

wt(x3j−2
i ) = ϕ(x3j−2

i x3j−2
i+1 ) + ϕ(x3j−2

i x3j−1
i+1 )

= 0, for 1 ≤ i ≤ 2n, and i even, j = 1

wt(x3j−1
i ) = ϕ(x3j−1

i x3j
i ) + ϕ(x3j−2

i x3j−1
i+1 )

= 0, for i = 1, 2n, 1 ≤ j ≤ m

wt(x3j
i ) = ϕ(x3j−1

i x3j
i ) + ϕ(x3j

i x3j+1
i )

= 0, for i = 1, 2n, 1 ≤ j ≤ m

wt(x3m+1
i ) = ϕ(x3m

i x3m+1
i ) + ϕ(x3m+1

i x3m+1
i+1 )

= 0, for 1 ≤ i ≤ 2n− 1, and i odd.

wt(x3m+1
i ) = ϕ(x3m+1

i−1 x3m+1
i ) + ϕ(x3m+1

i x3m
i+1)
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= 0, for 1 ≤ i ≤ 2n, and i even

wt(x3j+1
i ) = ϕ(x3j+1

i−1 x3j+1
i ) + ϕ(x3j+1

i x3j+2
i+1 ) + ϕ(x3j+1

i x3j
i+1)

= 0, for 1 ≤ i ≤ 2n, and i even, 1 ≤ j ≤ m− 1

wt(x3j−1
2i+1 ) = ϕ(x3j−2

i+1 x3j−1
i+2 ) + ϕ(x3j−2

2i+1x
3j−1
2i+1 ) + ϕ(x3j−1

2i+1x
3j
2i+1)

= 0, for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m

wt(x3j
2i+1) = ϕ(x3j−1

2i+1x
3j
2i+1) + ϕ(x3j+1

2i x3j
2i+1) + ϕ(x3j

2i+1x
3j+1
2i+1 )

= 0, for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m

wt(x3j+1
2i−1 ) = ϕ(x3j+1

2i−1x
3j+2
2i−1 ) + ϕ(x3j+1

2i−1x
3j
2i−1) + ϕ(x3j+1

2i−1x
3j+1
2i )

= 0, for 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1

These computations shows that that ϕ is indeed a zero-sum 3-flow and we get
F (Om

n ) ≤ 3. This concludes the result. �

3. Zero-Sum Flow Number of Generalized Prism

The cartesian product G×H of graphs G and H is a graph such that the vertex
set of G×H is the cartesian product V (G)× V (H) and any two vertices (u, u′)
and (v, v′) are adjacent in G ×H if and only if either u = v and u′ is adjacent
to v′ in H, or u′ = v′ and u is adjacent to v in G .
The generalized prism Pm

n can be defined as the cartesian product Cn × Pm of
a cycle on n vertices with a path on m vertices. If we consider a cycle Cn with
V (Cn) = {xi : 1 ≤ i ≤ n}, E(Cn) = {xixi+1 : 1 ≤ i ≤ n − 1} ∪ {xnx1} and a
path Pm with V (Pm) = {yj : 1 ≤ j ≤ m}, E(Pm) = {yjyj+1 : 1 ≤ j ≤ m− 1},
then V (Pm

n ) = V (Cn × Pm) = {(xi, yj) : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is the vertex
set of the graph Pm

n and

E(Pm
n ) = E(Cn × Pm) = {(xi, yj)(xi+1, yj) : 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m}

∪{(xn, yj)(x1, yj) : 1 ≤ j ≤ m}
∪{(xi, yj)(xi, yj+1) : 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1}

is the edge set of Pm
n . So, |V (Pm

n )| = nm and |E(Pm
n )| = n(2m− 1).

The generalized prism Pm
n has been studied extensively in recent years. Kuo

et al. in [13] and Chiang et al. in [14] studied distance-two labelings of Pm
n .

Deming et al. in [15] gave complete characterization of the cartesian product
of cycles and paths for their incidence chromatic numbers. Gravier et al. in
[16] showed the link between the existence of perfect Lee codes and minimum
dominating sets of Pm

n . Lai et al. in [17] determined the edge addition number
for the cartesian product of a cycle with a path. Chang et al. in [18] established
upper bounds and lower bounds for global defensive alliance number of Pm

n and
showed that the bounds are sharp for certain n,m. In [19], Baća et al. compute
the exact value of total edge irregularity strength for generalized prism Pm

n .
In following theorem we determine the exact zero-sum flow number F (Pm

n ) of
Pm
n .
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Figure 2. The Generalized Prism P 4
4

Theorem 3.1. The zero-sum flow number F (Pm
n ) of Pm

n is 3 for all n ≥ 3 and
m ≥ 2.

Proof. Since there are mn− 2n vertices of degree 4 and 2n vertices of degree 3
in Pm

n , so {−1, 1} assignment for the edges is not possible for the zero sum flow
therefore F (Pm

n ) ≥ 3. Now we show that F (Pm
n ) ≤ 3 and for this purpose we

shall consider the following labeling ϕ : E(Pm
n ) → {−1,−2, 2} on the edges of

Pm
n graph.

ϕ((xi, yj)(xi+1, yj)) =

{
−1, 1 ≤ i ≤ n− 1, j = 1,m;
−2, 1 ≤ i ≤ n− 1, 2 ≤ j ≤ m− 1.

ϕ((xn, yj)(x1, yj)) =

{
−1, j = 1,m;
−2, 2 ≤ j ≤ m− 1.

ϕ((xi, yj)(xi, yj+1)) = 2, 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1
Now, using this assignment we will prove that the sum of flow at each vertex

is zero. For this purpose we will find the weight of each vertex and the weight
of a vertex is the sum of all labels of edges adjacent to it. The weight for each
vertex is calculated below:

wt(xi, y1) = ϕ((xi, y1)(xi+1, y1)) + ϕ((xi, y1)(xi, y2))

+ϕ((xi−1, y1)(xi, y1))

= 0, for 2 ≤ i ≤ n− 1
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wt(x1, y1) = ϕ((x1, y1)(x2, y1)) + ϕ((xn, y1)(x1, y1))

+ϕ((x1, y1)(x1, y2))

= 0,

wt(xn, y1) = ϕ((xn, y1)(xn−1, y1)) + ϕ((x1, y1)(xn, y1))

+ϕ((xn, y1)(xn, y2))

= 0,

wt(xi, ym) = ϕ((xi, ym)(xi+1, ym)) + ϕ((xi, ym)(xi, ym−1))

+ϕ((xi−1, ym)(xi, ym))

= 0, for 2 ≤ i ≤ n− 1

wt(x1, ym) = ϕ((x1, ym)(x2, ym)) + ϕ((xn, ym)(x1, ym))

+ϕ((x1, ym)(x1, ym−1))

= 0,

wt(xn, ym) = ϕ((xn, ym)(xn−1, ym)) + ϕ((xn, ym)(x1, ym))

+ϕ((xn, ym)(xn, ym−1))

= 0.

For 2 ≤ j ≤ m− 1 and 2 ≤ i ≤ n− 1

wt(xi, yj) = ϕ((xi, yj)(xi+1, yj)) + ϕ((xi, yj)(xi−1, yj))

+ϕ((xi, yj)(xi, yj+1)) + ϕ((xi, yj)(xi, yj−1))

= 0,

wt(x1, yj) = ϕ((x1, yj)(x2, yj)) + ϕ((x1, yj)(xn, yj))

+ϕ((x1, yj)(x1, yj+1)) + ϕ((x1, yj)(x1, yj−1))

= 0,

wt(xn, yj) = ϕ((xn, yj)(x1, yj)) + ϕ((xn, yj)(xn−1, yj))

+ϕ((xn, yj)(xn, yj+1)) + ϕ((xn, yj)(xn, yj−1))

= 0.

By above computations we can see that ϕ give us a zero-sum 3-flow, so we get
F (Pm

n ) ≤ 3. This conclude the result. �

4. Zero-Sum Flow Number of Book graph (Pn + P1)× P2

The join graph G + H of two graphs G and H is their graph union with all
the edges that connect the vertices of G with the vertices of H. The cartesian
product graph (Pn + P1) × P2 is a graph with the vertex set V ((Pn + P1) ×
P2) = {u, u1, u2 . . . un, v, v1, v2 . . . vn} and the edge set E((Pn + P1) × P2) =
{uui, vvi, uivi| i = 1, 2 . . . , n} ∪ {uiui+1, vivi+1| i = 1 . . . n− 1} ∪ {uv}.

Theorem 4.1. The zero-sum flow number F ((Pn +P1)×P2) of (Pn +P1)×P2

is 3 for all n ≥ 3.
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v5v4v3v2v1

Figure 3. The Book graph (P5 + P1)× P2

Proof. Note that the degree of vertices u1, un, v1 and vn is 3, so {−1, 1} assign-
ment for the edges will not give us a zero-sum flow therefore F ((Pn+P1)×P2) ≥
3. Now we show that F ((Pn + P1) × P2) ≤ 3 and for this purpose we consider
the labeling ϕ : E((Pn +P1)×P2)→ {1,−1,−2} on the edges of (Pn +P1)×P2

graph.

ϕ(uv) =

{
−1, if n is odd;
−2, if n is even.

ϕ(uui) = ϕ(vvi) =

 1, if i = 1, n;
(−1)i, n is even, 2 ≤ i ≤ n− 1;
(−1)i+1, n is odd, 2 ≤ i ≤ n− 1.

ϕ(uivi) =


−2, if i = 1, n;
(−1)i+1, n is even, 2 ≤ i ≤ n− 1;
−1, n is odd, i = 2;
(−1)i, n is odd, 3 ≤ i ≤ n− 1;

ϕ(uiui+1) = ϕ(vivi+1) =

 (−1)i+1, n is even, 1 ≤ i ≤ n− 1;
1, n is odd, i = 1;
(−1)i, n is odd, 2 ≤ i ≤ n− 1.

We can see that ϕ is an edge labeling from E((Pn + P1) × P2) to {1,−1,−2}.
Moreover it is easy to check that

wt(u) =

n∑
i=1

ϕ(uui) + ϕ(uv) = 0,
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wt(v) =

n∑
i=1

ϕ(vvi) + ϕ(uv) = 0,

wt(u1) = ϕ(uu1) + ϕ(u1u2) + ϕ(u1v1) = 0,

wt(un) = ϕ(uun) + ϕ(unun−1) + ϕ(unvn) = 0,

wt(v1) = ϕ(vv1) + ϕ(v1v2) + ϕ(u1v1) = 0,

wt(vn) = ϕ(vvn) + ϕ(vnvn−1) + ϕ(unvn) = 0,

For 2 ≤ i ≤ n− 1,

wt(ui) = ϕ(uui) + ϕ(uiui−1) + ϕ(uiui+1) + ϕ(uivi) = 0

For 2 ≤ i ≤ n− 1,

wt(vi) = ϕ(vvi) + ϕ(vivi−1) + ϕ(vivi+1) + ϕ(uivi) = 0

So ϕ is a zero-sum 3-flow of (Pn + P1)× P2. Therefore F ((Pn + P1)× P2) ≤ 3.
This conclude the statement of the theorem. �
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