PATH DECOMPOSITION NUMBER OF CERTAIN GRAPHS

OPEYEMI OYEWUMI, ABOLAPE DEBORAH AKWU ${ }^{1}$, THERESA IVEREN AZER

Abstract

Let G be a simple, finite and connected graph. A graph is said to be decomposed into subgraphs H_{1} and H_{2} which is denoted by $G=H_{1} \oplus H_{2}$, if G is the edge disjoint union of H_{1} and H_{2}. Assume that $G=H_{1} \oplus H_{2} \oplus \cdots \oplus H_{k}$ and if each $H_{i}, 1 \leq i \leq k$, is a path or cycle in G, then the collection of edge-disjoint subgraphs of G denoted by ψ is called a path decomposition of G. If each H_{i} is a path in G then ψ is called an acyclic path decomposition of G. The minimum cardinality of a path decomposition of G, denoted by $\pi(G)$, is called the path decomposition number and the minimum cardinality of an acyclic path decomposition of G, denoted by $\pi_{a}(G)$, is called the acyclic path decomposition number of G. In this paper, we determine path decomposition number for a number of graphs in particular, the Cartesian product of graphs. We also provided bounds for $\pi(G)$ and $\pi_{a}(G)$ for these graphs.

Mathematics Subject Classification: 05C70. Key words and phrases: Path decomposition number; cartesian product graphs.

1. Introduction

Let $P_{m}, C_{m}, K_{m}, K_{m}-I, K_{m, m}-I$ denote path of length m, cycle of length m, complete graph on m vertices, complete graph on m vertices minus a 1-factor and complete bipartite graph on $2 m$ vertices minus a 1-factor respectively. All graphs considered in this paper are simple, finite and connected. We refer to the book [1] for graph theoretic terminology used in this article. A graph is said to be decomposed into subgraphs H_{1} and H_{2} which is denoted by $G=H_{1} \oplus H_{2}$, if G is the edge disjoint union of H_{1} and H_{2}. Assume that $G=H_{1} \oplus H_{2} \oplus \cdots \oplus H_{k}$

[^0]and if each $H_{i}, 1 \leq i \leq k$, is a path or cycle in G, then the collection of edgedisjoint subgraphs of G denoted by ψ is called a path decomposition of G. If each H_{i} is a path in G then ψ is called an acyclic path decomposition of G. The minimum cardinality of a path decomposition of G, denoted by $\pi(G)$, is called the path decomposition number and the minimum cardinality of an acyclic path decomposition of G, denoted by $\pi_{a}(G)$, is called the acyclic path decomposition number of G. If $P=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ is a path in a graph G, then the vertices $x_{2}, x_{3}, \ldots, x_{m-1}$ are called the internal vertices of P and x_{1}, x_{m} are called external vertices of P. Here, by a first vertex and end vertex of path P we mean the vertices x_{1} and x_{m} respectively. Let $P=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ and $Q=\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ be two paths in G, by joining x_{1} to $y_{1}\left(x_{m}\right.$ to y_{m}, respectively) we obtain the path $R=\left(y_{m}, y_{m-1}, \ldots, y_{1}, x_{1}, x_{2}, \ldots, x_{m}\right)\left(R=\left(x_{1}, x_{2}, \ldots, x_{m}, y_{m}, y_{m-1}, \ldots, y_{1}\right)\right.$, respectively).
1.1. Definition. The Cartesian product $G \square H$ of two graphs G and H is a graph with vertex set $V(G) \times V(H)$ in which $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are adjacent if one of the following condition holds:
(i) $x_{1}=x_{2}$ and $\left\{y_{1}, y_{2}\right\} \in E(H)$,
(ii) $y_{1}=y_{2}$ and $\left\{x_{1}, x_{2}\right\} \in E(G)$.

The graphs G and H are known as the factors of $G \square H$.
Suppose we are dealing with m-copies of a graph G we denote these m-copies of
G by G^{i}, where $i=1,2,3, \ldots, m$.
The Cartesian product graph $G \square H$ may also be viewed as the graph obtained from G by replacing each vertex $i \in V(G)$ by a copy H^{i} (say) of H and each of its edges $\{i, k\}$ with $|V(H)|$ edges joining corresponding vertices of H^{i} and H^{k}. Henceforth, for any vertex $i \in V(G)$ we refer the copy of H, denoted by H^{i}, in $G \square H$ corresponding to the vertex i as the $i^{t h}$ copy of H in $G \square H$.
The problem of finding C_{k}-decomposition of $K_{2 n+1}$ or $K_{2 n}-I$ where I is a 1-factor of $K_{2 n}$, is completely settled by Alspach, Gavlas and Sajna in two different papers (see [2, 3]). Obviously, every graph admits a decomposition in which each subgraph H_{i} is either a path or a cycle. Gallai conjectured that the minimum number of paths into which every connected graph on n vertices can be decomposed into is not less than $\left\lceil\frac{n}{2}\right\rceil$ (see [4). A significant contribution to the parameter π was by Lovasz [4] when he proved that a graph on n vertices can be decomposed into $\left\lfloor\frac{n}{2}\right\rfloor$ paths and cycles. Harary introduced the parameter π_{a}, this was further studied by Harary and Schwenk in [5] when they considered the evolution number of the path number of a given graph. Staton et al. in [6, 7] provided further results on path numbers and considered the case of the tripartite graphs. Péroche [8] gave some results on the path numbers of certain multipartite graphs. Arumugam and Suseela [9] shed some lights on the acyclic path decomposition of unicyclic graphs. A recent work by Arumugam et al. 10 studied the parameter π and further determined the value of π for some graphs. They also provided some bounds for π and characterize graphs attaining the
bounds. Furthermore, they proved that the difference between the parameter π and π_{a} can be arbitrary large.
In this paper, we determine the value of π for the graph $K_{n}-I, K_{n, n}-I$ and the Cartesian products $P_{m} \square C_{n}$ and $C_{m} \square C_{n}$. In addition, we classify the graphs that attain some of the bounds mentioned in 10 .

2. Path decomposition number of $K_{n}-I$ and $K_{n, n}-I$

Theorem 2.1. [2] For even integers m and n with $4 \leq m \leq n$, the graph $K_{n}-I$ decomposes cycles of length m if and only if the number of edges in $K_{n}-I$ is a multiple of m

Lemma 2.2. 11 Let $m \equiv 2(\bmod 4), n \equiv 1(\bmod 2)$ and $6 \leq m \leq 2 n$. Then $C_{m} \mid K_{n, n}-I$ if and only if $m \mid n(n-1)$.

Theorem 2.3. Given the graph $K_{n}-I$, where n is even, the minimum path decomposition number for $K_{n}-I$ is $\frac{n-2}{2}$.

Proof. The graph $K_{n}-I$ has n vertices and $\frac{n(n-2)}{2}$ edges. The largest cycle which is a subgraph of $K_{n}-I$ is a cycle of order n. Now, by Theorem 2.1, $C_{n} \mid K_{n}-I$. We only need to know the number of copies C_{n} that can be gotten from $K_{n}-I$, which is $\frac{n-2}{2}$. Thus, we have $\frac{n-2}{2}$ copies of C_{n} in $K_{n}-I$. Therefore, $\pi\left(K_{n}-I\right)=\frac{n-2}{2}$.

Lemma 2.4. If $n \geq 4$ and an even integer, then $K_{n, n}-I$ is $\left(\frac{n-2}{2} C_{2 n}, n P_{2}\right)$ decomposable.
Proof. Let $X=\left\{1^{1}, 2^{1}, 3^{1}, \ldots, n^{1}\right\}$ and $Y=\left\{1^{2}, 2^{2}, 3^{2}, \ldots, n^{2}\right\}$ form the column set of vertices in $K_{n, n}-I$. Also, two vertices a^{i} and b^{j}, has an edge in $K_{n, n}-I$, if $a \neq b$ and $i \neq j, i<j=2$. Since n is even, the degree of each vertex in $K_{n, n}-I$ is odd.
Next, remove the edges

$$
E\left(a^{i}, b^{j}\right)=\left\{\begin{array}{cc}
(a, n-a+1), & a=1,2 \\
(a, a-2), & a=3,4,5, \ldots, n
\end{array}, a^{i} \in X, b^{j} \in Y\right.
$$

which are exactly n number of P_{2} 's. By removal of these edges, each vertex in $K_{n, n}-I$ would be of even degree. In total, we have $n(n-2)$ edges. At this point, we need to show that the subgraph $\left(K_{n, n}-I\right) \backslash E\left(a^{i}, b^{j}\right)$ admits a $C_{2 n}$ decomposition.
Now, by $C_{2 n}^{r}, r \leq 1$, we mean the $r^{t h}$ copy of $C_{2 n}$ in $\left(K_{n, n}-I\right) \backslash E\left(a^{i}, b^{j}\right)$. With exception of $C_{2 n}^{1}$, all other $C_{2 n}^{r}, r>1$, follow a similar pattern. The construction of these cycles of order $2 n$ is given below.

$$
\begin{aligned}
C_{2 n}^{1}= & 1^{1}, 2^{2}, 3^{1}, 4^{2}, \ldots,(n-1)^{1}, n^{2},(n-2)^{1},(n-3)^{2},(n-4)^{1},(n-5)^{2} \\
& 2^{1}, 1^{2}, n^{1},(n-1)^{2}, 1^{1}
\end{aligned}
$$

For $r=2,3,4, \ldots, \frac{n-2}{2}$ we have that

$$
\begin{aligned}
C_{2 n}^{r}= & 1^{1},(2 r-1)^{2}, n^{1},(2 r-2)^{2},(n-1)^{1},(2 r-3)^{2},(n-2)^{1}, \ldots, 1^{2} \\
& (n-2 r+2)^{1},(n-1)^{2},(n-2 r+1)^{1}, n^{2},(n-2 r)^{1},(n-2)^{2} \\
& (n-2 r-1)^{1},(n-3)^{2},(n-2 r-2)^{1},(n-4)^{2}, \ldots,(2 r)^{2}, 1^{1}
\end{aligned}
$$

From the above construction, we conclude that the graph $\left(K_{n, n}-I\right) \backslash E\left(a^{i}, b^{j}\right)$ admits a $C_{2 n}$ decomposition. Clearly, $r=\frac{n-2}{2}$ and thus $C_{2 n} \mid\left\{K_{n, n}\right.$
$\left.-I \backslash E\left(a^{i}, b^{j}\right)\right\}=\left(C_{2 n} \oplus C_{2 n} \oplus C_{2 n} \oplus \cdots \oplus \frac{n-2}{2} C_{2 n}\right)$. Finally, we have that $K_{n, n}-I$ is $\left(\frac{n-2}{2} C_{2 n}, n P_{2}\right)$-decomposable. Hence the proof.
Theorem 2.5. For the complete bipartite graph $K_{n, n}-I$, we have that

$$
\pi\left(K_{n, n}-I\right)=\left\{\begin{array}{lc}
\frac{n-1}{2}, & \text { if } n \text { is odd } \\
\frac{3 n-2}{2}, & \text { otherwise }
\end{array}\right.
$$

Proof. The graph $K_{n, n}-I$ has $2 n$ vertices and $n(n-1)$ edges. The largest cycle which is a subgraph of $K_{n, n}-I$ is a cycle of order $2 n$. We now prove this theorem in two cases.
Case 1: when n is odd
By Lemma 2.2, $C_{2 n} \mid K_{n, n}-I$. We only need to know the number of copies of $C_{2 n}$ that can be obtained from $K_{n, n}-I$, which is $\frac{n-1}{2}$. Therefore, $\pi\left(K_{n, n}-I\right)=\frac{n-1}{2}$. Case 2: when n is even By Lemma 2.4 the graph $K_{n, n}-I$ can be decomposed into $\frac{n-2}{2}$ copies of $C_{2 n}$ and n copies of P_{2}. Since no vertex is repeated in these n copies of P_{2}, we have that $\pi\left(K_{n, n}-I\right)=\frac{3 n-2}{2}$. The proof of this theorem is complete.
To end this section we now give the following remark. This remark is immediate from Theorem 2.3 and Theorem 2.5.

Remark 2.6. In 10, it was mentioned that every graph G which is Hamiltonian cycle decomposable attains the bound that $\pi(G) \geq\left\lceil\frac{\Delta}{2}\right\rceil$. This is true as we see from Theorem 2.3 and Theorem 2.5 that the complete graph minus a one-factor and the complete bipartite graph $K_{n, n}-I$, where n is odd, attains this bound. Now, when n is even in $K_{n, n}-I$ we have $\pi\left(K_{n, n}-I\right)=\frac{3 \Delta+1}{2}$.

3. Path decomposition number of $P_{m} \square C_{n}$ and $C_{m} \square C_{n}$

Theorem 3.1. Let m and n be positive integers then
$\pi\left(P_{m}\right.$$\left.C_{n}\right)=\pi_{a}\left(P_{m}\right.$ $\left.C_{n}\right)=n$.

Proof. First we give the construction of $P_{m n}$ paths by constructing Hamilton paths of order n in each copy of C_{n} in $P_{m} \square C_{n}$. Let i be an odd number, in each copy of C_{n}^{i}, join the end vertex of the Hamilton path in the $i^{t h}$ copy with the end vertex of the C_{n}^{i+1} copy of $P_{m} \square C_{n}$. Similarly, suppose i is even, in each copy of C_{n}^{i}, join the first vertex of the Hamilton path in the $i^{t h}$ copy with the first vertex of the C_{n}^{i+1} copy of $P_{m} \square C_{n}$.

Next, for each internal vertex in the Hamilton path, join the vertices x_{j}^{i} and $x_{j}^{i+1}, 1 \leq i \leq m, i$ is calculated in modulo m and $2 \leq j \leq n-1$. By this, we have $n-2$ copies of P_{m} in $P_{m} \square C_{n}$.
Lastly, the left out edges which has not been covered by the path $P_{m n}$ and the $n-2$ copies of P_{m} form a path of order $2 m$. So we have that $\pi\left(P_{m} \square C_{n}\right)=$ $\pi_{a}\left(P_{m} \square C_{n}\right)=n$.

Remark 3.2. Since the Cartesian product of graph is commutative, the result in Theorem3.1 holds for the graph $C_{m} \square P_{n}$ where m and n are positive integers.

Theorem 3.3. Let m and n be positive integers such that $3 \leq n \leq m$, then $\pi\left(C_{m} \square C_{n}\right)=n$.

Proof. Since both m and n are positive integers, the proof of this theorem is split in two cases.
Case 1: when m is even and $n \geq 3$.
First we give the construction of $C_{m n}$ cycles by constructing Hamilton paths of order n in each copy of C_{n} in $C_{m} \square C_{n}$. Let i be an odd number, in each copy of C_{n}^{i}, join the end vertex of the Hamilton path in the $i^{t h}$ copy with the end vertex of the C_{n}^{i+1} copy of $C_{m} \square C_{n}$. Similarly, suppose i is even, in each copy of C_{n}^{i}, join the first vertex of the Hamilton path in the $i^{t h}$ copy with the first vertex of the C_{n}^{i+1} copy of $C_{m} \square C_{n}$.
Next, for each internal vertex in the Hamilton path, join the vertices x_{j}^{i} and $x_{j}^{i+1}, 1 \leq i \leq m, i$ is calculated in modulo m and $2 \leq j \leq n-1$. By this, we have $n-2$ copies of $C_{m} \square C_{n}$.
Now, notice that the left out edges which has not been covered by the cycle $C_{m n}$ and the $n-2$ copies of C_{m} form a cycle of order $2 m$. So we have that $\pi\left(C_{m} \square C_{n}\right)=n$.
Case 2: when m is odd and $n \geq 3$.
Here, we first give the construction of $C_{m n-1}$ cycles. For $1 \leq i \leq m-2$, construct Hamilton paths of order n in each C_{n}^{i} copy in $C_{m} \square C_{n}$. Suppose i is odd, in each copy of C_{n}^{i} join the end vertex of the Hamilton path in the $i^{t h}$ copy with the end vertex of the C_{n}^{i+1} copy of $C_{m} \square C_{n}$. In the same way, if i is even, in each copy of C_{n}^{i} join the first vertex of the Hamilton path in the $i^{t h}$ copy of C_{n}^{i} with the first vertex of the C_{n}^{i+1} copy of $C_{m} \square C_{n}$. This gives a path of order $n(m-2)$.
Next, let x be the first vertex in the C_{n}^{m-1} copy of $C_{m} \square C_{n}$. Now, construct a path P_{n-1} from $C_{n}^{m-1} \backslash x$. Join the end vertex of C_{n}^{m-1} copy to the end vertex of C_{n}^{m-2} copy of $C_{m} \square C_{n}$. Since x is removed from C_{n}^{m-1}, join the second vertex x_{2}^{m-1} of C_{n}^{m-1} to the second vertex x_{2}^{m} of C_{n}^{m} and then move in a clockwise direction to the first vertex in the $m^{t h}$ copy of $C_{m} \square C_{n}$. To get the desired $C_{m n-1}$ cycle, join the first vertex x_{1}^{m} of C_{n}^{m} to x_{1}^{1} of C_{n}^{1} in the graph $C_{m} \square C_{n}$. Furthermore, aside the second vertex, each internal vertex x_{j}^{i} and $x_{j}^{i+1}, 1 \leq i \leq$ m, i is calculated in modulo m and $3 \leq j \leq n-1$ when joined in all other copies of C_{n} results to $n-3$ copies of C_{m} in $C_{m} \square C_{n}$.

The left out edges which have not been covered by the cycle $C_{m n-1}$ and the $n-3$ copies of C_{m} form cycles C_{m+2} and $C_{2 m-1}$. We now give the construction of cycles C_{m+2} and $C_{2 m-1}$ as follows. By x_{j}^{i} we mean the $j^{t h}$ vertex of C_{n} in copy i of the graph $C_{m} \square C_{n}$.

$$
\begin{array}{r}
C_{m+2}=x_{2}^{1}, x_{2}^{2}, x_{2}^{3}, \ldots, x_{2}^{m-1}, x_{1}^{m-1}, x_{1}^{m}, x_{2}^{m}, x_{2}^{1} \\
C_{2 m-1}=x_{n}^{1}, x_{1}^{1}, x_{1}^{2}, x_{n}^{2}, x_{n}^{3}, x_{1}^{3}, \ldots, x_{1}^{m-1}, x_{n}^{m-1}, x_{n}^{m}, x_{n}^{1}
\end{array}
$$

Therefore we have that $\pi\left(C_{m} \square C_{n}\right)=n$. This completes the proof.
We now conclude this section with the following remark.
Remark 3.4. We note here in this section that although Arumugam et al. in [10] gave a relationship between the path decomposition number (or acyclic path decomposition number, as the case maybe) and the maximum degree Δ of some graphs, we note that for the product $G \square H$ there is no such relationship since the parameters $\pi(G \square H)$ and $\pi_{a}(G \square H)$ do not depend on $\Delta(G \square H)$.

4. Conclusion and future work

So far in this work we have provided the path decomposition number for $K_{n}-I$, $K_{n, n}-I$ and the product $P_{m} \square C_{n}$ and $C_{m} \square C_{n}$. The question for determining the acyclic path decomposition number for these graphs certainly deserves attention. As a future work, we intend to provide the acyclic path decomposition number for these graphs and possibly look into other types of product graphs, e.g. lexicographic and tensor products.

Acknowledgments

The authors appreciates the anonymous referees for their helpful suggestions which has improved the quality of this paper.

Competing Interests

The authors declare that they have no competing interests.

References

1. Chartrand, G., Lesniak, L., \& Zhang, P. (2010). Graphs \& digraphs. Chapman and Hall/CRC.
2. Alspach, B., \& Gavlas, H. (2001). Cycle decompositions of K_{n} and K_{n-I}. Journal of Combinatorial Theory, Series B, 81(1), 77-99.
3. Šajna, M. (2002). Cycle decompositions III: complete graphs and fixed length cycles. Journal of Combinatorial Designs, 10(1), 27-78.
4. Lovasz, L. (1968). On covering of graphs. In Theory of Graphs, P. Erdős and G. Katona, Eds., Procedure Collage, Academic Press, Tihany, Hungary, 231-236.
5. Harary, F., \& Schwenk, A. J. (1972). Evolution of the path number of a graph: Covering and packing in graphs, II. In Graph theory and computing, 39-45.
6. Stanton, R. G., Cowan, D. D. \& James, L. O. (1970). Some results on path numbers. In Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and computing, 112-135.
7. Stanton, R. G., James, L. O., \& Cowan, D. D. (1972). Tripartite path numbers. In Graph theory and computing, 285-294.
8. Peroche, B. (2011). The path-numbers of some multipartite graphs. Combinatorics, 79, 195-197.
9. Arumugam, S., \& Suseela, J. S. (1998). Acyclic graphoidal covers and path partitions in a graph. Discrete Mathematics, 190(1-3), 67-77.
10. Arumugam, S., Hamid, I. S. \& Abraham, V. M. (2013). Decomposition of graphs into path and cycles. Journal of Discrete Mathematics, ID 721051, 1-6.
11. Archdeacon, D., Debowsky, M., Dinitz, J. \& Gavlas, H. (2004). Cycle system in the complete bipartite graph minus a one-factor. Discrete Mathematics, 284, 37-43.

Opeyemi Oyewumi

Department of Mathematics, Federal University of Agriculture, Makurdi, Nigeria.
Email: opeyemioluwaoyewumi@gmail.com

Abolape Deborah Akwu

Department of Mathematics, Federal University of Agriculture, Makurdi, Nigeria.
Email: abolaopeyemi@yahoo.co.uk

Theresa Iveren Azer

Department of Mathematics, Federal University of Agriculture, Makurdi, Nigeria.
Email: iverentheresa0@gmail.com

[^0]: Received 20-07-2108. Accepted 02-11-2018.
 ${ }^{1}$ Corresponding Author
 © 2018 Opeyemi Oyewumi, Abolape Deborah Akwu, Theresa Iveren Azer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

