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PATH DECOMPOSITION NUMBER OF CERTAIN GRAPHS

OPEYEMI OYEWUMI, ABOLAPE DEBORAH AKWU1, THERESA IVEREN AZER

Abstract. Let G be a simple, finite and connected graph. A graph is
said to be decomposed into subgraphs H1 and H2 which is denoted by
G = H1 ⊕H2, if G is the edge disjoint union of H1 and H2. Assume that
G = H1 ⊕ H2 ⊕ · · · ⊕ Hk and if each Hi, 1 ≤ i ≤ k, is a path or cycle
in G, then the collection of edge-disjoint subgraphs of G denoted by ψ is
called a path decomposition of G. If each Hi is a path in G then ψ is called
an acyclic path decomposition of G. The minimum cardinality of a path
decomposition of G, denoted by π(G), is called the path decomposition

number and the minimum cardinality of an acyclic path decomposition of
G, denoted by πa(G), is called the acyclic path decomposition number of
G. In this paper, we determine path decomposition number for a number
of graphs in particular, the Cartesian product of graphs. We also provided
bounds for π(G) and πa(G) for these graphs.

Mathematics Subject Classification: 05C70.
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1. Introduction

Let Pm, Cm, Km, Km−I, Km,m−I denote path of length m, cycle of length m,
complete graph on m vertices, complete graph on m vertices minus a 1-factor
and complete bipartite graph on 2m vertices minus a 1-factor respectively. All
graphs considered in this paper are simple, finite and connected. We refer to the
book [1] for graph theoretic terminology used in this article. A graph is said to
be decomposed into subgraphs H1 and H2 which is denoted by G = H1 ⊕H2, if
G is the edge disjoint union of H1 and H2. Assume that G = H1⊕H2⊕· · ·⊕Hk
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and if each Hi, 1 ≤ i ≤ k, is a path or cycle in G, then the collection of edge-
disjoint subgraphs of G denoted by ψ is called a path decomposition of G. If
each Hi is a path in G then ψ is called an acyclic path decomposition of G. The
minimum cardinality of a path decomposition of G, denoted by π(G), is called
the path decomposition number and the minimum cardinality of an acyclic path
decomposition of G, denoted by πa(G), is called the acyclic path decomposition

number of G. If P = (x1, x2, ..., xm) is a path in a graph G, then the vertices
x2, x3, ..., xm−1 are called the internal vertices of P and x1, xm are called external

vertices of P . Here, by a first vertex and end vertex of path P we mean the
vertices x1 and xm respectively. Let P = (x1, x2, ..., xm) and Q = (y1, y2, ..., ym)
be two paths in G, by joining x1 to y1 (xm to ym, respectively) we obtain the
path R = (ym, ym−1, ..., y1, x1, x2, ..., xm)

(

R = (x1, x2, ..., xm, ym, ym−1, ..., y1),

respectively
)

.

1.1. Definition. The Cartesian product G � H of two graphs G and H is a
graph with vertex set V (G) × V (H) in which (x1, y1) and (x2, y2) are adjacent
if one of the following condition holds:
(i) x1 = x2 and {y1, y2} ∈ E(H),
(ii) y1 = y2 and {x1, x2} ∈ E(G).

The graphs G and H are known as the factors of G � H .
Suppose we are dealing with m-copies of a graph G we denote these m-copies of
G by Gi, where i = 1, 2, 3, ...,m.
The Cartesian product graph G � H may also be viewed as the graph obtained
from G by replacing each vertex i ∈ V (G) by a copy Hi (say) of H and each of
its edges {i, k} with |V (H)| edges joining corresponding vertices of Hi and Hk.
Henceforth, for any vertex i ∈ V (G) we refer the copy of H , denoted by Hi, in
G � H corresponding to the vertex i as the ith copy of H in G � H .
The problem of finding Ck-decomposition of K2n+1 or K2n − I where I is a
1-factor of K2n, is completely settled by Alspach, Gavlas and Sajna in two dif-
ferent papers (see [2, 3]). Obviously, every graph admits a decomposition in
which each subgraph Hi is either a path or a cycle. Gallai conjectured that the
minimum number of paths into which every connected graph on n vertices can
be decomposed into is not less than ⌈n

2 ⌉ (see [4]). A significant contribution to
the parameter π was by Lovasz [4] when he proved that a graph on n vertices
can be decomposed into ⌊n

2 ⌋ paths and cycles. Harary introduced the parameter
πa, this was further studied by Harary and Schwenk in [5] when they considered
the evolution number of the path number of a given graph. Staton et al. in
[6, 7] provided further results on path numbers and considered the case of the
tripartite graphs. Péroche [8] gave some results on the path numbers of certain
multipartite graphs. Arumugam and Suseela [9] shed some lights on the acyclic
path decomposition of unicyclic graphs. A recent work by Arumugam et al. [10]
studied the parameter π and further determined the value of π for some graphs.
They also provided some bounds for π and characterize graphs attaining the
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bounds. Furthermore, they proved that the difference between the parameter π
and πa can be arbitrary large.
In this paper, we determine the value of π for the graph Kn − I, Kn,n − I and
the Cartesian products Pm � Cn and Cm � Cn. In addition, we classify the
graphs that attain some of the bounds mentioned in [10].

2. Path decomposition number of Kn − I and Kn,n − I

Theorem 2.1. [2] For even integers m and n with 4 ≤ m ≤ n, the graph Kn−I
decomposes cycles of length m if and only if the number of edges in Kn − I is a

multiple of m

Lemma 2.2. [11] Let m ≡ 2(mod 4), n ≡ 1(mod 2) and 6 ≤ m ≤ 2n. Then

Cm|Kn,n − I if and only if m|n(n− 1).

Theorem 2.3. Given the graph Kn − I, where n is even, the minimum path

decomposition number for Kn − I is n−2
2 .

Proof. The graph Kn − I has n vertices and n(n−2)
2 edges. The largest cycle

which is a subgraph of Kn − I is a cycle of order n. Now, by Theorem 2.1,
Cn|Kn − I. We only need to know the number of copies Cn that can be gotten
fromKn−I, which is n−2

2 . Thus, we have n−2
2 copies of Cn in Kn−I. Therefore,

π(Kn − I) = n−2
2 . �

Lemma 2.4. If n ≥ 4 and an even integer, then Kn,n − I is
(

n−2
2 C2n, nP2

)

-

decomposable.

Proof. Let X = {11, 21, 31, ..., n1} and Y = {12, 22, 32, ..., n2} form the column
set of vertices in Kn,n− I. Also, two vertices ai and bj, has an edge in Kn,n− I,
if a 6= b and i 6= j, i < j = 2. Since n is even, the degree of each vertex in
Kn,n − I is odd.
Next, remove the edges

E(ai, bj) =

{

(a, n− a+ 1), a = 1, 2
(a, a− 2), a = 3, 4, 5, ..., n

, ai ∈ X, bj ∈ Y

which are exactly n number of P2’s. By removal of these edges, each vertex in
Kn,n − I would be of even degree. In total, we have n(n − 2) edges. At this
point, we need to show that the subgraph (Kn,n − I) \ E(ai, bj) admits a C2n

decomposition.
Now, by Cr

2n, r ≤ 1, we mean the rth copy of C2n in (Kn,n− I)\E(ai, bj). With
exception of C1

2n, all other C
r
2n, r > 1, follow a similar pattern. The construction

of these cycles of order 2n is given below.

C1
2n = 11, 22, 31, 42, ..., (n− 1)1, n2, (n− 2)1, (n− 3)2, (n− 4)1, (n− 5)2,

21, 12, n1, (n− 1)2, 11.
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For r = 2, 3, 4, ..., n−2
2 we have that

Cr
2n = 11, (2r − 1)2, n1, (2r − 2)2, (n− 1)1, (2r − 3)2, (n− 2)1, ..., 12,

(n− 2r + 2)1, (n− 1)2, (n− 2r + 1)1, n2, (n− 2r)1, (n− 2)2,

(n− 2r − 1)1, (n− 3)2, (n− 2r − 2)1, (n− 4)2, ..., (2r)2, 11.

From the above construction, we conclude that the graph (Kn,n − I) \E(ai, bj)
admits a C2n decomposition. Clearly, r = n−2

2 and thus C2n|
{

Kn,n

− I \ E(ai, bj)
}

= (C2n ⊕ C2n ⊕ C2n ⊕ · · · ⊕ n−2
2 C2n). Finally, we have that

Kn,n − I is
(

n−2
2 C2n, nP2

)

-decomposable. Hence the proof. �

Theorem 2.5. For the complete bipartite graph Kn,n − I, we have that

π(Kn,n − I) =

{

n−1
2 , if n is odd

3n−2
2 , otherwise

Proof. The graph Kn,n − I has 2n vertices and n(n − 1) edges. The largest
cycle which is a subgraph of Kn,n − I is a cycle of order 2n. We now prove this
theorem in two cases.
Case 1: when n is odd
By Lemma 2.2, C2n|Kn,n−I. We only need to know the number of copies of C2n

that can be obtained fromKn,n−I, which is n−1
2 . Therefore, π(Kn,n−I) =

n−1
2 .

Case 2: when n is even
By Lemma 2.4, the graph Kn,n − I can be decomposed into n−2

2 copies of C2n

and n copies of P2. Since no vertex is repeated in these n copies of P2, we have
that π(Kn,n − I) = 3n−2

2 . The proof of this theorem is complete. �

To end this section we now give the following remark. This remark is immediate
from Theorem 2.3 and Theorem 2.5.

Remark 2.6. In [10], it was mentioned that every graphG which is Hamiltonian
cycle decomposable attains the bound that π(G) ≥ ⌈∆

2 ⌉. This is true as we see
from Theorem 2.3 and Theorem 2.5 that the complete graph minus a one-factor
and the complete bipartite graph Kn,n − I, where n is odd, attains this bound.

Now, when n is even in Kn,n − I we have π(Kn,n − I) = 3∆+1
2 .

3. Path decomposition number of Pm � Cn and Cm � Cn

Theorem 3.1. Let m and n be positive integers then

π(Pm � Cn) = πa(Pm � Cn) = n.

Proof. First we give the construction of Pmn paths by constructing Hamilton
paths of order n in each copy of Cn in Pm � Cn. Let i be an odd number, in
each copy of Ci

n, join the end vertex of the Hamilton path in the ith copy with
the end vertex of the Ci+1

n copy of Pm � Cn. Similarly, suppose i is even, in
each copy of Ci

n, join the first vertex of the Hamilton path in the ith copy with
the first vertex of the Ci+1

n copy of Pm � Cn.
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Next, for each internal vertex in the Hamilton path, join the vertices xij and

xi+1
j , 1 ≤ i ≤ m, i is calculated in modulo m and 2 ≤ j ≤ n − 1. By this, we

have n− 2 copies of Pm in Pm � Cn.
Lastly, the left out edges which has not been covered by the path Pmn and the
n − 2 copies of Pm form a path of order 2m. So we have that π(Pm � Cn) =
πa(Pm � Cn) = n. �

Remark 3.2. Since the Cartesian product of graph is commutative, the result
in Theorem 3.1 holds for the graph Cm � Pn wherem and n are positive integers.

Theorem 3.3. Let m and n be positive integers such that 3 ≤ n ≤ m, then

π(Cm � Cn) = n.

Proof. Since both m and n are positive integers, the proof of this theorem is
split in two cases.
Case 1: when m is even and n ≥ 3.
First we give the construction of Cmn cycles by constructing Hamilton paths of
order n in each copy of Cn in Cm � Cn. Let i be an odd number, in each copy
of Ci

n, join the end vertex of the Hamilton path in the ith copy with the end
vertex of the Ci+1

n copy of Cm � Cn. Similarly, suppose i is even, in each copy
of Ci

n, join the first vertex of the Hamilton path in the ith copy with the first
vertex of the Ci+1

n copy of Cm � Cn.
Next, for each internal vertex in the Hamilton path, join the vertices xij and

xi+1
j , 1 ≤ i ≤ m, i is calculated in modulo m and 2 ≤ j ≤ n − 1. By this, we

have n− 2 copies of Cm � Cn.
Now, notice that the left out edges which has not been covered by the cycle
Cmn and the n − 2 copies of Cm form a cycle of order 2m. So we have that
π(Cm � Cn) = n.
Case 2: when m is odd and n ≥ 3.
Here, we first give the construction of Cmn−1 cycles. For 1 ≤ i ≤ m−2, construct
Hamilton paths of order n in each Ci

n copy in Cm � Cn. Suppose i is odd, in
each copy of Ci

n join the end vertex of the Hamilton path in the ith copy with
the end vertex of the Ci+1

n copy of Cm � Cn. In the same way, if i is even, in
each copy of Ci

n join the first vertex of the Hamilton path in the ith copy of Ci
n

with the first vertex of the Ci+1
n copy of Cm � Cn. This gives a path of order

n(m− 2).
Next, let x be the first vertex in the Cm−1

n copy of Cm � Cn. Now, construct a
path Pn−1 from Cm−1

n \x. Join the end vertex of Cm−1
n copy to the end vertex of

Cm−2
n copy of Cm � Cn. Since x is removed from Cm−1

n , join the second vertex
xm−1
2 of Cm−1

n to the second vertex xm2 of Cm
n and then move in a clockwise

direction to the first vertex in the mth copy of Cm � Cn. To get the desired
Cmn−1 cycle, join the first vertex xm1 of Cm

n to x11 of C1
n in the graph Cm � Cn.

Furthermore, aside the second vertex, each internal vertex xij and xi+1
j , 1 ≤ i ≤

m, i is calculated in modulo m and 3 ≤ j ≤ n−1 when joined in all other copies
of Cn results to n− 3 copies of Cm in Cm � Cn.
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The left out edges which have not been covered by the cycle Cmn−1 and the
n− 3 copies of Cm form cycles Cm+2 and C2m−1. We now give the construction
of cycles Cm+2 and C2m−1 as follows. By xij we mean the jth vertex of Cn in
copy i of the graph Cm � Cn.

Cm+2 = x12, x
2
2, x

3
2, ..., x

m−1
2 , xm−1

1 , xm1 , x
m
2 , x

1
2.

C2m−1 = x1n, x
1
1, x

2
1, x

2
n, x

3
n, x

3
1, ..., x

m−1
1 , xm−1

n , xmn , x
1
n.

Therefore we have that π(Cm � Cn) = n. This completes the proof. �

We now conclude this section with the following remark.

Remark 3.4. We note here in this section that although Arumugam et al. in
[10] gave a relationship between the path decomposition number (or acyclic path
decomposition number, as the case maybe) and the maximum degree ∆ of some
graphs, we note that for the product G � H there is no such relationship since
the parameters π(G � H) and πa(G � H) do not depend on ∆(G � H).

4. Conclusion and future work

So far in this work we have provided the path decomposition number for Kn−I,
Kn,n−I and the product Pm � Cn and Cm � Cn. The question for determining
the acyclic path decomposition number for these graphs certainly deserves at-
tention. As a future work, we intend to provide the acyclic path decomposition
number for these graphs and possibly look into other types of product graphs,
e.g. lexicographic and tensor products.
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