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CHARACTERIZING TREES WITH MINIMAL ABC INDEX

WITH COMPUTER SEARCH: A SHORT SURVEY
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Abstract. The atom-bond connectivity (ABC ) index of a graph G =

(V, E) is defined as ABC(G) =
∑

vivj∈E

√

(di + dj − 2)/(didj), where di
denotes the degree of vertex vi of G. Due to its interesting applications
in chemistry, this molecular structure descriptor has become one of the
most actively studied vertex-degree-based graph invariants. Many efforts
were made towards the elementary problem of characterizing tree(s) with
minimal ABC index, which remains open and was coined as the “ABC

index conundrum”. Up to date, quite a few significant results have been

obtained. In the course of research computer search plays a non-negligible
role. In the present paper we review the state of the art of the problem. In
addition we intend to demonstrate that, repeating the procedure “searching
- conjecturing - proving” can be an applicable paradigm to cope with elusive
problems of extremal graph characterization.
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1. Introduction

We consider non-trivial connected simple graphs only. Such a graph will be
denoted by G = (V,E), where V = {v0, v1, · · · , vn−1} and are the vertex set
and edge set of, respectively. If vivj ∈ E, then G − vivj will denote the graph
obtained from G by deleting the edge vivj . If, in turn, vivj /∈ E, then G+ vivj
will denote the graph obtained from G by adding the edge vivj .
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Let P = u0u1 · · ·uk−1uk be a path of length k in graph G with k ≥ 1, d(u0) ≥ 3,
d(uk) 6= 2, and d(u1) = d(u2) = · · · = d(uk−1) = 2. If d(uk) ≥ 3 then P is said
to be an internal path of G. If d(uk) = 1 then P is said to be a pendent path of
G.
Let di = d(vi) be the degree of vi, and ∆ = ∆(G) the maximum degree of G.
A vertex of degree 1 is called a pendent vertex. π(G) = (d0, d1, · · · , dn−1)
is called the degree sequence of G. Given a positive integer sequence π =
(d0, d1, · · · , dn−1), if there exists a connected graph G with π(G) = π, then
π is said to be a (graphic) degree sequence. In particular, if G is a tree, then π
is called a tree degree sequence. Let C(π) = {G|G is connected and π(G) = π},
and T (π) = {T |T is a tree and π(T ) = π}.
The ABC index of graph G = (V,E) is defined [1] as

ABC(G) =
∑

vivj∈E

√

(di + dj − 2)/(didj).

This vertex-degree-based topological index turned out to be closely correlated
with the heat of formation of alkanes [1], and a quantum-chemical explanation
for its descriptive ability was provided in [2]. Gutman et al. [3] later confirmed
that the ABC index could reproduce the heat of formation with accuracy compa-
rable to that of high-level ab initio and DFT (MP2, B3LYP) quantum chemical
calculations. Recently, a probabilistic interpretation of the generalized ABC in-
dex is provided by Estrada [4]. Due to these applications, there is an increased
interest in the mathematical properties of the ABC index in the last few years
(See [5–36]).
From a mathematical point of view, the first question that needs to answer
is for which graphs this index assumes minimal and maximal values. It was
proved [5, 6] that, the ABC index of a graph strictly increases with addition of
edges. Hence among n-vertex connected graphs, the complete graphKn uniquely
maximizes the ABC index, and a graph with minimal ABC index is a tree. In [7]
Furtula proved that, among n-vertex trees the star Sn uniquely maximizes the
ABC index. Xing et al. [8] found some upper bounds for the ABC index in
some classes of trees. However, the problem of characterizing n-vertex tree(s)
with minimal ABC index is more elusive and remains open. In [9] Gutman et
al. summarized the known results and coined the problem as the “ABC index
conundrum”. After [9] there are quite a few significant developments, in both
mathematical and computational aspects. In the course of research computer
search plays a non-negligible role. Namely, the research paradigm of repeating
the procedure “Searching - Conjecturing - Proving” was applied: (a) Computer
search for trees with minimal ABC index of order as large as possible by using
their known properties; (b) Conjecture their properties based on the search
results; (c) Prove or disprove the conjectures; (d) Go to (a). In the present
paper, we will review the state of the art of the problem, as an update of [9].
In addition we intend to demonstrate that, the paradigm may be applicable to
cope with other elusive problems of extremal graph characterization.
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Figure 1. The branches in a min-ABC tree.

For convenience, in the rest of the paper, we refer a tree with minimal ABC
index as a min-ABC tree, and the problem of characterizing n-vertex tree(s)
with minimal ABC index as min-ABC tree problem. We also assume n ≥ 10.

2. A brute-force and a heuristic search, and the modulo 7 conjecture

In order to guess the general structure of min-ABC trees, Furtula et al. [10]
firstly conducted a brute-force computer search. Their algorithm consists of two
successive steps: (1) Generating the trees recursively; (2) Computing the ABC
index for each generated tree and find its minimum value. Since the number of
n-vertex trees increases rapidly with n, though a computer grid with 400 CPUs
was employed, the computation was just performed up to n = 31. One can refer
to [11] for the search results.
Few as the search results obtained in [10] are, some structural properties of
min-ABC trees were observed and proved by Gutman et al. in [11].

Lemma 2.1. [12] Let T be an n-vertex min-ABC tree. Then
(1) T has no internal paths of length ≥ 2;
(2) T has no pendent paths of length ≥ 4;
(3) T has at most one pendent path of length 3.

It was also conjectured [12] that, such a tree has no pendent paths of length 1.
Soon this was confirmed by Lin et al. [13].

Lemma 2.2. [13] Let T be an n-vertex min-ABC tree. Then each pendent path
of T is of length 2 or 3.

Lemma 2.2 reveals that, each vertex of degree 1 or 2 of an n-vertex min-ABC
tree T is contained in a so-called Bk- or B

∗
k-branch (shown in Figure 1). From

Lemma 2.1 (3) T has a unique B∗
k-branch if T has a pendent path of length

3. Based on these facts Gutman and Furtula [14] implicitly made the following
conjecture.

Conjecture 2.3. Let T be an n-vertex min-ABC tree. Then
(1) T has a single high-degree vertex v0;
(2) To v0 only Bk- or B∗

k-branches, 1 ≤ k ≤ 5, are attached.
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Figure 2. The counterexample from [15].

Actually, Conjecture 2.3 is somehow natural. Let T be an n-vertex min-ABC
tree, and T [δ] the subgraph of T induced by the vertices of degree at least δ.
From Lemma 2.1 (2), T [3] is connected and thus is a tree. Moreover, based on the
known search results at that time, T [3] is conjectured to be a star (see [13]). With
the priori assumptions in Conjecture 2.3, Gutman and Furtula [14] conducted
a heuristic incomplete computer search for n-vertex min-ABC tree(s) up to
n = 700. This is an easy task, because the key is to find the solution set of the
Diophantine equation n = 1+ 2x1 + 5x2 + 7x3 + 9x4 + 11x5 + x6, where xi ≥ 0
denotes the number of Bk-branches, 1 ≤ i ≤ 5, and x6 ∈ {0, 1} is the number of
pendent paths of length 3.
The output of this heuristic search shows that, when n is sufficiently large (e.g.,
n ≥ 175) the structure of n-vertex min-ABC trees present a peculiar modulo
7 regularity. Therefore, the so-called “modulo 7 conjecture” was proposed [14].
Unfortunately, soon later this plausible conjecture was disproved by Ahmad et
al. [15,16]. In particular, the counterexample (shown in Figure 2) provided in [15]
violates Conjecture 2.3, and indicates the existence of the so-called B∗∗

3 -branches
(see Figure 1) in a min-ABC tree.
On the other hand, since the trees considered in [14] as candidates with minimal
ABC index, have an interesting structure, they were named Kragujevac trees
in [17]. The modulo 7 conjecture with slight corrections, was shown to be valid
for Kragujevac trees.

3. Greedy trees and search based on tree degree sequence

Gan et al. [18] and Xing et al. [19] independently proved that, the so-called
“greedy tree” minimizes the ABC index in T (π). Soon later, Lin et al. [20] gen-
eralized this result to connected graphs. One can refer to [20] for the definitions
of greedy trees and BFS-graphs.

Lemma 3.1. [20] Let π be a degree sequence. Then there exists a BFS-graph
G∗ with minimal ABC index in C(π).

Note that, given the degree sequence of a greedy tree (or equivalently, BFS-tree)
T , ABC(T ) can be easily computed. With Lemma 3.1 computer search for min-
ABC trees can be done by enumerating degree sequences of trees. Dimitrov [21]
presented the first such algorithm, which consists of three successive steps.
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1. Generate all tree degree sequences (recursively);
2. Find corresponding greedy trees for each generated degree sequence;
3. Calculate the ABC index of each greedy tree and select the tree with

minimal value.
Comparing with the brute-force algorithm presented in [10], Dimitrov’s is much
more superior. It avoids generating and storing all n-vertex trees, and just needs
to generate degree sequences of n-vertex trees. The search space is far less. For
example, for n = 31, there are 40,330,829,030 trees, but only 4565 tree degree
sequences. Hence Dimitrov’s algorithm is able to find all n-vertex min-ABC
trees for n ≤ 300 on a single processor platform in about 15 days.
Later Dimitrov’s algorithm was improved by Lin et al. [22,23]. For convenience,
we say a non-increasing positive integer sequence π = (d0, d1, · · · , dn−1) is opti-
mal, if it is the degree sequence of a min-ABC tree. [22] and [23] obtained some
features of an optimal tree degree sequence, which can be used to significantly
narrow the search space. As reported in [22], for n = 31 only 49 (about 1%) tree
degree sequences have to be generated. The MPI+OpenMP implement in [23]
founds all n-vertex min-ABC tree(s) up to n = 400 in 23 hours on a worksta-
tion group with 36 CPU cores. It is worth to remark that, the search results
in [22] for the first time disprove Conjecture 2.3, and confirm the existence of
B∗∗

3 -branches in a min-ABC tree.
Based on his search result, Dimitrov modified the modulo 7 conjecture initially
proposed in [14]. The modified conjecture is valid for n ≤ 400. However, this
plausible conjecture was shown to be completely false for sufficiently large n by
Ahmadi et al. [24]. Hence a much more efficient search algorithm or implemen-
tation is still desired to identify large min-ABC trees.

4. On branches and search up to order 1100

Let π = (∆ = d0, d1, · · · , dt, dt+1, · · · , dn−1) (dt ≥ 3 and dt+1 ≤ 2) be the (non-
increasing) degree sequence of a min-ABC tree T , nk denotes the number of k’s

among {d1, d2, · · · , dn−1}, and d =
∑t

i=1 di/t. #P3 = (n−t−1) mod 2 indicates
the number of paths of length 3 in T .

Since B
(∗)
k -branches (Bk- or B

∗
k-branches) are the main structure of a min-ABC

tree T , it is meaningful to pay attentions to the number bk of B
(∗)
k -branches

in T . Note please, here a B∗∗
3 -branch is regarded as one B2-branch and two

B1-branches. In fact, in 2014 Hosseini et al. [17] have considered this task for
Kragujevac trees. For general trees, most works were done by Dimitrov et al.
and Du et al. in [25–30]. We summarize the main results in Theorem 4.1.

Theorem 4.1. [25–30]
(1) b1 ≤ 2, b2 ≤ 11, b4 ≤ 4, and bk = 0 for k ≥ 5;
(2) b1b4 = b2b4 = 0;
(3) If n > 18 and #P3 = 1, then b1 = 0, b2 ≤ 2, and bk = 0 for k ≥ 4;
(4) If n > 415, then #P3 = 0.
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Table 1. The performance of some search algorithms.

Algorithm Range of n Time Test platform
Brute-force search [10] n ≤ 31 PC grid, 400 CPUs
Dimitrovs algorithm [21] 30 ≤ n ≤ 300 15 days PC, 2 cores, 2.3 GHz
Algorithm in [22] 30 ≤ n ≤ 350 107.8 hours PC, 8 cores, 1.8 GHz
Algorithm in [23] 30 ≤ n ≤ 400 23 hours PC Group, 36 cores
Dimitrovs algorithm [31] 30 ≤ n ≤ 800 PC, 2 cores, 2.3 GHz
Algorithm in [11] 30 ≤ n ≤ 1100 207.1 hours PC, 4 cores, 2.2 GHz

From Theorem 4.1 the features of an optimal tree degree sequence obtained
in [22] and [23] were significantly refined in [11] as following.

Theorem 4.2. [11]
(1) n1 = ⌊(n− t− 1)/2⌋, n2 = ⌈(n− t− 1)/2⌉, n3 = b2 ≤ 11, and n4 ≥ b3 ≥

(2t− 31)/3;
(2) #P3 = 0 if n ≥ 416, and so n1 = n2 = (n− t− 1)/2;
(3) (n− 9)/7 ≤ t ≤ (n+ 13)/5;
(4) 4 ≤ ∆ ≤ t and ∆ ≤ n/7 + 3 if n ≥ 40;
(5) 2∆+ 5t ≤ n+ 21;
(6) 4− 77/(n− 9) ≤ d < 5;

By applying Theorem 4.1 Dimitrov [31] conducted a computer search for n-
vertex min-ABC tree(s) up to n = 800. Soon later by Theorem 4.2 Lin et
al. [11] presented the fastest algorithm so far. The test was performed up to
n = 1100 within 9 days on a single PC. Table 1 shows the performance of the
main computer search algorithms.

5. Further discussions

As pointed out in [11] that, the fastest algorithm is not yet polynomial time
one, and still too powerless for large n (e.g., n = 5000), even a large workstation
group is involved. Hence towards the complete solution of the min-ABC tree
problem, at this point the main task is to find more properties of (sufficiently
large) min-ABC trees. The following are some possible directions in further
investigation.

(1) Refine the upper bounds of b1, b2, and b4. We guess b1 = b2 = 0 and
b4 ≤ 2.

(2) Obtain a non-trivial lower bound of ∆ on n and/or t.

(3) Investigate the behavior of d =
∑t

i=1 di/t with n increases, so as to get
better bounds of d for large n. Better bounds of d can help us refine Theorem
4.2. On the other hand, d < 5 implies that, the number of high-degree vertices
should be small. In fact, we guess the high-degree vertices induce a star.
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