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Abstract: The exact solutions of most nonlinear difference equations cannot be obtained theoretically
sometimes. Therefore, a massive number of researchers predict the long behaviour of most difference
equations by investigating some qualitative behaviours of these equations from the governing equations.
In this article, we aim to analyze the asymptotic stability, global stability, periodicity of the solution of an
eighth-order difference equation. Moreover, a theoretical solution of a special case equation will be presented
in this paper.
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1. Introduction

M ost fractional difference equations are studied from their qualitative behaviours of the governing
equations. This can be strongly attributed to the fact that obtaining the exact solutions of

these equations is quite sophisticated sometimes. A considerable number of authors has established the
equilibria, stability, periodic solutions and boundedness of some nonlinear recursive relations. For example,
Abdelrahman et al. [1] examined the asymptotic stability of the solutions of the following recursive equation

xn+1 = axn−l + bxn−k + f (xn−l , xn−k).

Almatrafi et al. [2] investigated the qualitative behaviour of the following fourth-order rational difference
equations

xn+1 =
αxnxn−3

±βxn−3 ± γxn−2
.

El-Moneam et al. [3] introduced some results on the qualitative behaviour of the following recursive equation

xn+1 = Axn + Bxn−k + Cxn−l + Dxn−σ +
bxn−k + hxn−l
dxn−k + exn−l

.

Garić-Demirović et al. [4] presented the periodic solution and the stability character of the following
second-order relation

xn+1 =
Ax2

n + Bxnxn−1 + Cx2
n−1

ax2
n + bxnxn−1 + cx2

n−1
.

In [5], the authors concerned with showing an analytical investigation about the following sixth-order
difference equation

xn+1 =
Cxn−5

A + Bxn−2xn−5
.
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Moreover, Khaliq and Hassan [6] examined the dynamic behaviour of the recursive equation given on the form

xn+1 = axn +
α + βxn−k
A + Bxn−k

.

Elabbasy et al. [7] studied the periodic solution, local stability, global attractivity and the solution of a special
case from the equation given by

xn+1 = axn −
bxn

cxn − dxn−1
.

For more information about the dynamic behaviours of some fractional recursive equations, one can see [8–15].
Our main purpose in this paper is to investigate some qualitative behaviours such as the local stability,

global stability and the periodicity of the following rational recursive equation

xn+1 = c1xn−3 +
c2xn−3

c3xn−3 − c4xn−7
, n = 0, 1, . . . (1)

where the constants ci, for all i = 1, . . . , 4, are assumed to be positive real numbers and the whole initial data
are required to be arbitrarily real numbers. We also aim to present the exact solutions to a special case equation
from Equation (1). Finally, numerical examples on each property will be included as well.

2. Analysis of Local Stability

In this section, we will examine the behaviour of the solutions around the equilibrium point and show
that the solutions which start nearby the fixed point stay nearby the fixed point under a specific condition. The
equilibrium point of Equation (1) is given by the following equation:

x = c1x +
c2x

c3x− c4x
,

which leads to
x =

c2

(1− c1) (c3 − c4)
, c1 6= 1, c3 6= c4.

Suppose that a function h : (0, ∞)2 −(0, ∞) is defined as following

h(r, s) = c1r +
c2r

c3r− c4s
. (2)

Then,

∂h(r, s)
∂r

= c1 +
c2(c3r− c4s)− c2c3r

(c3r− c4s)2 = c1 −
c2c4s

(c3r− c4s)2 , (3)

∂h(r, s)
∂s

=
c2c4r

(c3r− c4s)2 . (4)

Now, Equation (3) and Equation (4) will be evaluated at x̄ as follows:

∂h(x̄, x̄)
∂r

= c1 −
c2c4 x̄

(c3 x̄− c4 x̄)2 = c1 −
c4(1− c1)

c3 − c4
:= −p1,

∂h(x̄, x̄)
∂s

=
c2c4 x̄

(c3 x̄− c4 x̄)2 =
c4(1− c1)

c3 − c4
:= −p2.

Next, the liberalization of Equation (1) about the fixed point is given by the following form

yn+1 + p1yn−3 + p2yn−7 = 0.

Theorem 1. Let |c1c3 − c4| + c4 |1− c1| < |c3 − c4| . Then, the fixed point of Equation (1) is locally asymptotically
stable.
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Proof. It can be simply observed from Theorem A of [16] that the equilibrium point of Equation (1) is locally
asymptotically stable if

|p1|+ |p2| < 1.

This gives us ∣∣∣∣∣−
(

c1 −
c4(1− c1)

c3 − c4

)∣∣∣∣∣+
∣∣∣∣− c4(1− c1)

c3 − c4

∣∣∣∣ < 1,

which can be written on the following form

|c1(c3 − c4)− c4(1− c1)|+ c4 |1− c1| < |(c3 − c4)| .

Hence,
|c1c3 − c4|+ c4 |1− c1| < |c3 − c4| .

This complete the proof.

3. Analysis of Global Stability

We now turn to introduce an appropriate condition under which the fixed point of Equation (1) is a global
attractor.

Theorem 2. Let c1 < c2c4s
(c3r−c4s)2 , then the equilibrium point of Equation (1) is a global attractor if c1c3 > c4.

Proof. Let a, b ∈ R and suppose that h : [a, b]2 − [a, b] is a function defined by Equation (2). We assume that
c1 < c2c4s

(c3r−c4s)2 , then the function h is decreasing in r and increasing in s. Now, we suppose that (φ, ψ) is a
solution to the system given by

φ = h(ψ, φ), ψ = h(φ, ψ).

Therefore,

φ = h(ψ, φ) = c1ψ +
c2ψ

c3ψ− c4φ
,

ψ = h(φ, ψ) = c1φ +
c2φ

c3φ− c4ψ
.

Clearing the denominators gives

c3φψ− c4φ2 = c1c3ψ2 − c1c4φψ + c2ψ (5)

c3φψ− c4ψ2 = c1c3φ2 − c1c4φψ + c2φ (6)

Subtracting Equation (6) from Equation (5) gives

c4(ψ
2 − φ2) = c1c3(ψ

2 − φ2) + c2(ψ− φ).

This can be arranged as follows

(φ− ψ)
[
(c1c3 − c4)(φ + ψ) + c2

]
= 0.

Now, if c1c3 > c4, then φ = ψ. Therefore, Theorem B in [17] guarantees that the point x̄ is a global attractor.

Theorem 3. Let c1 > c2c4s
(c3r−c4s)2 , then the equilibrium point of Equation (1) is a global attractor if c3 < c4 and c1 < 1.

Proof. The proof can be accomplished in a similar way to the previous one. Thus, it is omitted.

4. Periodicity of the solution

Equation (1) has no prime period two solutions. This property will be proved in the following theorem.
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Theorem 4. The Equation (1) has no prime period two solutions.

Proof. Assume that the Equation (1) has a prime period two solution given as follows

. . . , t, τ, t, τ, . . . ,

with t 6= τ. From Equation (1), one can observe that

t = c1t +
c2t

c3t− c4t
,

τ = c1τ +
c2τ

c3τ − c4τ
.

Hence,

(1− c1)t =
c2

c3 − c4
,

(1− c1)τ =
c2

c3 − c4
.

This implies that t = τ, which contradicts our assumption.

5. Special case of Equation (1)

This section is devoted to present the exact solution of the following recursive equation

xn+1 = xn−3 +
xn−3

xn−3 − xn−7
, n = 0, 1, . . . (7)

Theorem 5. Let {xn}∞
n=−7 be a solution of Equation (7) and assume that x−7 = α, x−6 = β, x−5 = γ, x−4 =

δ, x−3 = ε, x−2 = ζ, x−1 = κ, x0 = ω. Then, for n = 0, 1, 2, ..., the solution of Equation (7) is given by the following
relations

x8n−7 = − [(n− 1) α− nε] [α− ε− n]
α− ε

, x8n−6 = − [(n− 1) β− nζ] [β− ζ − n]
β− ζ

,

x8n−5 = − [(n− 1) γ− nκ] [γ− κ − n]
γ− κ

, x8n−4 = − [(n− 1) δ− nω] [δ−ω− n]
δ−ω

,

x8n−3 = − [nα− (n + 1) ε] [α− ε− n]
α− ε

, x8n−2 = − [nβ− (n + 1) ζ] [β− ζ − n]
β− ζ

,

x8n−1 = − [nγ− (n + 1) κ] [γ− κ − n]
γ− κ

, x8n = − [nδ− (n + 1)ω] [δ−ω− n]
δ−ω

.

Proof. It can be easily seen that the formulae are true at n = 0. Next, we assume that n > 0 and suppose that
our solution is correct at n− 1 as follows

x8n−15 = − [(n− 2) α− (n− 1) ε] [α− ε− n + 1]
α− ε

, x8n−14 = − [(n− 2) β− (n− 1) ζ] [β− ζ − n + 1]
β− ζ

,

x8n−13 = − [(n− 2) γ− (n− 1) κ] [γ− κ − n + 1]
γ− κ

, x8n−12 = − [(n− 2) δ− (n− 1)ω] [δ−ω− n + 1]
δ−ω

,

x8n−11 = − [(n− 1) α− nε] [α− ε− n + 1]
α− ε

, x8n−10 = − [(n− 1) β− nζ] [β− ζ − n + 1]
β− ζ

,

x8n−9 = − [(n− 1) γ− nκ] [γ− κ − n + 1]
γ− κ

, x8n−8 = − [(n− 1) δ− nω] [δ−ω− n + 1]
δ−ω

.

Now, we prove the first relation. Equation (7) gives

x8n−7 = x8n−11 +
x8n−11

x8n−11 − x8n−15
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= − [(n− 1) α− nε] [α− ε− n + 1]
α− ε

+
− [(n−1)α−nε][α−ε−n+1]

α−ε

− [(n−1)α−nε][α−ε−n+1]
α−ε + [(n−2)α−(n−1)ε][α−ε−n+1]

α−ε

= − [(n− 1) α− nε] [α− ε− n + 1]
α− ε

− [(n− 1) α− nε]

ε− α

= −
[
[(n− 1) α− nε] [α− ε− n + 1]

α− ε
− [(n− 1) α− nε]

α− ε

]
= − [(n− 1) α− nε] [α− ε− n]

α− ε
.

We now prove the second formula. Again, Equation (7) gives

x8n−6 = x8n−10 +
x8n−10

x8n−10 − x8n−14

= − [(n− 1) β− nζ] [β− ζ − n + 1]
β− ζ

+
− [(n−1)β−nζ][β−ζ−n+1]

β−ζ

− [(n−1)β−nζ][β−ζ−n+1]
β−ζ + [(n−2)β−(n−1)ζ][β−ζ−n+1]

β−ζ

= −
[
[(n− 1) β− nζ] [β− ζ − n + 1]

β− ζ
− [(n− 1) β− nζ]

β− ζ

]
= − [(n− 1) β− nζ] [β− ζ − n]

β− ζ
.

The proofs of the remaining relations can be achieved in a similar way. Thus, the remaining proofs are
omitted.

6. Numerical examples

This section will confirm the above-mentioned theoretical analysis by providing some numerical
examples.

Example 1. In this example, we confirm the local stability of the equilibrium point under the values c1 =

0.5, c2 = 0.3, c3 = 10, c4 = 1, x−7 = −0.02, x−6 = 0.15, x−5 = 0.05, x−4 = −0.2, x−3 = 0.01, x−2 =

0.2, x−1 = −0.01, x0 = 0.1. See Figure 1.
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Figure 1. Local Stability of The Equilibrium Point.

Example 2. Figure 2 shows the global stability of the fixed point when we let c1 = 0.5, c2 = 10, c3 = 3, c4 =

0.6, x−7 = 12, x−6 = −1, x−5 = 1, x−4 = 7, x−3 = −9, x−2 = 10, x−1 = −8, x0 = 11.

Example 3. In Figure 3, we plot the global stability under the conditions given in Theorem 3. Here, we consider
the values c1 = 0.5, c2 = 0.025, c3 = 5, c4 = 6, x−7 = 1, x−6 = 2, x−5 = −2, x−4 = 4, x−3 = −7, x−2 =

8, x−1 = −10, x0 = 10.
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Figure 2. Global Stability of The Equilibrium Point.
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Figure 3. Global Stability of The Equilibrium Point.

Example 4. The behaviour of the solution of Equation (7) is plotted in Figure 4 according to the following
values: c1 = 0.5, c2 = 0.025, c3 = 5, c4 = 6, x−7 = 1, x−6 = 2, x−5 = −2, x−4 = 4, x−3 = −7, x−2 =

8, x−1 = −10, x0 = 10.
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The Behaviour of The Special Case Equation

Figure 4. Solution of The Special Case Equation.

7. Conclusion

This paper investigated the qualitative behaviour of Equation (1) and shown some numerical examples for
these properties. For instance, Theorem 1 presents the condition under which the fixed point of Equation (1) is
locally asymptotically stable. Moreover, Theorem 2 provides a simple condition under which the equilibrium
point is a global attractor, while Theorem 3 proves the global stability if c3 < c4 and c1 < 1, hold. In Section
4, it has been proved that Equation (1) has no a prime period two solution. Theorem 5 introduces the exact
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solution of the Equation (7). Finally, Section 6 has been added to confirm all analytical work discussed in the
previous sections.
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