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Abstract: For a given connected graph G and a real number α, denote by d(u) the degree of vertex u of G,
and denote by χα(G) = ∑uv∈E(G)

(
d(u) + d(v)

)α the general sum-connectivity index of G. In the present
note, we determine the smallest general sum-connectivity index of trees (resp., chemical trees) together with
corresponding extremal trees among all trees (resp., chemical trees) with n vertices and k pendant vertices for
0 < α < 1.
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1. Introduction

L et G = (V, E) be a connected undirected simple graph. If G contains exactly n vertices and n− 1 edges,
then G is called a tree. For a vertex u of G, denote by N(u) and d(u) the neighborhood set and degree of

u, that is, d(u) = |N(u)|. If d(u) = k, then we call u as a k-vertex. Specially, a 1-vertex is called a pendant vertex,
while a k-vertex with k ≥ 2 will be referred as a non-pendant vertex. A pendant edge is an edge incident with a
pendant vertex. Hereafter, nk defines the number of k-vertices. Denote by ∆(G) the maximum degree of G. As
usual, Sn and Pn define the star and path with n vertices, respectively.

Let G− uv be the resultant graph obtained after removing the edge uv from the edge set of G. Let E2(G) ={
uv : uv ∈ E(G) with d(u) = d(v) = 2

}
. We write A := B to indicate that B is the same as A.

The first Zagreb index M1(G) and second Zagreb index M2(G) [1] are two famous topological indices among
all the vertex-degree-based graph invariants, where

M1(G) = ∑
v∈V(G)

(d(v))2 , and M2(G) = ∑
uv∈E(G)

d(u)d(v).

In what follows, α denotes a real number. As a generalization of M1(G), Li and Zheng [2] introduced the
notation of zeroth-order general Randić index R0

α(G) , where

R0
α(G) = ∑

v∈V(G)

(d(v))α.

Since ∑uv∈E(G) (d(u) + d(v)) = ∑v∈V(G) (d(v))
2 , as another extension to M1(G), the general

sum-connectivity index [3] χα(G) of G is constructed as

χα(G) = ∑
uv∈E(G)

(d(u) + d(v))α .

Recently, the extremal problems of general sum-connectivity index among different categories of
graphs have attracted more and more attention. In this field, Cui et al. [4] obtained the largest general
sum-connectivity indices of trees and chemical trees with their corresponding extremal trees among all tree
and chemical trees with n vertices and k pendant vertices for −1 ≤ α < 0; Tomescu et al. [5] identified
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the smallest general sum-connectivity index of unicyclic graphs with n vertices and pendant vertices for
−1 ≤ α < 0 and charaterized the corresponding extremal graphs; Tomescu et al. [6] determined the smallest
general sum-connectivity index of trees with fixed diameter, n vertices and k pendant vertices for −1 ≤ α < 0,
respectively.

In what follows, by following the idea of [4], we will demonstrate the smallest general sum-connectivity
index with its corresponding extremal trees in the class of trees and chemical trees with n vertices and k
pendant vertices for 0 < α < 1, respectively.

2. Preliminaries

This section is dedicated to some lemmas, which will be used to prove our main result in the next section.
For this aim, we need to introduce more notations. It is easily checked that any tree has at least two pendant
vertices and the star is the unique tree with n− 1 pendant vertices and n vertices. For 2 ≤ k ≤ n− 1, denote
by Tn,k (resp., CT n,k) the set of trees (resp., chemical trees) with n vertices and k pendant vertices. If T ∈ Tn,k
and every non-pendant vertex of T is a 3-vertex, then T is called a (k, 3)-tree. It can be straightly checked that
every (k, 3)-tree has 2k− 2 vertices, among which there is exactly k pendant vertices.

Let T ∗n,k =
{

T : T is obtained from a (k, 3)-tree H by adding n− 2k + 2 new 2-vertices to H such that every
pendant edge of H is inserted at least one new 2-vertex

}
. For every tree T of T ∗n,k, from the definition of T ∗n,k

we can conclude that |V(T)| = n, ∆(T) = 3 and each neighbor vertex of a 3-vertex is either a 3-vertex or a
2-vertex. This implies that n1(T) = k, n2(T) = n− 2k + 2 and n3(T) = k− 2. For example, there are exactly
trees in the class of T ∗12,4, which are shown in Figure 1. Combining with Tn,2 = CT n,2 =

{
Pn

}
, Tn,n−1 =

{
Sn

}
and CT n,n−1 =

{
Sn | 3 ≤ n ≤ 5

}
, we only take 3 ≤ k ≤ n− 2 into consideration in what follows.

Figure 1. The elements of the set T ∗12,4.

The following three transformations on a tree T with n vertices were firstly constructed by Zhang et al.
[7], they will play an important role in the proof of our main result.

(i) For a fixed edge uv of the tree T with n vertices, denote by Tuv the tree obtained from T via identifying
the two vertices of T − uv, that is, Tuv is a tree with n− 1 vertices obtained from T by contracting the edge uv
of T. Hereafter, we say that Tuv is obtained from T by Transformation I.

(ii) Let v ∈ V(T) with N(v) = V′ ∪V′′ satisfying V′ ∩V′′ = ∅, |V′| = q1 ≥ 1 and |V′′| = q2 ≥ 1. Denote
by Tv�(q1,q2)

the tree with n + 1 vertices constructed from the tree T via splitting the vertex v into two new
vertices v′ and v′′, adding one edge between v′ and v′′, joining v′ and all vertices of V′, and then joining v′′ and
all vertices of V′′. In the sequel, Tv�(q1,q2)

will be referred to be obtained from T by Transformation II.
(iii) Let v be a q-vertex of the tree T, where q ≥ 4. Denote by Tv�(3−reg) the graph with n + q− 3 vertices

obtained from T via replacing the vertex v of T with a (q, 3)-tree H such that every vertex of N(v) and every
pendant vertex of H are identified individually. In what follows, we say that Tv�(3−reg) is obtained from T by
Transformation III.

Let T be the tree with eight vertices as shown in Figure 2. The readers can refer to Figure 2 for illustrated
examples to the above three transformations, where V′ =

{
u
}

and V′′ =
{

v1, v2, v3
}

.

Lemma 1. If k ≥ 1 and 0 < α < 1, then ϕ(x) = (x + k)α − xα is a strictly decreasing function for x ≥ 1.

Proof. It is easy to see that ϕ′(x) = α
(
(x + k)α−1 − xα−1

)
< 0 for k ≥ 1 and 0 < α < 1. Consequently, the

result holds.
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Figure 2. The example of three transformations.

Lemma 2. Let T be a tree of Tn,k and w be a 2-vertex of T. If the two neighbor vertices of w are both non-pendant vertices
and 0 < α < 1, then there is a tree T∗ of Tn,k such that χα(T) ≥ χα(T∗), with equality iff w is adjacent to at least one
2-vertex.

Proof. Suppose that N(w) = {u, v} with d(u) = s ≥ 2 and d(v) = t ≥ 2. Let y be a pendant vertex with
xy ∈ E(G) and d(x) = r ≥ 2. By Transformation I, we can construct Tuw from T. Let T∗ be the tree obtained
from Tuv via adding a new pendant edge adjacent to x. Now, it is easily checked that T∗ is also a tree of Tn,k
such that

χα(T)− χα(T∗) = (s + 2)α + (t + 2)α + (r + 1)α − (s + t)α − (r + 2)α − 3α

=
(
(s + 2)α + (t + 2)α − (s + t)α

)
−

(
(r + 2)α − (r + 1)α

)
− 3α.

Let ψ(s, t) = (s + 2)α + (t + 2)α − (s + t)α with s, t ≥ 2. Combining with 0 < α < 1, we have

∂ψ(s, t)
∂s

= α
(
(s + 2)α−1 − (s + t)α−1

)
≥ 0, and

∂ψ(s, t)
∂t

= α
(
(t + 2)α−1 − (s + t)α−1

)
≥ 0,

this implies that ψ(s, t) is increasing for both s and t with s, t ≥ 2. In view of Lemma 1 (the case of k = 1), it
follows that

χα(T)− χα(T∗) = ψ(s, t)− ϕ(r + 1)− 3α ≥ ψ(2, 2)− ϕ(3)− 3α = 0.

So the assertion of the lemma holds.

Lemma 3. Let T be a tree of Tn,k and xy be an edge of T with d(x) = q ≥ 3 and d(y) = 1. If 0 < α < 1 and
E2(T) 6= ∅, then there is a tree T∗ of Tn,k with χα(T) > χα(T∗).

Proof. Note that E2(T) 6= ∅. Thus, we can construct a new tree T∗ with n− 1 vertices from T by contracting
an arbitrary edge of E2(T) and then inserting another new vertex to the pendant edge xy. Now, T∗ is also a
tree of Tn,k. By Lemma 1 (the case of k = 1), it follows that

χα(T)− χα(T∗) = 4α + (q + 1)α − (q + 2)α − 3α

= (4α − 3α)−
(
(q + 2)α − (q + 1)α

)
= ϕ(3)− ϕ(q + 1) > 0.

This finishes the proof of the lemma.
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Lemma 4. Let T be a tree of Tn,k and u be a 4-vertex of T. Let v1, v2, v3 and v4 be four neighbor vertices of u such
that d(v4) ≤ 5 and d(v1) ≤ d(v2) ≤ d(v3) ≤ 3. If 0 < α < 1 and E2(T) 6= ∅, then there is tree T∗ of Tn,k with
χα(T) > χα(T∗).

Proof. Note that E2(T) 6= ∅. Thus, we can construct a new tree T′ with n− 1 tree from T via contracting an
arbitrary edge of E2(T). By Transformation III, we can construct another tree T∗ := T∗v�(3−reg) from T′ such
that T∗ ∈ Tn,k. Since d(v1) ≤ d(v2) ≤ d(v3) ≤ 3, d(v4) ≤ 5 and in view of Lemma 1 (the case of k = 1), it
follows that

χα(T)− χα(T∗) = 4α +
4

∑
i=1

((
4 + d(vi)

)α −
(
3 + d(vi)

)α
)
− 6α

≥ 4α + 3
(
7α − 6α

)
+

(
9α − 8α

)
− 6α

= 4α − 4 · 6α + 3 · 7α − 8α + 9α.

Let φ(α) = 4α − 4 · 6α + 3 · 7α − 8α + 9α with 0 < α < 1. It can be easily checked that φ(α) > 0 for 0 < α < 1 by
applying MATLAB, see Figure 3 (Actually, Figures 3-5 are all drawn by MATLAB).

Figure 3. The function φ(α) in Lemma 4.

Lemma 5. Let T be a tree of Tn,k and u be a q-vertex of T, where q ≥ 4. Suppose that |E2(T)| ≥ q− 3 and N(u) ={
v1, v2, . . . , vq

}
with d(v1) ≤ d(v2) ≤ · · · ≤ d(vq). If 0 < α < 1 and T satisfies either (i) or (ii), then there is a tree

T∗ of Tn,k with χα(T) > χα(T∗), where (i) d(vq−1) ≤ 3 and q ≥ 5; and (ii) d(vq−1) ≤ 4 and q ≥ 8.

Proof. Let d(vq−1) = p. Note that |E2(T)| ≥ q− 3. Thus, we can construct a new tree T′ with n+ 3− q vertices
obtained from T by contracting q− 3 arbitrary edges of E2(T). Taking Transformation III into consideration,
we can construct another tree T∗ := T∗v�(3−reg) from T′. Now, T∗ is also a tree of Tn,k. Since q ≥ 4, 0 < α < 1
and in view of Lemma 1 (the case of k = q− 3 ≥ 1), we have

χα(T)− χα(T∗) = (q− 3)4α +
q

∑
i=1

((
d(vi) + q

)α −
(
d(vi) + 3

)α
)
− (q− 3)6α

≥ (q− 3)
(
4α − 6α

)
+ (q− 1)

((
p + q

)α −
(

p + 3
)α
)

+
((

d(vq) + q
)α −

(
d(vq) + 3

)α
)

> (q− 3)
(
4α − 6α

)
+ (q− 1)

((
p + q

)α −
(

p + 3
)α
)

. (1)

Let φ(p, q) = (q− 3)
(
4α − 6α

)
+ (q− 1)

((
p + q

)α −
(

p + 3
)α
)

, where p ≥ 1, q ≥ 4 and 0 < α < 1. By Lemma

1 (the case of k = q− 3 ≥ 1), φ(p, q) is a strictly decreasing function on p. Since 0 < α < 1, then

∂φ(p, q)
∂q

=
((

p + q
)α −

(
p + 3

)α
)
+ α(q− 1)

(
p + q

)α−1
+

(
4α − 6α

)
,
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∂2φ(p, q)
∂q2 = α

(
p + q

)α−2
(
(α− 1)(q− 1) + 2

(
p + q

))
≥ α

(
p + q

)α−2
(2p + q + 1) > 0.

Thus, ∂φ(p,q)
∂q is a strictly increasing function on q.

Figure 4. The four functions of α in Lemma 5.

We consider the following two cases:

Case 1. T satisfies (i). In this case, we have q ≥ 5 and p ≤ 3, and so φ(p, q) ≥ φ(3, q). This implies that

∂φ(3, q)
∂q

≥ ∂φ(3, q)
∂q

|q=5

= 4α8α−1 +
(
4α − 6α

)
+

(
8α − 6α

)
=

(
8 + 4α

)
8α−1 + 4α − 2 · 6α > 0,

where Figure 4 (a) implies the last strictly inequality. Therefore, φ(3, q) is a strictly increasing function on q ≥ 5.
Combining this with inequality (1), we obtain that

χα(T)− χα(T∗) > φ(p, q) ≥ φ(3, q) ≥ φ(3, 5)

= 4
(
8α − 6α

)
+ 2

(
4α − 6α

)
= 4 · 8α + 2 · 4α − 6α+1 > 0,

where Figure 4 (b) implies the last strictly inequality.

Case 2. T satisfies (ii). In this case, we have q ≥ 8 and p ≤ 4, and so φ(p, q) ≥ φ(4, q). This implies that

∂φ(4, q)
∂q

≥ ∂φ(4, q)
∂q

|q=8

= 7α12α−1 +
(
4α − 6α

)
+

(
12α − 7α

)
=

(
12 + 7α

)
12α−1 + 4α − 6α − 7α > 0,
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where Figure 4 (c) implies the last strictly inequality. Thus, φ(4, q) is a strictly increasing function on q ≥ 8. By
(1), we can conclude that

χα(T)− χα(T∗) > φ(p, q) ≥ φ(4, q) ≥ φ(4, 8) = 7
(
12α − 7α

)
+ 5

(
4α − 6α

)
> 0,

where Figure 4 (d) implies the last strictly inequality.

Let P = u0u1 . . . uq be a path of graph G. If u0 is a pendant vertex of G and d(u1) = d(u2) = · · · =
d(uq−1) = 2 < 3 ≤ d(uq) unless q = 1, then we call P as a pendant path of G. Hereafter, denote by P(G) the set
of all pendant paths of G.

Lemma 6. [7] Let T be a tree of Tn,k. If 3 ≤ k ≤ b n+2
3 c and E2(T) ⊆ E

(
P(T)

)
, then

|E2(T)| ≥ n4 + 2n5 + · · ·+ (∆(T)− 3)n∆(T).

3. Main results

Now, we are ready to state the main result of this paper, that is,

Theorem 7. Let T be a tree of Tn,k. If 3 ≤ k ≤ b n+2
3 c and 0 < α < 1, then

χα(T) ≥ k(3α + 5α) + (n− 3k + 2)4α + (k− 3)6α,

with the equality iff T ∈ T ∗n,k.

Proof. Throughout this proof, we suppose that T∗ ∈ Tn,k has the smallest general sum-connectivity index.
Since k ≥ 3, then ∆(T∗) ≥ 3. Next, we prove some claims.
Claim 1. Every 2-vertex of T∗ is on a pendant path.
Proof of the Claim 1. By contradiction, assume that u0 is not on any pendant path of T∗ with d(u0) = 2. In this
case, each neighbor vertex of u0 is a non-pendant vertex. In view of Lemma 2, Tn,k contains a tree T1 such that
χα(T∗) ≥ χα(T1), with equality iff u0 is adjacent to at least one 2-vertex.

By applying the transformations in the proof of Lemma 2 repeatedly, a set of trees
{

Ti | i ≥ 0
}

belonging
to Tn,k with T0 := T∗ and a set of vertices

{
ui | i ≥ 0

}
can be constructed such that each ui is a 2-vertex not on

any pendant path of Ti and χα(Ti) ≥ χα(Ti+1) for each i ≥ 0.
Since the number of 2-vertices not on pendant paths of Ti+1 is one less than that of Ti, the above

transformation will end after finite steps. That is, there is an integer q ≥ 0 such that each 2-vertex of Tq+1 is on
a pendant path. Therefore, uq is the unique 2-vertex of Tq not on any pendant path, and hence uq is adjacent to
two vertices with degrees at least 3 in Tq. Thus, we have χα(T0) ≥ χα(T1) ≥ · · · ≥ χα(Tq) > χα(Tq+1), which
is contrary with the choice of T∗.

By Claim 1, it follows that E2(T∗) ⊆ E
(
P(T∗)

)
. Next we shall prove that

∆(T∗) = 3. (2)

By contradiction, we assume that (2) does not hold, that is, ∆(T∗) ≥ 4. From Lemma 6, it follows that

|E2(T∗)| ≥ n4 + 2n5 + · · ·+ (∆(T∗)− 3)n∆(T∗) ≥ ∆(T∗)− 3 ≥ 1.

Suppose that v0 ∈ T∗ with d(v0) = ∆(T∗) ≥ 4, and let P := v0v1 . . . vt be a path of T∗ with d(vt) ≥ 4. We may
assume that the length of P is as large as possible. If t = 0, then Lemmas 4 and 5 (i) imply that Tn,k contains a
tree with smaller general sum-connectivity index than T∗, but this contradicts the definition of T∗. Thus, t ≥ 1.
By Claim 1, we have min

{
d(vi) : 1 ≤ i ≤ t− 1

}
≥ 3 when t ≥ 2.

Let N∗(vt−1) := N(vt−1) when t = 1, and let N∗(vt−1) := N(vt−1)\{vt−2} when t ≥ 2. It is not difficult
to see that vt ∈ N∗(vt−1).
Claim 2. The degree of each vertex of N∗(vt−1) in T∗ is at most 4 and d(vt) = 4.
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Proof of Claim 2. Let z ∈ N∗(vt−1) and let N(z) =
{

z1, z2, . . . , zq
}

with d(z1) ≤ d(z2) ≤ · · · ≤ d(zq). Clearly,
|E2(T∗)| ≥ ∆(T∗) − 3 ≥ q − 3. Recall that the length of P is as large as possible. Thus, d(zq−1) ≤ 3. Since
d(vt−1) = ∆(T∗) ≥ 4 > d(zq−1) when t = 1 (in this case, vt−1 = v0) and d(vt−1) ≥ 3 ≥ d(zq−1) when t ≥ 2, we
may suppose that zq = vt−1. By the choice of T∗ and in view of Lemma 5 (i), we deduce that d(z) ≤ 4. Note
that vt ∈ N∗(vt−1) and d(vt) ≥ 4, we have d(vt) = 4. This completes the proof of Claim 2.

Now, we consider the vertex vt−1. On the one hand, in view of Claim 2, all vertices of N(vt−1) except vt−2

(when t ≥ 2) have degrees at most 4 in T∗. Since Lemma 5 (ii) and in view of the choice of T∗, we can conclude
that d(vt−1) ≤ 7. On the other hand, by the proof of Claim 2 we can deduce that the degree of each vertex of
N(vt) except vt−1 in T∗ is at most 3. Now, in view of d(vt) = 4 and bearing in mind the choice of T∗, Lemma 4
implies that d(vt−1) ≥ 6. Consequently, we know that 6 ≤ d(vt−1) ≤ 7.

Figure 5. The function φ(α) in Theorem 7.

Let d(vt−1) = p and let N(vt−1) =
{

w1, w2, . . . , wp
}

with wp := vt−2 when t ≥ 2. In view of Claim 2,
it follows that d(wi) ≤ 4 for 1 ≤ i ≤ p− 1. Since |E2(T∗)| ≥ 1, we can construct a new tree T̄ obtained after
contracting an edge of E2(T∗) from T∗. By Transformation II, we can construct another tree T′ := T̄vt−1�(3,p−3)
of Tn,k from T̄. By Combining with 0 < α < 1, 6 ≤ p ≤ 7 and Lemma 1 (the case of k = p− 4 > 1 and k = 2,
respectively), we have

χα(T∗)− χα(T′) = 4α +
3

∑
i=1

((
d(wi) + p

)α −
(
d(wi) + 4

)α
)

+
p

∑
i=4

((
d(wi) + p

)α −
(
d(wi) + p− 2

)α
)
− (p + 2)α

≥ 4α + 3
((

p + 4
)α − 8α

)
+

(
p− 4

)((
p + 4

)α −
(

p + 2
)α
)

+
((

d(wp) + p
)α −

(
d(wp) + p− 2

)α
)
−

(
p + 2

)α

> 4α + 3
((

p + 4
)α − 8α

)
+

(
p− 4

)((
p + 4

)α −
(

p + 2
)α
)
−

(
p + 2

)α

=
(

p− 1
)(

p + 4
)α

+ 4α − 3 · 8α −
(

p− 3
)(

p + 2
)α.

Let φ(α) =
(

p− 1
)(

p + 4
)α

+ 4α − 3 · 8α −
(

p− 3
)(

p + 2
)α, where 0 < α < 1. If p = 6, then φ(α) > 0, where

Figure 5 (a) implies the inequality. If p = 7, then φ(α) > 0, where Figure 5 (b) implies the inequality. Now, we
can conclude that χα(T∗)− χα(T′) > 0 whenever 6 ≤ p ≤ 7, a contradiction. So, (2) holds.

By (2), we have n1 + n2 + n3 = n and n1 + 2n2 + 3n3 = 2(n− 1). Note that n1 = k and 3 ≤ k ≤ b n+2
3 c.

Thus, n2 = n− 2k + 2 ≥ k. Now, in view of Claim 1 and (2), to finish our proof, it suffices to show that each
pendant vertex is adjacent to a 2-vertex. By contradiction, we assume that there is a pendant vertex u of T∗

such that u is adjacent to a 3-vertex. Since n2 ≥ k and in view of Claim 1, we have E2(T∗) 6= ∅. By the choice of
T∗ and in view of Lemma 3, it will deduce a contradiction. Thus, every pendant vertex of T∗ must be adjacent
to a 2-vertex. By a simple calculation, we have

χα(T∗) = k(3α + 5α) + (n− 3k + 2)4α + (k− 3)6α.
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This cpmpletes the proof of the theorem.

In view of Theorem 7 and since T ∗n,k ⊆ CT n,k ⊆ Tn,k, we can deduce the following result for chemical trees
immediately.

Theorem 8. Let T be a tree of CT n,k. If 0 < α < 1 and 3 ≤ k ≤ b n+2
3 c, then

χα(T) ≥ k(3α + 5α) + (n− 3k + 2)4α + (k− 3)6α,

with the equality iff T ∈ T ∗n,k.
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