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Abstract: In this article, we study some properties of the solutions of the following difference equation:
bxyx,_4
CXp—3 +dxy 4
positive real numbers and 4, b, ¢, d are positive constants. Also, we give specific form of the solutions of four

special cases of this equation.

Xpt1 = aXp + , n = 0,1,.. where the initial conditions x_4,x_3,x_5,x_1, Xo are arbitrary
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1. Introduction

O ur aim in this paper is to investigate the behavior of the solution of the following nonlinear difference
equation

xn+1:axn+&%, n=0,1,... (1)
where the initial conditions x_4,x_3,x_p,x_1,xp are arbitrary positive real numbers and a,b,c and d are
positive constants.

Recently there has been a great interest in studying the qualitative properties of rational difference equations.
Some prototypes for the development of the basic theory of the global behavior of nonlinear difference
equations of order greater than one come from the results for rational difference equations [1-15] .

However, there have not been any effective general methods to deal with the global behavior of rational
difference equations of order greater than one so far. From the known work, one can see that it is extremely
difficult to understand thoroughly the global behaviors of solutions of rational difference equations although
they have simple forms (or expressions). One can refer to [16—47] for examples to illustrate this. Therefore, the
study of rational difference equations of order greater than one is worth further consideration.

Many researchers have investigated the behavior of the solution of difference equations, for example,
Elsayed et al. [37] has obtained results concerning the dynamics and global attractivity of the rational difference

equation
AXpXp—2

X =
" bxy g+ cxy s

Alogeili [18] has obtained the solutions of the difference equation

Xn—1

Xpi] = ————.
T xx
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Simsek et al. [43] obtained the solution of the difference equation

X _ Xn—3
n+1 T+x, 1
Cinar [22-24] got the solutions of the following difference equations

. . o . o S
LT g, 1T St axex, "N 1 b, 1
In [48], Ibrahim got the form of the solution of the rational difference equation

XnXn—2
Xp_1(a+ bxyx,_2)

Xnt1 =

Karatas et al. [46] got the solution of the difference equation

Xn—5

X = -
i 1+x, 2x,5

Here, we recall some notations and results which will be useful in our investigation. Let I be some interval of
real numbers and let
f . Ik+l I

be a continuously differentiable function. Then for every set of initial conditions x_y, x 1, X_ky2,...,X0 € I,
the difference equation

Xp+1 = f(Xn, Xp—1, ., Xyk), n=0,1,... )
has a unique solution {x, }5>_ .

Definition 1. A point X € [ is called an equilibrium point of Equation (2) if ¥ = f(%, %, ..., ¥). That is, x, = ¥ for
n > 0, is a solution of Equation (2), or equivalently, X is a fixed point of f.

Definition 2. o The equilibrium point ¥ of Equation (2) is locally stable if for every ¢ > 0, there exists § > 0
such that forall x_j, x_jy1,X_yo,..., X0 € I, with

X = %[+ [x g1 — X+ [x g2 — X[+ + [x0 — X[ <O,

we have |x, — X| < ¢, foralln > —k.
o The equilibrium point ¥ of Equation (2) is locally asymptotically stable if ¥ is locally stable solution of
Equation (2) and there exists ¢y > 0, such that for all x_j, x 1, X_gy2,..., X0 € I, with

|X g — %+ |¥ g1 — X+ [x_ju2 — X+ ..+ |x0 — X| <9,

we have lim x,, = %.
noo
e The equilibrium point ¥ of Equation (2) is global attractor if for all x ¢, x_g41,..., X9 € I we have

limx, = &.
noo

e The equilibrium point ¥ of Equation (2) is globally asymptotically stable if X is locally stable, and ¥ is also
a global attractor of Equation (2).
e The equilibrium point ¥ of Equation (2) is unstable if ¥ is not locally stable.
The linearized form of Equation (2) about the equilibrium ¥ is the linear difference equation

k 9f(z, %, .., %
Yn+1 = Z f( )

i=0
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Theorem 3. Assume that p,q € Rand k € {0,1,2,...}. Then |p| + |q| < 1is a sufficient condition for the asymptotic
stability of the difference equation
Xp41 + PXn +9x,x=0,n=0,1,...

Remark 1. The theorem can be easily extended to a general linear equations of the form

Xpak T P1Xpak—1+ -+ pxn =0, n=01,... (3)
k
where p1, p, ..., px € Rand k > 0. Then Equation (3) is asymptotically stable provided that ) _ [p;| < 1.
i=0

Consider the following equation
Xnt1 = &(Xn, Xn—3, Xn—4)- (4)

The following theorem will be useful for the proof of our results in this paper.

Theorem 4. Let [a, b] be an interval of real numbers and assume that
g:1a,bf [a,b)],

is a continuous function satisfying the following properties:

(a) g(x,y,z) is nondecreasing in x and z in [a, b] for each y € [a, b], and is nonincreasing in y € [a, b] for each x and
z in [a, b]
(b) if (m, M) € [a,b] x [a,b] is a solution of the system

M = g(M,m,M), m = g(m, M, m),
then m = M.
Then (4) has a unique equilibrium point X € [a, b] and every solution of (4) converges to X.

2. Local stability of equation (1)

In this section we investigate the local stability character of the solutions of Equation (1). Equation (1) has
a unique equilibrium point and is given by

bx?

X =ax ,
+cx—|—df

or
(1 —a)(c+d) = bx?,

then if (1 —a)(c+d) # b, then the unique equilibrium point is ¥ = 0.
Define the following function

buw
f(u,v,w) uu+cv+dw
It follows that
bw beuw bcuv
fu(u,v,w) =a+ o1 dw’ folu,v,w) (co+ dw)?’ fo(u,0,w) (cv + dw)?
Then
b be be
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The linearized equation of Equation (1) about ¥ is

— a_._L _._L _L =0 (5)
]/n+1 C+d ]/ﬂ (C+d)2yn—3 (C+d)2]/n74 — U

Theorem 5. Assume that
b(d+3c) < (1—a)(c+d)>

Then the equilibrium point of Equation (1) is locally asymptotically stable.

Proof. It follows from Theorem 3 that Equation (5) is asymptotically stable if

PR A ) N Y
c+d (c+d)? (c+d)? ’
or
a—+ L + Zibc <1
c+d  (c+d)? 7
and so,
b(d + 3c)
crap <=9
The proof is complete. O

3. Global attractor of the equilibrium point of equation (1)

In this section we investigate the global attractivity character of solutions of Equation (1).
Theorem 6. The equilibrium point % of Equation (1) is global attractor if d(1 — a) # b

Proof. Let p,q be real numbers and assume that ¢ : [p,q]® [p,q] is a function defined by g(u,v,w) = au +
buw

cv+dw
that (m, M) is a solution of the system

, then we can easily see that the function g¢(u, v, w) is increasing in u, w and decreasing in v. Suppose

M = g(M,m,M), m = g(m, M, m).

Then from Equation (1), we see that

bM? bm?
MianLcm—&—dM' miam—’—cM—l-dm
or ) )
bM bm
1—a)= "+ _ 1—a)= " _
M(1 —a) cm +dM’ m(1-a) cM + dm
then

c(1—a)ymM +d(1 —a)M? = bM?, c(1—a)ymM +d(1 — a)m> = bm?

subtracting, we obtain
d(1 —a)(M? — m?) = b(M? — m?).

Since d(1 — a) # b therefore
M = m.

It follows from Theorem 4 that ¥ is a global attractor of Equation (1), and then the proof is complete. O

4. Boundedness of solutions of equation (1)

In this section we study the boundedness of solutions of Equation (1).
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Theorem 7. Every solution of Equation (1) is bounded if a + Z <1

Proof. Let {x,}7__, be a solution of Equation (1). It follows from Equation (1) that

bxyx,_4 bxyx,_4 b
= _— < —_— = —_
Xp41 = Xy + st dr, g = axy + dx, . a+ P x

Then x,41 < x5, Vi > 0. Then the sequence {x,}5__, is decreasing and so is bounded from above by
M = max{x_4,x_3,x_2,x_1,%0} O

For explaining the results of this section, we consider numerical example for x_s = 10,x_3 = 1,x_» =
3,x_1 =2,x9 =7. (See Figure 1).

X107 Plot of x(n+1)=x(n)+x(n)x(n-4)/(x(n-3)+x(n-4)) Plot of x(n+1)=0.5x(n)+0.5x(MxX(N-4)/(x(n-3)+2x(n-4))

o
.
1)

x(n)

O P N W H» O o N ® ©
T T T T T T T T T

[o] 10 20 30
n

Figure 1. Lefta = 1,b = 1,c = 1,d = 1 which don’t satisfy the boundedness conditions (the solution is
unbounded). Righta = 0.5,b = 0.5,c = 1,d = 2 which satisfy the boundedness conditions (the solution is
bounded).

5. Special cases of equation (1)

Our goal in this section is to find a specific form of the solutions of some special cases of Equation (1)
when , a4, b, c and d are integers and give numerical examples of each case.

. . . XnXy—
5.1. First case: on the difference equation x,,,1 = x,, + L
Xp—3 + Xp—4

In this subsection we study the following special case of Equation (1):

XnXn—4
xn—i-]:xn"‘ix 3+X 4, Vl:O,].,... (6)
n— n—

where the initial conditions x_4, x_3,x_5, x_1, ¢ are arbitrary nonzero real numbers.
Theorem 8. Let {x,}° _, bea solution of Equation (6). Then forn = 0,1,2, ...

T’H A if +2B; e) (Aig-i-ZBif) (Aih -l-ZBZ-g) (Ail’ +ZBih)

(Bif + Aje) (Big+ Aif) (Bih+ Aig) (Bir+ Aih)’
. ’ﬁ Aif +2Bie) | 1T (Aig +2Bif) (Aih + 2B;g) (Air +2B;h)
R (Bif + Aje) 7 (Big+ Aif) (Bih+ A;g) (Bir+ Aih)’
'ﬁ Aif +2Bje) (Aig +2Bif) 1y (Aih +2B;g) (A;r +2Bih)
(B; f + Aje) (Big + Aif) il (Bl'h + Al'g) (Bir + Aih) !
'ﬁ Aif +2Be) (Aig +2Bif) (Aih +2B;g) v (A;r +2B;h)
(Bif + Aje) (Big+Aif) (Bih+ Aig) i1 (Bir + Aih)’

Xqn42 =

Xan+3 =
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wherex_4 =e,x_3=f,x_p=gx_1=hxo=r{An}s_1 ={1,3,7,17,41,..}, {Bu}5_, = {1,2,5,12,29,..}
Ay =2A, 1+ Au_—2,By = 2By 1+Bpom >1,A 1 =-1,A)=1 B_1 = 1,By = 0, oralso Ay, =
0

2By1+ Ap—1,Bu =Bu_1+Ap_1,m>0,and [ [G; = 1.
i=1

Proof. For n = 0, the result holds. Now suppose that our assumption holds for n — 1 and for n — 2. That is

N I:[ Aif +2Bje) (Aig +2Bif) (Aih +2B;g) (Air + 2B;h)
An=8 = 1 (Bif +Aje) (Big+Aif) (Bih+Ag) (Br+ Aih)’
N ﬁ (Aif +2Be) ’hz( i§ +2Bif) (Aih +2B;g) (Air + 2B;h)
T (Bif +Aje) +1 (Big+Aif) (Bih+Aig) (Bir+ Aih)’
N 1—[ (Aif +2Bie) (Aig +2Bif) '=% (Aih + 2B;g) (Air + 2B;h)
=6 T LU (Bif + Ae) (Big + Aif) i1 (Bih+A;g) (Bir+ Ajh)’
X 1:[ Aif +2Bje) (Aig +2B;f) (Aih +2B;g) "% (A;r + 2B;h)
ST (Bif + Ae) (Big+ Aif) (Bih+ Aig) 11 (Bir + Ah)
X _, 1;[ (A f + 2B; 6) (Alg + 2Bl'f) (Al]’l + ZBig) (Aﬂ' + ZBih)
AT L (Bif + Ae) (Big+ Aif) (Bih+Agg) (Bir+ Aih)
. rﬁ (Aif +2Bie) "~ (Aig +2Bif) (Aih +2B;g) (Air + 2B;h)
WL (Bif + Aie) 1y (Big+ Aif) (Bili+ Aig) (B + Aih)
oo 17 (Aif +2Bje) (Aig +2Bif) ' (Aih +2Big) (Air +2Bih)
2T (Bif + Awe) (Big+ Aif) 1p (Bih+Aig) (Bir + Ah)’
Yyt =7 ' (Aif +2Bje) (Aig +2Bif) (Aih +2Big) 7 (Air +2Bih)
i1 (Bif +Aje) (Big+ Aif) (Bih+Aig) i_7 (Bir + Aih)

Now it follows from Equation (6) that

n X X i . n—l
xay = xgyq 4 Mno1¥ans  _ pr (Aif +2Bie) (Aig +2B,f) <Ah+23§ y (Air +2Bjh) (1+

X4n—4 + Xan—5 i=1 (Bif + Aie) (Big+ Aif) (Bih+Aig) (Bir + Aih)
—1 (A;f +2Bje) (A;g +2B;f) (Ajh +2B;g) "= (A,r + 2B;h)

':1

ri=1 (Bif + Aje) (Big+ Aif) (Bih+ Aig) ;-7 (Bir + Ajh)
I:[1 (A;f +2Bje) (Aig +2B;f) (A;h +2B;g) (Ajr +2B;h) r'ﬁ(Ajf+2Bie) (A;jg+2B;f) (Ajh+2B;g) ﬁ Ar+2Bh)>
i1 (Bif +Aie) (Big+Aif) (Bih+Aig) (Br+Aih) 7 (Bif +Aje) (Big+Aif) (Bih+ Aig) i (Bir + Aih)
_ Ty (Aif +2Bie) (Ajg +2Bif) (Aih +2Big) ﬁ (Air +2Bh) | 1
i=1 (Bif + Aje) (Big+ Aif) (Bih+ A;g) i=1 (Bir + Ajh) (Ay_1r +2B,_1h) +1
Bn 17+An 1h)

:rﬁ(Aif—l—ZB,-e) (A;g +2B;f) (Ah—l—ZB,g)" L (A +2B;h) (1+ w1l + An_1h )
i1 (Bif + Aje) (Big+ Aif) (Bih+ A;g) 1:1 (Bir + Ajh) Ay 1+Bn 1)1’+(2Bn 14+ A, 1)h
:rﬁ( zf"_ZBe) (Aig+2Bif) (Ah"‘ZBzg ﬁ AT+ZBh ( n— 1+2Bn 1)1’—1—(23” 1+2An 1)h
i1 (Bif +Aje) (Big+ Aif) (Bih+Aig) ;—7 (Bir+Aih)  (Ay_1+By1)r+ (2By—1+ Ay1)h
_ rﬁ (A;f +2Bie) (Aig +2B;f) (Ajh +2B;g) "=t (A;r +2B;h) Anr +2B,h
-1 (Bif +Aje) (Big+Aif) (Bih+Aig) 17 (Bir+Aih) Bur+ Anh
(A;f +2Bje) (Ajg +2B;f) (Ajh+2B;g) (A;r +2B;h)
1 (Bif +Aje) (Big+Aif) (Bih+A;jg) (Bir+Aih)

:]

i=1

:

=r

Similarly,

Xapig = xgy 4 n¥ana =1 (Aif +2Bie) (Aig +2B;f) (Aih +2B;g) (Air + 2Bjh)
" "oxgatxgns g (Bif +Ae) (Big+Aif) (Bih4Aig) (Bir + Ajh)
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(1+
r"71 (Aif +2Bie) (Aig +2Bif) (Ajh +2B;g) (Air + 2B;h)
i1 (Bif +Aje) (Big+Aif) (Bih+ Aig) (Bir + Ajh) )
. " (A;f +2Be) ”1:[1 (A;g +2B;f) (Aih +2B;g) (A;r + 2B;h) . ”1:[1 (Aif +2Bje) (Aig +2B;f) (Ajh+2B;g) (A;r + 2B;h)
1 (Bif +Aje) i1 (Big+Aif) (Bih+ Aig) (Bir + Aih) 1 (Bif +Aje) (Big+Aif) (Bih+ Aig) (Bir + Ajh)

— n (A,f + ZB,-e) (Azg + ZBZf) (Alh + ZBlg) (Aﬂ’ + ZBZI/I) + 1
i1 (Bif +Aje) (Big+ Aif) (Bih+Aig) (Bir+ Aih) (Anr +2Byh) 1
(Bur + Ayh)
_ rﬁ (Aif +2Bje) (Aig +2Bif) (Aih +2B;g) (Air +2B;h) < Bur + Anh )
i1 (Bif +Aje) (Big+Aif) (Bih+ Aig) (Bir+ Aih) (An+ By_1)r + (2By + An)h

7 (AiF +2Bie) (Aig +2Bi) (Aih+2Big) (A +2Bh) (Ay+2B,)r + (2B, +2A0)h

1 (Bif +Aje) (Big+ Aif) (Bih+ Aig) (Bir+Aih)  (An+ Bu)r + (2By + An)h
" (A;f +2Bje) (Ajg+2B;f) (Ajh+2B;g) (A;r +2B;h) A, 17+ 2B, 1h

1 (Bif + Aie) (Big+Aif) (Bih+Aig) (Bir+Aih) Bypar+ Apy1h

" (A;f +2Bje) {4 (A;g +2B;f) (Aih +2B;g) (A;r + 2B;h)

1 (Bif +Aje) i1 (Big+Aif) (Bih+Ajg) (Bir+ Aih)

Similarly, one can easily obtain the other relations. Thus, the proof is completed. O

r

For explaining the results of this section, we consider numerical example for x_4 = 10,x_3 = 1,x_, =
3,x_1 =2,x9 =7, (See Figure 2).

% 107 Plot of x(n+1)=x(n)+x(n)x(N—4)/(x(n—3)+x(n—4))

451

3.5

Zo2s5f
=

1.5

0.5

Figure2. x_4, =10,x_3=1,x_,=3,x_1=2,x9=7

. . XpXp—
5.2. Second case: on the difference equation x,,, 1 = x, + %
n—3 — An—4

In this subsection we study the following special case of Equation (1):

Xpp1 =Xy 4+ —2d 0,1, @)

7!
Xn—3 — Xn—4

where the initial conditions x_4,x_3, x_2, x_1, X( are arbitrary nonzero real numbers.
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Theorem 9. Let {x,,}$° _, be a solution of Equation (7). Then forn = 0,1,2, ...

P (rfgh)"

1t on1 (*f+€)”(*8+f)”(*h+8)"(*r+h)"’
N " (rfgh)

8n—3 = f

(=f+e)r g+{ h+g (=r+h)n’

Xgn—2 = (—f +e)n g+/ h+g (—=r+h)"’
Ton- 1_'11 (—Fro(—g+ (- h+g>< )
gy = (rfgh)"
e (fre(mg ) (Fh e g)t (e )
r”“ (rfgh)"
Xgn+1 = f ’
m(—f+e) (=g + f)(=h+g) (—r+h)"
n+1 (T’fgh)n
Xgnt2 = fg ,
" (—f+e) (=g + f)r(—h+g) (—r +h)"

. r”Jr (rfgh)"
Xgn+3 = fgh m(—f et (—g + f)" L (—ht g) L (—r + Byt

Proof. For n = 0, the result holds. Now suppose that our assumption holds for # — 1. That is

o (rfgh)" "

T R ey T (gt ) gy (o R
v — [ (rfgh)" !

M e T (= f e N (g ) (ko g) T (—r Ry
N (rfgh)"!

TS T e T (g ) T (hr g (o by
ooy (rfgh)"

T e (f ey T (=g + ) (—h ) (B
o (rfgh)"

Y e (—f e (g )Nt ) T (< )

xany = —f (rfgh)" !

M e T (e (g ) (g ()T
Xn_o = fg (rfgh)"!

e T T e g ) (h g gy

X5 = —fgh— (rfgh)""

S T e T e (gt (R 9 (B

Now it follows from Equation (7) that

X8n—1X8n—5 rn (rfgh)”

T e — g5 o g £ (I gy
_feh (rfgh)*!
14 e (—f+e) (=g + )" (=h+g)"(=r+h)"!

r (rfgh)" P (rfgh)"

e T (—f ey (—g+ )" (—h+g) (—r+ by I8 T (Cf ey (gt ) (—h o+ g) (—r + By
" (rfgh)" 1
IS AR I R R
_ r” rfgh)

r—h

(—f+e) g+{ h+g (—=r+h)" <1+ h )
T
h

( fre)(—g+f)"(- h+8)( r+h)"
r”“ (rfgh)"
N e e R e
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Similarly,
X8nXgn—4
Xgpt1 =Xgn + ———————
X8n—3 — X8n—4
;,nJrl (rfgh)”

et (=f+e) (=g + ) (=h+g)"(=r+h)"
" (rfgh)"

1 (f T ) (g T 1) (h+ (A )

1+

o (rfh)” T (rFsh)”
o (—f + ey (g + ) (h e+ QI (T + R T (~f e (g T S (—h+ g (7 )

_ rnJrl (ngh)n . N 1

e (—f+e)'(—=g+ f)"(=h+g)"(—r+h)" f_q

e

B },n+l (rfgh)” e
T (Cf e (=g NN (—h g (—r T )" (”fe)
_ (rfgh)" f

o F O (g + (R A g (TR f—e
_ fr"+ (rfgh)"

o (f+ e (=g + f)H(—h T ) (—r B
Similarly, one can easily obtain the other relations. Thus, the proof is completed. O

Consider numerical examples which represent different types of solutions to Equation (7).
See Figure 3, since x_4 = 20,x_3 = 10,x_2 = 30,x_1 = 2,x9 = 10. The solution is bounded and converges to
x=0.
Now, if wetakex_4 =1,x_3 =3,x_p =1,x_1 = 40,x9 = 10, the solution is unbounded (see Figure 4).

Plot of x(n+1)=x(n)+x(n)*x(n—4)/(x(N—3)—x(n—4))

20 40 60 80 100
n

Figure 3. x_4 = 20,x_3 = 10,x_» = 30,x_1 = 2, x9g = 10. The solution is bounded and converges to ¥ = 0.

. . ) XpXp_
5.3. Third case: on the difference equation x, ;1 = x,, — —onond
Xp—3+ Xp—4

In this subsection we study the following special case of Equation (1):

XnXy—
Xn+1 = Xn — ”7714, n= 0/ 1/ (8)
Xn—3 1 Xn—4

where the initial conditions x_4,x_3, x_2, x_1, X are arbitrary nonzero real numbers.



Open ]. Discret. Appl. Math. 2019, 2(2), 31-47

40

Plot of x(n+1)=x(n)+x(n)*x(n—4)/(x(n=3)—x(n-4))

25

0.5

—-0.5

60
n

40

80 100

Figure4.x_4 =1,x_3 =3,x_p =1,x_1 = 40, x9 = 10, the solution is unbounded.

Theorem 10. Let {x,,}° _, be a solution of Equation (8). Then forn =0,1,2, ...

Xan = r (rfgh)" ,
H(if +e)(ig+ f)(ih+ g)(ir + h)
; _ rf (rfgh)"
4n+1 ol " ,
H(ifﬂ)ll(igﬂ)(ih + o) (ir+h)
R - rfg (rfgh)"
4n+2 P , ,
l} (if +e)(ig + f) E(ih +g)(ir+h)
X = ) (rfgh);H
4n+3 P - .
H(if+€)(ig+f)(ih + ) [(ir +h)

i=1

Proof. For n = 0, the result holds. Now suppose that our assumption holds for n — 1 and for n — 2. That is

r(rfgh)"!
Xgn—4 =~ )
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—

N
|
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I
—

n—1 n—2 4
71(zf+ e)(ig + f) E(ih +g)(ir+h)
(rfgh)"!

n—1 n—2

(if +e)(ig+ f)(ih+g) [ (ir+h)

i=1

I
—
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Now it follows from Equation (8) that

_  Xap1X4n-5 (rfgh)"
X4n = X4n—1 = 1
Xgn—4 + X4n—5
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(if +e)(ig+ f)(ih+g)(ir+h)  []Gf +e)(ig+ f)(ih+g) [ [(ir+h)
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I\
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i i=1

__ DI (1 o )
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41 = Xan = x:‘;ﬁ”x:* —=5 r(rfgh)"
' ! g(if +e)(ig + f)(ih + &) (ir + h)
r(rfgh)"!
Zﬁ if +e)(ig+ f)(ih + g)(ir + h)
L A PR
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I I ((n - 1f)f - e)
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Similarly, one can easily obtain the other relations. Thus, the proof is completed. O



Open ]. Discret. Appl. Math. 2019, 2(2), 31-47

42

Consider numerical examples which represent different types of solutions to Equation (8).

Assume that x_4, = 100, x_3 = 30,x_» = 80,x_1 = 1, x9 = 3 (See Figure 5).
Now for x_4 =0.1,x_3 = 0.5,x_ = 30,x_1 = 50, x9g = 300 (See Figure 6).

Plot of x(N+1)=x(N)—x(N)*x(N—4)/(x(N—3)+x(nN—4))

X(n)

20 40 60 80 100
n

Figure 5. x_, = 100,x_3 =30,x_» =80,x_1 =1,x9 = 3.

Plot of x(n+1)=x(N)—x(N)*x(N—4)/(x(N—3)+x(N—4))

X(n)
P
8

n

Figure 6. x_, =0.1,x_3 =0.5,x_» = 30,x_1 = 50, xp = 300.

. . XnXp—
5.4. Fourth case: on the difference equation x,,,1 = x,, + —onond
—Xp—3 T+ Xpn—4

In this subsection we study the following special case of Equation (1):

XnXp—4
Xn+1 :xn+—, leo,l,...
—Xp-3+ Xp—4

where the initial conditions x_4, x_3,x_p, x_1, o are arbitrary nonzero real numbers.

Theorem 11. Let {x,,}* _, be a solution of Equation (9). Then forn =0,1,2, ...
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Proof. For n = 0, the result holds. Now suppose that our assumption holds for # — 1. That is
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Now it follows from Equation (9) that
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Similarly, one can easily obtain the other relations. Thus, the proof is completed. O

Consider numerical examples which represent different types of solutions to Equation (9).
The solution is unbounded since we choose x_4 = 20,x_3 = 13,x_» = 3,x_1 = 2,x9 = 1 (see Figure 7).
However the solution converges to ¥ = 0 by choosing x_; = 100,x_3 = 30,x_» = 10,x_1 = 1,x9 = 3 (see
Figure 8).

X 10° Plot of x(n+1)=x(n)—x(n)*x(n—4)/(x(n—3)—x(n-4))

12

10+

| !

o 20 40 60 80 100
n

Figure 7. The solution is unbounded since we choose x_4 =20,x_3 =13,x_» =3,x_1 =2,xg = 1.

6. Conclusion

This paper discussed global stability, boundedness, and the solutions of some special cases of Equation
(1). In Section 2 we proved that if b(d + 3c) < (1 — a)(c + d)? then the equilibrium point of Equation (1) is
locally asymptotically stable. In Section 3 we showed that the unique equilibrium of Equation (1) is globally
asymptotically stable if d(1 —a) # b. In Section 4 we proved that the solution of Equation (1) is bounded

b
if a4+ P < 1. In Section 5 we gave the form of the solution of four special cases of Equation (1) and gave
numerical examples of each case.

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the
final manuscript.
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Plot of x(n+1)=x(n)—x(n)*x(n—4)/(x(n=3)—x(n-4))

90 b

80 1 T

70 T

60 [ q

40t —

30 b

201 1

10 b

Figure 8. The solution converges to ¥ = 0 by choosing x_4 = 100,x_3 =30,x_» =10,x_1 =1,x0 =3
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