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Abstract: Let G = G(V, E) be a (p, q)-graph. A bijection f : E → {1, 2, 3, . . . , q} is called an edge-prime
labeling if for each edge uv in E, we have GCD( f+(u), f+(v)) = 1 where f+(u) = ∑uw∈E f (uw). A graph
that admits an edge-prime labeling is called an edge-prime graph. In this paper we obtained some sufficient
conditions for graphs with regular component(s) to admit or not admit an edge-prime labeling. Consequently,
we proved that if G is a cubic graph with every component is of order 4, 6 or 8, then G is edge-prime if
and only if G 6∼= K4 or nK(3, 3), n ≡ 2, 3 (mod 4). We conjectured that a connected cubic graph G is not
edge-prime if and only if G ∼= K4.
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1. Introduction

L et G = (V(G), E(G)) (or G = (V, E) for short if not ambiguous) be a simple, finite and undirected
(p, q)-graph of order |V| = p and size |E| = q. For integers a, b with a ≤ b, let [a, b] = {n ∈ Z | a ≤ n ≤

b}. All notation not defined in this paper can be found in [1].
The concept of prime labeling was originated by Entringer and it was introduced in a paper by Tout et

al. [2]. A graph G with p vertices and q edges is said to have a prime labeling if function f : V → [1, p] is
bijective and for every edge e = uv of G, GCD( f (u), f (v)) = 1. For simplicity, we will use (a, b) to denote
GCD(a, b). Currently, the two most prominent open conjectures involving prime labelings are the following:

(1) All tree graphs have a prime labeling (Entringer-Tout Conjecture);
(2) All unicyclic graphs have a prime labeling (Seoud and Youssef [3]).

In 2011, Haxell and Pikhurko [4] proved that all large trees are prime. In 1991, Deretsky et al. [5] introduced
the notion of dual of prime labeling which is known as vertex prime labeling. A graph with q edges has vertex
prime labeling if its edges can be labeled with distinct integers [1, q] such that for each vertex of degree at least
2, the greatest common divisor of the labels on its incident edges is 1. A conjecture: “Any 2-regular graph has
a vertex prime labeling if and only if it does not have two odd cycles." was proposed.

An excellent survey on graph labeling is maintained by Gallian [6]. In [7], we introduce another prime
labeling of graphs.

Definition 1. Let G = (V, E) be a (p, q)-graph. A bijection f : E → [1, q] is called an edge-prime labeling if
for each edge uv in E, we have ( f+(u), f+(v)) = 1, where f+(u) = ∑uw∈E f (uw). A graph that admits an
edge-prime labeling is called an edge-prime graph.

Among others, we proved that all 2-regular graphs, complete bipartite graphs K(2, n), the bipartite graph
K(2, n) + K(2, n) (n ≥ 2), disjoint union of paths with at most one P2 component, the generalized theta graph
having n ≥ 3 internally disjoint paths of length 3 (respectively, 4), or having 3 internally disjoint paths of
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length n ≥ 2 and certain family of trees are edge-prime. It is a conjecture that all trees of diameter at least 3 are
edge-prime.

Let n(G) (or nG if no ambiguity) denote the disjoint union of n copies of graph G. In this paper we
obtained some sufficient conditions for graphs with regular component(s) to admit or not admit an edge-prime
labeling. Consequently, we proved that if G is a cubic graph with every component is of order 4, 6 or 8, then
G is edge-prime if and only if G 6∼= K4 or nK(3, 3), n ≡ 2, 3 (mod 4). In what follows, we only consider cubic
graphs unless specified otherwise.

It is clear that an edge labeling f : E(G)→ [1, |E(G)|] such that for each edge uv, f+(u) and f+(v) are not
both even, and | f+(u)− f+(v)| = 2m, m ≥ 0 is an edge-prime labeling.

Suppose f is an edge labeling of a graph H = (V, E). For each edge xy of H, let dxy = | f+(x)− f+(y)|.
We shall use this notation throughout this paper.

1. We say f has Property (A) if dxy = 2m for some m ≥ 0, and each xy ∈ E(H).
2. Let G be an edge-prime graph of size q. Suppose H is r-regular with an edge-prime labeling f . We

say f has Property (B) if (dxy, rq) = dxy, for each xy ∈ E(H). Moreover, f has Property (C) if for each
xy ∈ E(H), dxy = 2m for some m ≥ 0 or (dxy, rq) = dxy.

Theorem 2. Let G be an edge-prime graph. Suppose H is an r-regular graph that admits an edge-prime labeling having
Property (A).

(a). If r|E(G)| is even or |E(G + H)| is odd, then G + H is edge-prime.
(b). If r|E(G)| is odd and |E(H)| is even, then G + H is edge-prime.

Proof. Let f1 and f2 be edge-prime labelings of G and H respectively with f2 satisfying the given condition.
(a). Suppose r|E(G)| is even. Define g such that g(e) = f1(e) for e ∈ E(G), and g(e) = f2(e) + |E(G)| for
e ∈ E(H). Consider an edge uv ∈ E(G + H). It suffices to consider uv ∈ E(H). Without loss of generality,
assume f+2 (u) is odd. Now, g+(u) = r|E(G)|+ f+2 (u) is odd.

(g+(u), g+(v)) = (r|E(G)|+ f+1 (u), r|E(G)|+ f+2 (v)) = (g+(u), f+2 (u)− f+2 (v)) = (g+(u), 2m) = 1.

Suppose |E(G + H)| = q is odd. Define g such that g(e) = f1(e) for e ∈ E(G), and g(e) = q + 1− f2(e) for
e ∈ E(H). Again, we only need to consider uv ∈ E(H). Without loss of generality, assume f+2 (u) is odd. Now,
g+(u) = r(q + 1)− f+2 (u) is odd. We have

(g+(u), g+(v)) = (rq− f+2 (u) + r, rq− f+2 (v) + r) = (g+(u), f+2 (u)− f+2 (v)) = (g+(u), 2m) = 1.

(g+(u), g+(v)) = (rq− f+2 (u) + r, rq− f+2 (v) + r) = (g+(u), f+2 (u)− f+2 (v)) = (g+(u), 2m) = 1.

Hence, g is also an edge-prime labeling.
(b). Suppose r|E(G)| is odd and |E(H)| is even. Clearly, |E(G)| is odd, and thus |E(G + H)| is odd. From (a),
we get that G + H is also edge-prime.

Theorem 3. Suppose G is a graph of even size q such that every component of G is regular. If G admits an edge-prime
labeling f having Property (A), then nG is edge-prime for n ≥ 2.

Proof. For k ≥ 1, define a partial edge labeling gk for the k-th copy of G such that gk(e) = f (e) + (k − 1)q.
Clearly, every induced vertex label in G and the corresponding vertex in the k-th copy of nG have the same
parity. Moreover, every 2 induced adjacent vertex labels differ by 2m, m ≥ 0. Hence, nG is edge-prime.

Theorem 4. Suppose every component of G is an even regular graph. If G admits an edge-prime labeling f having
Property (A), then nG is edge-prime for n ≥ 2.

Proof. Let H be a component of G, which is r-regular. By Theorem 2 (a), since r is even, G + H is edge-prime.
We may repeat this procedure for each component of G to show that 2G is edge-prime and so is nG.
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Lemma 5. Suppose G is a graph of size q with an edge-prime labeling f . If H is an r-regular graph with an edge-prime
labeling g having Property (B), then G + H is edge-prime.

Proof. We define an edge labeling h for G + H by

h(e) =

{
f (e), if e ∈ E(G);

g(e) + q, if e ∈ E(H).

We only need to consider edge uv ∈ E(H). Now, h+(u) = g+(u) + rq and h+(v) = g+(v) + rq. Since
(duv, g+(v)) = (g+(u), g+(v)) = 1 and rq is a multiple of duv, we have (h+(u), h+(v)) = (g+(u) + rq, g+(v) +
rq) = (duv, g+(v) + rq) = 1. Hence h is an edge-prime labeling and G + H is edge-prime.

When rq is even, or rq is odd and |E(H)| is even, we may relax the condition of Lemma 5 to have the
following corollary.

Corollary 6. Suppose G is a graph of size q with an edge-prime labeling f , and H is an r-regular graph with an
edge-prime labeling g.

(a). Suppose rq is even. If g has Property (C), then G + H is edge-prime.
(b). Suppose rq is odd and |E(H)| is even. If g has Property (C), then G + H is edge-prime.

Proof. (a). We define an edge labeling h for G + H as in Lemma 5. By the proof of Lemma 5, we only need to
consider the case when duv = 2m with m ≥ 0, where uv ∈ E(H). Without loss of generality, we may assume
g+(v) is odd. This implies that h+(v) is odd. By the same computation in the proof of Lemma 5, we have
(h+(u), h+(v)) = (duv, h+(v)) = 1. Hence G + H is edge-prime.
(b). Suppose rq is odd and |E(H)| is even. Clearly, q is odd and |E(G + H)| is odd. Similar to (a), we only
need to consider the case when duv = 2m with m ≥ 0, where uv ∈ E(H). By Theorem 2 (b), we have G + H is
edge-prime.

Theorem 7. Suppose G is an r-regular graph of size q with an edge-prime labeling f . If f has Property (B), then nG is
edge-prime.

Proof. The theorem follows by applying Lemma 5 repeatedly.

Corollary 8. Suppose G is an r-regular graph of size q with an edge-prime labeling f , where rq is even. If f has
Property (C), then nG is edge-prime.

Proof. This follows by applying Corollary 6 repeatedly.

Remark 1. Suppose G is an edge-prime graph of size q, where q ≡ 0 (mod 6). Suppose H is a cubic graph
with an edge-prime labeling g. If dxy ∈ {1, 2, 3, 4, 6, 8} for all xy ∈ E(H), then g has Property (C).

Remark 2. Note that the induced vertex labeling of each new edge labeling defined at each theorem or
corollary above is difference preserved, i.e., all dxy remain unchanged.

We next show the possible existence of non-edge-prime regular graphs.

Theorem 9. Let G be a (p, q)-graph containing t component(s) such that every component of G is of size ej with ej ≡ 1
(mod 4), 1 ≤ j ≤ t. Let f : E(G)→ [1, q] be any bijection. Suppose no 2 adjacent vertex labels of G under f+ are even
implies that every component of G receives odd number of odd edge labels under f . If t ≡ 2 or 3 (mod 4), then G is not
edge-prime.

Proof. Let f be any bijective edge labeling of G. Suppose t ≡ 2 (mod 4). Now q ≡ 2 (mod 4). Hence, there
are odd number of odd edge labels. There is a component receives even number of odd edge labels under f .
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By the hypothesis, there is a component containing two adjacent vertices whose labels are even. Hence f is not
an edge prime labeling. That is, G does not admit an edge-prime labeling.

Similarly, if t ≡ 3 (mod 4), then q ≡ 3 (mod 4). Hence, there are even number of odd edge labels. There
is a component receives even number of odd edge labels under f . Hence, G does not admit an edge prime
labeling.

2. Cubic graphs with same order components

Lemma 10. If h is an edge labeling of G = (V, E), then there are even number of odd vertex labels.

Proof. The lemma follows from

∑
u∈V

h+(v) = 2 ∑
e∈E

h(e). (1)

Corollary 11. Suppose f is an edge labeling of a graph G such that no adjacent vertex labels are even.

(1). Suppose G contains a component H = Kn for n ≥ 3. If n is even, then all vertex labels in H are odd. If n is odd,
then there is exactly one even vertex label in H.

(2). If G contains a component K ∼= K(m, n) with odd m and n, then K contains odd number of odd edge labels.

Proof. (1). By the assumption, H admits at most one even vertex label. By Lemma 1, there is no even vertex
label in H if n is even.
(2). Let (X, Y) be the bipartition of a component K. If K has even vertex labels, then the corresponding vertices
lie in X, say. By Lemma 10, there are even number of even vertex labels. Each even vertex label incident with
even number of odd edge label as well as each odd vertex label incident with odd number of odd edge label.
So, K contains odd number of odd edge labels.

Theorem 12. The graph nK4 is edge-prime if and only if n ≥ 2.

Proof. (Necessity) We prove by contrapositive. Suppose there is an edge-prime labeling f of K4. By
Corollary 11, all 4 vertex labels are odd and distinct. Since each vertex label lies between 6 and 15. So the
set of vertex labels is a subset of {7, 9, 11, 13, 15} of size 4. Since the vertex labels are pairwise relatively prime
and the sum of all 4 vertex labels is 42 (from (1)), there is no solution. Hence, K4 is not edge-prime.
(Sufficiency) (a). Suppose n = 2t with t ≥ 1. The labeling of the two left-most graphs in Figure 1 shows that
G = 2K4 is edge-prime with dxy ∈ {2, 4, 6, 8}.
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Figure 1. Edge-prime labeling of 6K4 with dxy ∈ {2, 4, 6, 8}
By Remark 1 and Corollary 8, we conclude that (2t)K4 is edge-prime for all t ≥ 1.

(b). Suppose n = 2t + 1 with t ≥ 1. If t = 1, then the labeling in Figure 2 shows that H = 3K4 is edge-prime
and dxy ∈ {2, 4, 6, 8}.
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Figure 2. Edge-prime labeling of 3K4 with dxy ∈ {2, 4, 6, 8}.

If t ≥ 2, then we have just known that G = (2t − 2)K4 is edge-prime. By Remark 1 and Corollary 6,
G + H = (2t + 1)K4 is edge-prime.

We now consider cubic graphs with every component of order 6. Each component must be a C3 × K2 or a
K(3, 3).

Theorem 13. For n ≥ 1, n(C3 × K2) is edge-prime.

Proof. In Figure 3, the labeling of the two top-left graphs shows that H = C3 × K2 and K = 2(C3 × K2) are
edge-prime with dxy ∈ {2, 4, 6, 8}.
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Figure 3. Edge-prime labeling of 5(C3 × K2) with dxy ∈ {2, 4, 6, 8}.

For n = 2t ≥ 2, by Remark 1 and Corollary 8, we have (2t)(C3 × K2) is edge-prime for all t ≥ 1.

Suppose n = 2t + 1 ≥ 1. Since H is edge-prime, we only need to consider 2t + 1 ≥ 3. Since we have
already known that G = (2t)(C3×K2) is edge-prime, by Remark 1 and Corollary 6 G + H = (2t + 1)(C3×K2)

is edge-prime.

The next theorem shows that there are infinitely many non-edge-prime cubic graphs.

Theorem 14. For n ≥ 1, n(K(3, 3)) is edge-prime if and only if n ≡ 0 or 1 (mod 4).

Proof. (Necessity) Suppose h is a bijective edge labeling of n(K(3, 3)) such that no 2 adjacent vertex labels are
even. By Corollary 11 each component K(3, 3) contains odd number of odd edge labels. So, n(K(3, 3)) satisfies
the hypotheses of Theorem 9. Hence if n(K(3, 3)) is edge-prime, then n ≡ 0 or 1 (mod 4).
(Sufficiency) (a). Consider n = 4t. The labeling in Figure 4 shows that G = 4K(3, 3) is edge-prime with dxy ∈
{1, 2, 3, 4, 6, 8}. Clearly, G satisfies the hypotheses of Corollary 8. Hence, we have (4t)K(3, 3) is edge-prime for
each t ≥ 1.
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Figure 4. Edge-prime labeling of 4K(3, 3) with dxy ∈ {1, 2, 3, 4, 6, 8}.

(b). Consider n = 4t + 1, t ≥ 0. The labeling of the graph in Figure 5 shows that H = K(3, 3) is edge-prime
with dxy ∈ {4, 8}.
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Figure 5. Edge-prime labeling of K(3, 3) with dxy ∈ {4, 8}

We assume that t ≥ 1. Since G = (4t)K(3, 3) is edge-prime, by Remark 1 and Corollary 6 we have
G + H = (4t + 1)K(3, 3) is edge-prime.

Theorem 15. For m, n ≥ 1, m(C3 × K2) + nK(3, 3) is edge prime.

Proof. Case 1. n = 4t, t ≥ 1. From Theorem 14 we know that (4t)K(3, 3) is edge-prime (with dxy ∈
{1, 2, 3, 4, 6, 8}). From Theorem 13 we know that m(C3 × K2) admits an edge-prime labeling with dxy ∈
{2, 4, 6, 8}. Since the size of (4t)K(3, 3) is 36t, by Remark 1 and Corollary 6 we have (4t)K(3, 3) + m(C3 × K2)

is edge-prime with dxy ∈ {1, 2, 3, 4, 6, 8}.
Case 2. n = 4t + 1, t ≥ 0. Combining the labeling of K(3, 3) in Figure 5 and the labeling of C3 × K2 in
the top-middle of Figure 3 we have an edge-prime labeling of (C3 × K2) + K(3, 3) (with dxy ∈ {2, 4, 6, 8}).
From Theorem 13, Theorem 14 or Case 1, (m− 1)(C3× K2) + (4t)K(3, 3) admits an edge-prime labeling g with
dxy ∈ {1, 2, 3, 4, 6, 8}, m ≥ 1 and t ≥ 0. Since the size of C3 × K2 is 18, g has Property (C). By Corollary 6
we obtain that [(C3 × K2) + K(3, 3)] + [(m − 1)(C3 × K2) + (4t)K(3, 3)] = m(C3 × K2) + (4t + 1)K(3, 3) is
edge-prime.
Case 3. n = 4t + 2, t ≥ 0. From Case 2 or Theorem 14, there is an edge-prime labeling of (m− 1)(C3 × K2) +

(4t + 1)K(3, 3) with dxy ∈ {1, 2, 3, 4, 6, 8} for m ≥ 1 and t ≥ 0. By the same argument as in Case 2, we have
[(C3 × K2) + K(3, 3)] + [(m− 1)(C3 × K2) + (4t + 1)K(3, 3)] = m(C3 × K2) + (4t + 2)K(3, 3) is edge-prime.
Case 4. n = 4t + 3, t ≥ 0. Consider the edge-prime labeling of (C3 × K2) + 3K(3, 3) as shown in Figure 6.

1

2

3

4

5

6

7

8

9

10

11

12

14

15

19

15

17

25

17

13

16

17

19

21

37

45

47

41

43

41 71

95

23

27

20

2624

28
22

36
31

30

69

33
32

29

67

71

25

13

18

87

35

34

73

77

103

79

83

95

Figure 6. Edge-prime labeling of (C3 × K2) + 3K(3, 3) with dxy ∈ {2, 4, 6, 8, 12, 16}.

From Theorem 13, Theorem 14, or Case 1, (m− 1)(C3 × K2) + (4t)K(3, 3) admits an edge-prime labeling
g with dxy ∈ {1, 2, 3, 4, 6, 8}, m ≥ 1 and t ≥ 0. Since the size of (C3 × K2) + 3K(3, 3) is 36, by Corollary 6
we get that m(C3 × K2) + (4t + 3)K(3, 3) are edge-prime. Note that the resulting labeling induces dxy ∈
{1, 2, 3, 4, 6, 8, 12, 16}.

It is known that there are exactly 5 connected cubic graphs of order 8. Figure 7 shows edge-prime labelings
of these 5 graphs, denoted Gk, 1 ≤ k ≤ 5.
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Figure 7. Edge-prime labelings for each cubic graph of order 8 with dxy ∈ {2, 4, 6, 8}.

Theorem 16. If every component of G is a connected cubic graph of order 8, then G is edge-prime.

Proof. Since each edge labeling shown in the Figure 7 induces dxy ∈ {2, 4, 6, 8}. By Remark 1 and applying
Corollary 6 repeatedly, the theorem holds.

3. Cubic graphs with distinct order components

In this section, we completely determine the edge-primality of cubic graphs with components of distinct
orders of 4, 6 or 8.

Theorem 17. For m, n ≥ 1, mK4 + n(C3 × K2) is edge-prime.

Proof. Suppose m ≥ 2. From Table 1 we know that mK4 and n(C3 × K2) are edge-prime when m ≥ 2 and
n ≥ 1. Since |E(mK4)| = 6m and dxy ∈ {2, 4, 6, 8} under the edge-prime labeling of n(C3 × K2), by Remark 1
and Corollary 6, mK4 + n(C3 × K2) is edge-prime.

Suppose m = 1. Consider odd n. The edge-prime labeling of K4 + (C3 × K2) shown in Figure 8 with
dxy ∈ {2, 4, 6, 8}. For n ≥ 3, from Table 1 we know that (n− 1)(C3 × K2) is edge-prime with size 9(n− 1). By
Corollary 6, (n− 1)(C3 × K2) + [K4 + (C3 × K2)] = K4 + n(C3 × K2) is edge-prime with dxy ∈ {2, 4, 6, 8}.
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Figure 8. Edge-prime labeling of K4 + (C3 × K2) with dxy ∈ {2, 4, 6, 8}.

Consider even n. Figure 9 shows that K4 + 2(C3 × K2) is edge-prime. Using Table 1 and by Corollary 6,
if needed, we get that [K4 + 2(C3 × K2)] + (n − 2)(C3 × K2) = K4 + n(C3 × K2) is edge-prime with dxy ∈
{2, 4, 6, 8}.
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Figure 9. K4 + 2(C3 × K2) is edge-prime with dxy ∈ {2, 4, 6, 8}.
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Theorem 18. For m, n ≥ 1, the graph mK4 + nK(3, 3) is edge-prime.

Proof. (a). Suppose n ≡ 0, 1 (mod 4). Suppose m is even. By Table 1, we know that mK4 and nK(3, 3) are
edge-prime. Note that dxy ∈ {1, 2, 3, 4, 6, 8} for xy ∈ E(nK(3, 3)) and |E(mK4)| = 6m. By Remark 1 and
Corollary 6, we get the result.

Suppose m is odd. From the whole figure and the two top-left graphs of Figure 10 we see that K4 + K(3, 3)
and K4 + 4K(3, 3) are edge-prime with dxy ∈ {1, 2, 3, 4, 6, 8}.
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Figure 10. Edge-prime labeling of K4 + 4K(3, 3) with dxy ∈ {1, 2, 3, 4, 6, 8}.

By Table 1 or the above case, there is an edge-prime labeling of (m− 1)K4 + 4(t− 1)K(3, 3) for odd m ≥ 1
and t ≥ 1. Since |E((m − 1)K4 + 4(t − 1)K(3, 3))| = 6(m − 1) + 36(t − 1), the labelings of K4 + K(3, 3) and
K4 + 4K(3, 3) have Property (C). By Corollary 6 we get that mK4 + (4(t− 1) + 1)K(3, 3) and mK4 + (4t)K(3, 3)
are edge-prime. Note that dxy ∈ {1, 2, 3, 4, 6, 8} for the resulting edge labelings above.
(b). Suppose n ≡ 2, 3 (mod 4). Figure 11 shows that K4 + 2K(3, 3) is edge-prime.
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Figure 11. K4 + 2K(3, 3) is edge-prime with dxy ∈ {2, 4, 6, 8, 12, 16}.

From the above case, there is an edge-prime labeling g of (m − 1)K4 + (n − 2)K(3, 3) with dxy ∈
{1, 2, 3, 4, 6, 8} for m ≥ 1 and n ≥ 2. Since |E(K4 + 2K(3, 3))| = 24, g has Property (C). By Corollary 6 we
have mK4 + nK(3, 3) is edge-prime.

The following Table 1 gives a summary of the edge-prime labelings obtained above together with the set
of the difference of adjacent vertex labels dxy.

Table 1. Results from Theorems 12 to 18.

Graph G Condition(s) {dxy | xy ∈ E(G)}
nK4 n ≥ 2 {2, 4, 6, 8}

n(C3 × K3) n ≥ 1 {2, 4, 6, 8}
nK(3, 3) n ≡ 0, 1 (mod 4) {1, 2, 3, 4, 6, 8}

m(C3 × K2) + nK(3, 3) m, n ≥ 1 {1, 2, 3, 4, 6, 8, 12, 16}
mK4 + n(C3 × K2) m, n ≥ 1 {2, 4, 6, 8}

mK4 + nK(3, 3) m, n ≥ 1 {1, 2, 3, 4, 6, 8, 12, 16}
∑5

i=1 niGi ∑5
i=1 ni ≥ 1 {2, 4, 6, 8}
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Theorem 19. For m1, m2, m3 ≥ 1, the graph m1K4 + m2K(3, 3) + m3(C3 × K2) is edge-prime.

Proof. (a). Suppose m2 is even. From Table 1, m1K4 + m2(K(3, 3)) is edge-prime and m3(C3 × K2) admits an
edge-prime labeling with dxy ∈ {2, 4, 6, 8}. Since the size of m1K4 +m2K(3, 3) is 6(m1 + 3m2/2), by Corollary 6,
we have the theorem.
(b). Suppose m2 is odd. For even m3, from the case (a) or Table 1, m1K4 + (m2 − 1)K(3, 3) + m3(C3 × K2) is
edge-prime with even size. From Figure 5 there is an edge-prime labeling of K(3, 3) with dxy ∈ {4, 8}. By
Corollary 6 we have the theorem.

Now, assume that m3 is odd. If m1 = m2 = m3 = 1, then Figure 12 shows an edge-prime labeling of
K4 + K(3, 3) + (C3 × K2).
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Figure 12. K4 + K(3, 3) + (C3 × K2) is edge-prime with dxy ∈ {2, 4, 6, 8}.

So we assume that at least one of m1, m2, m3 is greater than 1. From Case (a) or Table 1, m1K4 + (m2 −
1)K(3, 3) + (m3 − 1)(C3 × K2) is edge-prime with the size a multiple of 6. From the proof of Theorem 15 there
is an edge-prime labeling of (C3×K2)+K(3, 3) with dxy ∈ {2, 4, 6, 8}. By Corollary 6 we have the theorem.

Remark 3. The set of dxy of the edge-prime labeling obtained above is {1, 2, 3, 4, 6, 8, 12, 16}.

Theorem 20. The graph mK4 + ∑5
i=1 niGi is edge-prime for all m ≥ 1 and ∑5

i=1 ni ≥ 1.

Proof. Suppose m ≥ 2. From Table 1 and by Corollary 6 we get the theorem. Suppose m = 1. For 1 ≤ k ≤ 5,
we choose the smallest k such that nk > 0 and label K4 + Gk from 1 to 18. The K4 is labeled by 1, 2, 4, 5, 7, 10 as
shown in Figure 9. The labeling of each Gk by {3, 6, 8, 9} ∪ [11, 18], if needed, is labeled by the remaining labels
shown in Figure 13.
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Figure 13. An edge labeling of G1 to G5 by {3, 6, 8, 9} ∪ [11, 18] with dxy ∈ {2, 4, 6, 8}; {2, 8, 12}; {2, 4, 6};
{2, 4, 6, 8}; {4, 8, 16}.

The remaining unlabeled subgraph, if any, admits an edge-prime labeling with dxy ∈ {2, 4, 6, 8} by Table 1.
By Corollary 6 we obtain the theorem.

Theorem 21. The graph m(C3 × K2) + ∑5
i=1 niGi is edge-prime for m ≥ 1 and ∑5

i=1 ni ≥ 1.
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Proof. From Table 1 we know that there are edge-prime labelings of ∑5
k=1 niGi and m(C3 × K2) with dxy ∈

{2, 4, 6, 8}. Since the size of ∑5
k=1 niGi is 12 multiple, by Corollary 6 we have the theorem.

Theorem 22. The graph mK(3, 3) + ∑5
i=1 niGi is edge-prime for m ≥ 1 and ∑5

i=1 ni ≥ 1.

Proof. (a). Suppose m ≡ 0, 1 (mod 4). From Table 1 we know that there are edge-prime labelings of ∑5
i=1 niGi

and mK(3, 3) with dxy ∈ {1, 2, 3, 4, 6, 8}. Since the size of ∑5
i=1 niGi is a 12 multiple, by Corollary 6 we have

the theorem. Note that the set of difference adjacent vertex labels of the new edge-prime labeling is dxy ∈
{1, 2, 3, 4, 6, 8}.

Suppose m ≡ 2, 3 (mod 4). For 1 ≤ k ≤ 5, we choose the smallest k such that nk > 0 and label 2K(3, 3) +
Gk from 1 to 30. Figure 4 shows an edge labeling of 2K(3, 3) labeled by integers in [1, 21] \ {13, 18, 20} with
dxy ∈ {2, 4, 6, 8}. The labeling of each Gk by {13, 18, 20} ∪ [22, 30], if needed, is shown in Figure 14.
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Figure 14. An edge labeling of graphs G1 to G5 by {13, 18, 20} ∪ [22, 30] with dxy ∈ {2, 4, 6, 8, 12}; {1, 2, 3, 4, 6, 9};
{2, 4, 6, 8, 12, 16}; {2, 4, 6, 8, 12}; {2, 4, 6, 8}.

From Case (a) or Table 1 there is an edge-prime labeling of (m− 2)K(3, 3) + ∑
1≤i≤5

i 6=k

niGi, if any, with dxy ∈

{1, 2, 3, 4, 6, 8}. Since the size of 2K(3, 3) + Gk is 30, by Corollary 6 we have the theorem.

Theorem 23. For m1, m2 ≥ 1 and ∑5
i=1 ni ≥ 1, the graph m1K4 + m2(C3 × K2) + ∑5

i=1 niGi is edge-prime.

Proof. The size of ∑5
i=1 niGi is a multiple of 12. From Table 1 and by Corollary 6 we have the theorem.

Theorem 24. For m1, m2 ≥ 1 and ∑5
i=1 ni ≥ 1, the graph m1K4 + m2K(3, 3) + ∑5

i=1 niGi is edge-prime.

Proof. The size of ∑5
i=1 niGi is a multiple of 12. From Table 1 and by Corollary 6 we have the theorem.

Theorem 25. For m1, m2 ≥ 1 and ∑5
i=1 ni ≥ 1, the graph m1(C3 × K2)+ m2K(3, 3)+ ∑5

i=1 niGi is edge-prime.

Proof. The size of ∑5
i=1 niGi is a multiple of 12. From Table 1 and by Corollary 6 we have the theorem.

Theorem 26. Let m1, m2, m3, ∑5
i=1 ni ≥ 1, the graph m1K4 + m2(C3 × K2) + m3K(3, 3)+ ∑5

i=1 Gi is edge-prime.

Proof. The size of ∑5
i=1 niGi is a multiple of 12. From Remark 3 and by Corollary 6 we have the theorem.

Corollary 27. If G is a cubic graph with every component of order 4, 6 or 8, then G is edge-prime if and only if G 6∼= K4

or nK(3, 3), n ≡ 2, 3 (mod 4).
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In [7], we proved that (i) a 1-regular graph is edge-prime if and only if it is K2, (ii) all 2-regular graphs are
edge-prime, and (iii) if G is edge-prime, then G + Cn (n ≥ 3) and G + K(1, 2) are edge-prime.

Corollary 28. Let G be an edge-prime graph as in Sections 2 and 3. For ∑ mk ≥ 1, nk ≥ 3, G + ∑ mkCnk and
G + K(1, 2) are edge-prime.

4. Open problems

Problem 29. Determine the edge-primality of the following families of cubic graphs.

(a) cylinder graph Cn × K2, n ≥ 5.
(b) Mobiüs ladder M(2n), n ≥ 2.
(c) generalized Petersen graph P(n, k), n ≥ 5, k ≥ 2.

It is easy to verify that Kn is edge-prime for n = 2, 3, 5, 6, 7 but not n = 4, and K(n, n) is edge-prime for
n = 2, 3, 4. We end with the following conjecture.

Conjecture 4.1. For n ≥ 2, we have

(a) Kn is edge-prime if and only if n 6= 4.
(b) K(n, n) is edge-prime.
(c) All connected cubic graphs, except K4, are edge-prime.
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