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A note on the Kirchhoff index of graphs
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Abstract: Let G be a simple connected graph with n vertices, m edges, and a sequence of vertex degrees
∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ > 0. Denote by µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn = 0 the Laplacian eigenvalues of
G. The Kirchhoff index of G is defined as K f (G) = n ∑n−1

i=1
1
µi

. A couple of new lower bounds for K f (G) that
depend on n, m, ∆ and some other graph invariants are obtained.
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1. Introduction

L et G = (V, E), V = {v1, v2, . . . , vn}, be a simple connected graph with n vertices, m edges and let
∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ > 0, di = d(vi), be a sequence of vertex degrees of G. If vertices vi and vj

are adjacent we write vi ∼ vj or, for brevity, i ∼ j.
In graph theory, an invariant is a property of graphs that depends only on their abstract structure,

not on the labeling of vertices or edges. Such quantities are also referred to as topological indices. The
topological indices are an important class of molecular structure descriptors used for quantifying information
on molecules. Many of them are defined as simple functions of the degrees of the vertices of (molecular)
graph (see e.g. [1–3]). Historically, the first vertex-degree-based (VDB) structure descriptors were the graph
invariants that are nowadays called Zagreb indices. The first and the second Zagreb index, M1 and M2, are
defined as

M1(G) =
n

∑
i=1

d2
i ,

and
M2(G) = ∑

i∼j
didj .

The quantity M1 was first time considered in 1972 [4], whereas M2 in 1975 [5]. These were named Zagreb
group indices [6] (in view of the fact that the authors of [4,5] were members of the "Rudjer Bošković" Institute
in Zagreb, Croatia). Eventually, the name was shortened into first Zagreb index and second Zagreb index [7].

In [4] another topological index defined as sum of cubes of vertex degrees, that is

F(G) =
n

∑
i=1

d3
i ,

was encountered. However, for the unknown reasons, it did not attracted any attention until 2015 when it
was reinvented in [8] and named the forgotten topological index. Details of the theory and applications of these
topological indices can be found, for example, in [9,10].

In [11] Fajtlowicz defined a topological index called the inverse degree, ID(G), as

ID(G) =
n

∑
i=1

1
di

.
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Here we are interested in a graph invariant called the Kirchhoff index, which was introduced by Klein
and Randić in [12]. It is defined as

K f (G) = ∑
i<j

rij,

where rij is the resistance distance between the vertices vi and vj, i.e. rij is equal to the resistance between
equivalent points on an associated electrical network obtained by replacing each edge of G by a unit (1 ohm)
resistor. The Kirchhoff index has a very nice purely mathematical interpretation. Namely, in [13] and [14] it
was demonstrated that the Kirchhoff index of a connected graph can also be represented as

K f (G) = n
n−1

∑
i=1

1
µi

,

where µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn = 0 are the Laplacian eigenvalues of G.
In this paper we obtain new lower bounds for K f (G) which depend on some of the graph structural

parameters and above mentioned topological indices.
Before we proceed, let us define one special class of d-regular graphs Γd [15]. Let N(i) be a set of all

neighbors of vertex i, i.e. N(i) = {k | k ∈ V, k ∼ i}, and d(i, j) the distance between vertices i and j. Denote by
Γd a set of all d-regular graphs, 1 ≤ d ≤ n− 1, with diameter D = 2 and |N(i) ∩ N(j)| = d for i � j.

2. Preliminaries

In this section we recall some results from the literature which are needed for the subsequent
considerations.

Lemma 1. [16] Let p = (pi), i = 1, 2, . . . , n, be a nonnegative real number sequence and a = (ai), i = 1, 2, . . . , n, a
positive real number sequence. Then for any real r, such that r ≥ 1 or r ≤ 0, holds(

n

∑
i=1

pi

)r−1 n

∑
i=1

piar
i ≥

(
n

∑
i=1

piai

)r

. (1)

If 0 ≤ r ≤ 1, then the sense of (1) reverses. Equality holds if and only if either r = 0, or r = 1, or a1 = a2 = · · · = an,
or p1 = p2 = · · · = pt = 0 and at+1 = at+2 = · · · = an, for some t, 1 ≤ t ≤ n− 1.

Lemma 2. [17] Let G be a simple connected graph with n ≥ 2 vertices. Then

K f (G) ≥ −1 + (n− 1)ID(G). (2)

Equality holds if and only if either G ∼= Kn, or G ∼= Kt,n−t, 1 ≤ t ≤ b n
2 c, or G ∈ Γd.

3. Main results

In the next theorem we determine a new lower bound for K f (G) in terms of the invariant M1(G) and
graph parameters n, m and ∆.

Theorem 3. Let G be a simple connected graph with n ≥ 2 vertices and m edges. If G is d-regular graph, 1 ≤ d ≤ n− 1,
then

K f (G) ≥ n(n− 1)− d
d

. (3)

Otherwise

K f (G) ≥ n(n− 1)− ∆
∆

+
(n− 1)(n∆− 2m)2

∆(2m∆−M1(G))
. (4)

Equality in (3) holds if and only if G ∼= Kn, or G ∈ Γd. Equality in (4) holds if and only if G ∼= K∆,n−∆.
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Proof. If G is d-regular graph, 1 ≤ d ≤ n− 1, then

ID(G) =
n
d

.

From the above and (2) we arrive at (3).
For r = 2, pi := ∆

di
− 1, ai := di, i = 1, 2, . . . , n, the inequality (1) becomes

n

∑
i=1

(
∆
di
− 1
) n

∑
i=1

(∆− di)di ≥
(

n

∑
i=1

(∆− di)

)2

,

that is
(∆ID(G)− n)(2m∆−M1(G)) ≥ (n∆− 2m)2. (5)

If G is d-regular graph, 1 ≤ d ≤ n− 1, then 2m∆−M1(G) = 0. Therefore, we assume that G is not d-regular
graph, 1 ≤ d ≤ n− 1. Then, according to (5) we have

ID(G) ≥ n
∆
+

(n∆− 2m)2

∆(2m∆−M1(G))
.

The inequality (4) is obtained from the above and (2).
The inequality (3) was proven in [18] with equality holding if and only if G ∼= Kn or G ∈ Γd.
Since G is not d-regular graph, 1 ≤ d ≤ n− 1, then equality in (5) is attained if and only if ∆ = d1 = d2 =

· · · = dt > dt+1 = · · · = dn, for some t, 2 ≤ t ≤ n− 1, which implies that equality in (4) holds if and only if
G ∼= K∆,n−∆.

Remark 1. According to (4) follows

K f (G) ≥ n(n− 1)− ∆
∆

,

which was proven in [15].

Corollary 4. Let G be a simple connected graph with n ≥ 2 vertices and m edges. If G ∼= Kn, then

K f (G) = n− 1.

Otherwise

K f (G) ≥ n− 1 +
(n(n− 1)− 2m)2

2m(n− 1)−M1(G)
. (6)

Equality holds if and only if G ∼= K1,n−1, or G ∈ Γd.

Proof. For r = 2, pi := n−1
di
− 1, ai := di, i = 1, 2, . . . , n, the inequality (1) transforms into

n

∑
i=1

(
n− 1

di
− 1
) n

∑
i=1

(n− 1− di)di ≥
(

n

∑
i=1

(n− 1− di)

)2

,

that is
((n− 1)ID(G)− n)(2m(n− 1)−M1(G)) ≥ (n(n− 1)− 2m)2. (7)

If G ∼= Kn, then K f (G) = n− 1 and 2m(n− 1)−M1(G) = 0. If G � Kn, from (7) we obtain

(n− 1)ID(G) ≥ n +
(n(n− 1)− 2m)2

2m(n− 1)−M1(G)
.

The inequality (6) follows from the above and (2).
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Equality in (7), G � Kn, is attained if and only if ∆ = d1 = d2 = · · · = dn 6= n− 1, or n− 1 = ∆ = d1 =

d2 = · · · = dt > dt+1 = · · · = dn, for some t, 1 ≤ t ≤ n− 1. This implies that equality in (6) holds if and only
if G ∼= K1,n−1, or G ∈ Γd.

Remark 2. In [19] the following was proven

K f (G) ≥ 2mn(n− 1)(n− 2)
4m2 −M1(G)− 2m

, (8)

with equality holding if and only if G ∼= Kn. We have performed testing on a large number of connected
graphs, but could not find any graph for which the inequality (8) is stronger than (6).

Corollary 5. Let G be a simple connected graph with n ≥ 2 vertices and m edges. Then

K f (G) ≥ n2(n− 1)− 2m
2m

. (9)

Equality holds if and only if G ∼= Kn, or G ∈ Γd.

Proof. The inequality (9) is obtained according to (6) and inequality

M1(G) ≥ 4m2

n
,

which was proven in [20] (see also [21,22]). The inequality (9) was proven in [23] (see also [18]).

The proof of the next theorem is fully analogous to that of the Theorem 3, hence omitted.

Theorem 6. Let G be a simple connected graph with n ≥ 2 vertices and m edges. If G is d-regular graph, 1 ≤ d ≤ n− 1,
then the inequality (3) holds. Otherwise

K f (G) ≥ n(n− 1)− ∆
∆

+
(n− 1)(n∆− 2m)3/2

∆(∆M1(G)− F(G))1/2 . (10)

Equality in (10) holds if and only if G ∼= K∆,n−∆.

Corollary 7. Let G be a simple connected graph with n ≥ 2 vertices and m edges. If G ∼= Kn, then

K f (G) = n− 1.

If G � Kn, then

K f (G) ≥ n− 1 +
(n(n− 1)− 2m)3/2

((n− 1)M1(G)− F(G))1/2 . (11)

Equality holds if and only if G ∼= K1,n−1, or G ∈ Γd.

Corollary 8. Let G be a simple connected graph with n ≥ 2 vertices and m edges. If G ∼= Kn, then

K f (G) = n− 1.

If G � Kn, then

K f (G) ≥ n− 1 +
(n(n− 1)− 2m)3/2

((n− 1)M1(G)− 2M2(G))1/2 . (12)

Equality holds if and only if G ∈ Γd.

Proof. The inequality (12) is obtained from (11) and inequality F(G) ≥ 2M2(G).
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Remark 3. In [24] a vertex–degree–based topological index called the Lanzhou index, Lz(G), is defined as

Lz(G) =
n

∑
i=1

(n− 1− di)d2
i .

According to (11) the following relation between topological indices K f (G) and Lz(G) follows

(K f (G)− n + 1)Lz(G)1/2 ≥ (n(n− 1)− 2m)3/2,

with equality holding if and only if G ∼= Kn, or G ∼= K1,n−1, or G ∈ Γd.
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