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1. Introduction

L et G = (V, E) be a graph. We denote the number of vertices of G by n and the number of edges by
m, i.e., |V(G)| = n and |E(G)| = m. The degree of a vertex v, denoted by dG(v) is the number of

edges incident to v. For undefined terminologies, we refer the reader to [1]. A graph invariant is any function
on a graph that does not depend on a labeling of its vertices and are called topological indices. Hundreds
of different invariants have been employed to date (with unequal success) in QSAR/QSPR studies. Among
them two are Zagreb indices. Due to their chemical relevance, they have been subject of numerous papers in
literature [2–5]. There two invariants are called the first Zagreb index and second Zagreb index [6–11] and are
defined as:

M1(G) = ∑
u∈V(G)

dG(u)2 and M2(G) = ∑
uv∈E(G)

dG(u) dG(v),

respectively.
In fact, one can rewrite the first Zagreb index as:

M1(G) = ∑
uv∈E(G)

[
dG(u) + dG(v)

]
.

Noticing the contribution of nonadjacent vertex pairs when computing the weighted Winer polynomials
of certain composite graphs, the authors in [6] defined the first Zagreb coindex and the second Zagreb coindex
as:

M1(G) = ∑
uv/∈E(G)

[
dG(u) + dG(v)

]
and M2(G) = ∑

uv/∈E(G)

dG(u) dG(v),

respectively.

1.1. Transformation and total transformation graphs

Transformation graphs receives information from the original graph and converts source information into
a new structure. If it is possible to figure out the given graph from the transformed graph in polynomial time,
such operation may be used to survey miscellaneous structural properties of the original graph considering
the transformation graphs. Therefore it fosters the research of transformation graphs and their structural
properties [12].
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Sampathkumar [13] introduced the concepts of semitotal-point graph and semitotal-line graph which are
stated as follows:

Let G = (V, E) be a graph. The semitotal-line graph T2(G) is a graph with V(T2(G)) = V(G) ∪ E(G) and
any two vertices u, v ∈ T2(G) are adjacent if and only if

1. u and v are adjacent edges in G, and
2. one is a vertex of G and other is an edge of G incident with it.

Note that the definition of semitotal-line graph and middle graphs [14] are identical. These two concepts
have been introduced in the same year.

The semitotal-point graph T1(G) is a graph with V(T1(G)) = V(G) ∪ E(G) and any two vertices u, v ∈
T1(G) are adjacent if and only if

1. u and v are adjacent vertices in G and
2. one is a vertex of G and other is an edge of G incident with it.

The total graph T(G) of a graph G is the graph whose vertex set is V(G)∪ E(G), and in which two vertices
are adjacent if and only if they are adjacent or incident in G [15].

Let G = (V, E) be a graph and x, y, z be three variables taking values + or −. The total transformation
graph Gxyz is a graph having V(G) ∪ E(G) as a vertex set, and for α, β ∈ V(G) ∪ E(G), α and β are adjacent in
Gxyz if and only if

1. α, β ∈ V(G), α, β are adjacent in G if x = + and α and β are not adjacent in G if x = −.
2. α, β ∈ E(G), α, β are adjacent in G if y = + and α and β are not adjacent in G if y = −.
3. α ∈ V(G) and β ∈ E(G), α, β are incident in G if z = + and α and β are not incident in G if z = −.

Since there are eight distinct 3-permutations of {+,−}, we obtain eight graphical transformations of G.
It is interesting to see that G+++ is exactly the total graph T(G) of G and G−−− is the complement of T(G).
Also for a given graph G, G++− and G−−+, G+−+ and G−+−, G−++ and G+−− are the other three pairs of
complementary graphs.

The basic properties of these total transformation can be seen in [12,16–18].
In this paper, we obtained some new properties of Zagreb indices. We mainly give explicit formulae for

the second Zagreb index of semitotal-point graph, semitotal-line graph and eight total transformation graphs.

2. Results

We begin with the following straightforward observations.

Observation 1. For a positive integer k, we have ξk(G) = ∑v∈V(G)(dG(v))k. One can see that ξ1(G) is just the
number of edges in G, and ξ2(G) is the first Zagreb index M1(G).

Observation 2. For any nonempty graph G, we have

∑
uv∈E(G)

[
dG(u)2 + dG(v)2] = ∑

w∈V(G)

dG(w)3 = ξ3(G).

Theorem 1. [6] Let G be any nontrivial graph of order n and size m. Then

M2(G) = 2m2 −M2(G)− 1
2

M1(G).

In the next theorem, the explicit formulas of first Zagreb index are given [19].
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Theorem 2. [19] Let G be any nontrivial graph of order n and size m. Then

M1(T1(G)) = M1(G) + 2M2(G) + ξ3(G),

M1(T2(G)) = 4(m + M1(G)),

M1(G+++) = 4M1(G) + 2M2(G) + ξ3(G),

M1(G−−−) = (m + n)[(m + n)2 + 6m− 2n + 1] + 8m + 2(m + n− 3)M1(G) + 2M2(G) + ξ3(G),

M1(G++−) = mn(m + n− 8) + 16m + 2(n− 4)M1(G) + 2M2(G) + ξ3(G),

M1(G−−+) = n(n− 1)2 + m(m + 3)2 − 2(m + 3)M1(G) + 2M2(G) + ξ3(G),

M1(G+−+) = m(m + 3)2 − 2(m + 1)M1(G) + 2M2(G) + ξ3(G).

M1(G−+−) = (m + n)[n(m + n)− 2(n + 4m)] + m[(n− 4)2 + 9] + 2(n− 2)M1(G) + 2M2(G) + ξ3(G),

M1(G−++) = n(n− 1)2 + 2M2(G) + ξ3(G),

M1(G+−−) = m[(nm + 1) + (m + n)(m + n− 2)]− 2(m + n− 1)M1(G) + 2M2(G) + ξ3(G).

In the following Lemma, the order and size of transformation graphs are given [19].

Lemma 1. [19] Let G be a nontrivial graph of order n and size m. Then

|V(T1(G))| = m + n, |E(T1(G))| = m =
1
2
[2m + M1(G)].

|V(T2(G))| = m + n, |E(T2(G))| = 3m.

|V(G+++)| = m + n, |E(G+++)| = m =
1
2
[4m + M1(G)].

|V(G−−−)| = m + n, |E(G−−−)| = m =
1
2
[(m + n− 1)(m + n)− 4m−M1(G)].

|V(G++−)| = m + n, |E(G++−)| = m =
1
2
[2m(n− 2) + M1(G)].

|V(G−−+)| = m + n, |E(G−−+)| = m =
1
2
[m(m + n) + n(n + 1)−M1(G)].

|V(G+−+)| = m + n, |E(G+−+)| = m =
1
2
[m(m + 7)−M1(G)].

|V(G−+−)| = m + n, |E(G−+−)| = m =
1
2
[n(m + n− 1) + m(n− 8) + M1(G)].

|V(G−++)| = m + n, |E(G−++)| = m =
1
2
[n(n− 1) + M1(G)].

|V(G+−−)| = m + n, |E(G+−−)| = m =
1
2
[m(m + 2n− 1)−M1(G)].

In the next Lemma, the edge partition of transformation graphs in terms of E(G) and E(L(G)) are given.

Lemma 2. Let G be a nontrivial graph of order n and size m. Then

1. E(G+++) = E(G) ∪ E(L(G)) ∪ 2E(G),
2. E(G−−−) = E(G) ∪ E(L(G)) ∪ (n− 2) · E(G),
3. E(G++−) = E(G) ∪ E(L(G)) ∪ (n− 2) · E(G),
4. E(G−−+) = E(G) ∪ E(L(G)) ∪ 2E(G),
5. E(G+−+) = E(G) ∪ E(L(G)) ∪ 2E(G),
6. E(G−+−) = E(G) ∪ E(L(G)) ∪ (n− 2) · E(G),
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7. E(G−++) = E(G) ∪ E(L(G)) ∪ 2E(G),
8. E(G+−−) = E(G) ∪ E(L(G)) ∪ (n− 2) · E(G).

Theorem 3. Let G be a nontrivial graph of order n and size m. Then M2(T1(G)) = 4(4m + M1(G)).

Proof. Note that for u ∈ V(T1(G)) ∩ V(G), dT1(G)
(u) = 2dG(u) and for u ∈ V(T1(G) ∩ E(G), dT1(G)

(u) = 2.
Therefore by Lemma 2,

M2(T1(G)) = ∑
u∈V(T1(G))

(2d(u))2 + 2 ∑
u∈V(T1(G))∩V(G)

4d(u) = 4(4m + M1(G)).

as desired.

Theorem 4. Let G be a nontrivial graph of order n and size m. Then M2(T2(G)) = 2M1(G) + 4M2(G) + ξ3(G).

Proof. Suppose e = uv is a vertex in T2(G). It can be easily seen that dT2(G)(e) = dG(u) + dG(v) and if
u ∈ V(T2(G)) ∩V(G), then dT2(G)(u) = dG(u). Therefore by Lemma 2,

M2(T2(G)) = ∑
u∈V(T2(G))∩V(G)

(d(u) + d(v))2 + 2d(u) ∑
u∈V(T2(G)∩E(G))

(d(u) + d(v)) = 2M1(G) + 4M2(G) + ξ3(G).

This completes the proof.

Theorem 5. Let G be a nontrivial graph of order n and size m. Then M2(G+++) = 8M1(G) + 6M2(G) + ξ3(G).

Proof. Note that E(G+++) = E(G) ∪ E(L(G) ∪ 2E(G) and for u ∈ V(G+++) ∩V(G), dG+++(u) = 2dG(u) and
for u ∈ V(G+++) ∩ E(G), dG+++(u) = dG(u) + dG(v). Therefore by Lemma 2,

M2(G+++) = ∑
u∈V(G+++)∩V(G)

2d(u))2 + ∑
u∈E(G+++)∩V(G)

(d(u) + d(v))2 + 4d(u) ∑
u,v∈E(G)

(d(u) + d(v))

= 4M1(G) + 2M2(G) + ξ3(G) + 4M1(G) + 4M2(G)

= 8M1(G) + 6M2(G) + ξ3(G).

as asserted.

Theorem 6. Let G be a nontrivial graph of order n and size m. Then M2(G−−−) = mn(m + n)2 − 2m(m + n)(3n +

4) + m(n + 16)− 3(m + n− 1)M1(G) + 2(n− 1)M2(G) + ξ3(G).

Proof. Note that E(G−−−) = E(G) ∪ E(L(G)) ∪ (n − 2) · E(G), and for u ∈ V(G−−−) ∩ V(G), dG−−−(u) =

m + n − 1− 2dG(u) and for u ∈ V(G−−−) ∩ E(G), dG−−−(u) = m + n − 1− (dG(u) + dG(v)). Therefore by
Lemma 2,

M2(G−−−) = ∑
u∈V(G−−−)∩V(G)

(m + n− (1 + 2dG(u)))2 + ∑
u∈V(G−−−)∩E(G)

(m + n− (1 + (dG(u) + dG(v))))2

+(n− 2)(m + n− (1 + 2dG(u))) ∑
u,v∈E(G)

(m + n− (1 + (dG(u) + dG(v))))

=
[
m(m + n)2 + 2m(m + n) + 17m + 4M1(G)

]
+

[
m(m + n)2 + 2m(m + n) + m

−2(m + n− 1)M1(G) + 2M2(G) + ξ3(G)
]
+ (n− 2)

[
m(m + n)2 − 6m(m + n) + 5m

−(m + n + 3)M1(G) + 2M2(G)
]
.

This completes the proof.
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In fully analogous manner we arrive also at:

Theorem 7. Let G be a nontrivial graph of order n and size m. Then

M2(G++−) = m3 + m(n− 4)
[
n(m + 1)− 2(m + 2)

]
+

[
n(m + 2)− 2(m + 4)

]
M1(G) + 2M2(G) + ξ3(G),

M2(G−−+) = m(m + 3)2 + m(n− 1)[2m + n + 5]− 2(m + n + 2)M1(G) + 2M2(G) + ξ3,

M2(G+−+) = m(m + 3)(m + 11)− 2(m + 3)M1(G)− 2M2(G) + ξ3(G),

M2(G−+−) = m
[
(m + n)2 + (n− 4)2]+ m(n− 2)(n− 4)(n− 4m)− 10m(m + n)

+9m
[
(n− 2)2 + mn− 11

]
M1(G) + ξ3(G),

M2(G−++) = m(n− 1)2 + 2(n− 1)M1(G) + 2M2(G) + ξ3(G),

M2(G+−−) = m(m2 + 1) + m(m + n)(m + n− 2) + m2(n− 2)(m + n + 1)− (n(m + 2)− 2)M1(G)

+2M2(G) + ξ3(G).

Applying Theorem 1, from the results of Theorems 3-7 and Lemma 1, we can deduce expressions for the
second Zagreb coindex of the transformation graphs and total transformation graphs Gxyz. These are collected
in the following:

Corollary 8. Let G be a graph of order n and size m. Then

M2(T1(G)) = 2m2 − 16m + (M1(G))2 + 4(m− 1)M1(G)− 1
2
[
M1(G) + 2M2(G) + ξ3(G)

]
,

M2(T2(G)) = 18m2 − 2m− 4M1(G)− 4M2(G)− ξ3(G),

M2(G+++) =
1
2
[
4m2 + (M1(G))2 + 4(2m− 1)M1(G)− 2M2(G)− ξ3(G)

]
− 8M1(G)− 6M2(G)− ξ3(G),

M2(G−−−) =
1
2
[
(m + n− 1)(m + n)− (4m + M1(G))

]2 −mn(m + n)2 + 2m(m + n)(3n + 4)−m(n + 16)

+3(m + n− 1)M1(G)− 2(n− 1)M2(G)− ξ3(G)− 1
2
[
(m + n)[(m + n)2 + 6m− 2n + 1]

77 + 8m + 2(m + n− 3)M1(G) + 2M2(G) + ξ3(G)
]
,

M2(G++−) =
1
2
[
(2m(n− 2)) + M1(G)2 −mn(m + n− 8)− 16m− 2(n− 4)M1(G)− 2M2(G)− ξ3(G)

]
−
[
m3 + m(n− 4)

[
n(m + 1)− 2(m + 2)

]
+

[
n(m + 2)− 2(m + 4)

]
M1(G) + 2M2(G) + ξ3

]
,

M2(G−−+) =
1
2

[
(m(m + n) + n(n + 1)−M1(G))2 −

[
n(n− 1)2 + m(m + 3)2 − 2(m + 3)M1(G) + 2M2(G)

+ξ3(G)
]]
−

[
m(m + 3)2 + m(n− 1)[2m + n + 5]− 2(m + n + 2)M1(G) + 2M2(G) + ξ3

]
,

M2(G+−+) =
1
2

[
[m(m + 7)−M1(G)]2 −

[
m(m + 3)2 − 2(m + 1)M1(G) + 2M2(G) + ξ3(G)

]]
−
[
m(m + 3)(m + 11)− 2(m + 3)M1(G)− 2M2(G) + ξ3(G

]
,

M2(G−+−) =
1
2

[
[n(m + n− 1) + m(n− 8) + M1(G)]2 −

[
(m + n)[n(m + n)− 2(n + 4m)]

−m[(n− 4)2 + 9] + 2(n− 2)M1(G) + 2M2(G) + ξ3(G)
]]
−

[
m
[
(m + n)2 + (n− 4)2]

−m(n− 2)(n− 4)(n− 4m)− 10m(m + n) + 9m
[
(n− 2)2 + mn− 11

]
M1(G) + ξ3(G)

]
,
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M2(G−++) =
1
2

[
[n(n− 1) + M1(G)]2 −

[
n(n− 1)2 + 2M2(G) + ξ3(G)

]]
−

[
m(n− 1)2

+2(n− 1)M1(G) + 2M2(G) + ξ3(G)

]
,

M2(G+−−) =
1
2

[
[m(m + 2n− 1)−M1(G)]2 −

[
m[(nm + 1) + (m + n)(m + n− 2)]

−2(m + n− 1)M1(G) + 2M2(G) + ξ3(G)
]]
−

[
m(m2 + 1) + m(m + n)(m + n− 2)

−m2(n− 2)(m + n + 1)− (n(m + 2)− 2)M1(G) + 2M2(G) + ξ3(G).
]

.

Proof. The proof follows from the Theorems 1 and 3-7.
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