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Abstract: In this paper, the approach to obtaining nontrivial formulas for some recursively defined sequences
is illustrated. The most interesting result in the paper is the formula for the solution of quadratic map-like
recurrence. Also, some formulas for the solutions of linear difference equations with variable coefficients are
obtained. At the end of the paper, some integer sequences associated with a quadratic map are considered.
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1. Introduction

L et us begin with some notation. Let b be a row vector and a be a finite row vector; (b)j denotes jth

element of vector b, |b| denotes length of b; a`b
def
=
(
(a)1, . . . , (a)|a| , (b)1, . . .

)
, (b)m

l
def
=
(
(b)j

)m

j=l
,

|b|x
def
= ∑

|b|
j=1(b)jxj−1, 1m

def
=
(

1
)m

j=1
, 0m

def
=
(

0
)m

j=1
, [l, m]j

def
= (1∞ × (0l `1m))j, where × denotes the Kronecker

product, l ∈ N, m ∈ N ∪ {∞}. Note that the last function can be expressed by the ceiling function: [l, m]j =

d(j + m)/(l + m)e − dj/(l + m)e.
Also, we use ordinary notation to denote the corresponding entrywise operations. For example, a2

expresses the Hadamard square: a2 =
(
(a)j

2
)|a|

j=1
.

It should be noted that there are many papers on sequences generated by linear difference equations
with variable coefficients. See, for examle, [1–3]. The simple approach illustrated here involves constructing
for each such sequence a corresponding recursive vector sequence, which can be explicitly expressed using
the following property of Hadamard product: (ac) ∗ (bd) = (a ∗ b)(c ∗ d), where |c| = |a|, |d| = |b| and
∗ ∈ {`,×}.

2. Linear recurrences

First we use this property with respect to concatenation.

Theorem 1. If x1, x2 are arbitrary numbers, an, bn are arbitrary number sequences and xn = anxn−1 + bnxn−2 for
n > 3, then

xn =
fn

∑
j=1

((x1 − x2)(f)j + x2)

(
∏

36k6n
(fk)j=1

bk

)(
∏

36k6n
(fk+fk+1)j=0

ak

)
,

where fn is nth Fibonacci number, f =
(

0, 1, 0, 0, . . .
)

is infinite Fibonacci word; fk is obtained from f by replacing each
entry of zero with fk−1 zeros and each entry of one with fk−2 ones.

Proof. Define vectors: x1 =
(

x1

)
, x2 =

(
x2

)
, xn = (bnxn−2)`(anxn−1) for n > 3 and y1 = x1, yn = yn−1 `xn,

pn = 1 fn+1−1 `(bn1 fn−2)`(an1 fn−1) for n > 2.

Let Λkb
def
= b`(b)

|b|
k . We have yn = pnΛ fn−1yn−1 for n > 3, from which it follows that yn = y2,n ∏n

k=3 pk,n,
where y2,n = Λ fn−1 Λ fn−2 . . . Λ f2y2, pk,n = Λ fn−1 Λ fn−2 . . . Λ fk

pk.

Open J. Discret. Appl. Math. 2020, 3(1), 20-24; doi:10.30538/psrp-odam2020.0025 https://pisrt.org/psr-press/journals/odam

(to Margarita)

https://pisrt.org/psr-press/journals/odam/
https://pisrt.org/psr-press
https://pisrt.org/psr-press/journals/odam


Open J. Discret. Appl. Math. 2020, 3(1), 20-24 21

Partition y2,n = y′1 ` . . . `y′n such that |y′i| = fi, then y′1 = x1, y′2 = x2, y′n = y′n−2 + y′n−1 for n >
3. Similarly partition pk,n = p′k,1 ` . . . `p′k,n such that |p′k,i| = fi, then p′k,i = 1 fi

for 1 6 i 6 k − 1, p′k,k =

(bk1 fk−2
)`(ak1 fk−1

), p′k,i = p′k,i−2 `p
′
k,i−1 for k + 1 6 i 6 n.

Note that (xn)− = (y′n)−∏n
k=3(p

′
k,n)−, where by (a)− we denote the vector composed of elements of a

in reverse order. Now (y′n)− and (p′k,n)− can be expressed in terms of infinite generalized Fibonacci words:

(y′n)− = (x1 − x2)(f)
fn
1 + x21 fn , (p′k,n)− = (fk+1 + bkfk + ak(1 fn − fk+1 − fk))

fn
1 .

Finally using xn = |(xn)−|1 we get the result.

The same sequence can be expressed with help of the Kronecker product.

Theorem 2. If x1, x2 are arbitrary numbers, an, bn are arbitrary number sequences and xn = anxn−1 + bnxn−2 for
n > 3, then

xn = ∑
2n−2+16j62n−1

ϑ(2n−1−j+1)=1

((x2 − x1)[1, 1]j + x1) ∏
06k6n−3
[3·2k ,2k ]j=1

ak+3 ∏
06k6n−3
[2k ,2k ]j=0

bk+3,

where ϑ(n)def
= ∏∞

k=0(1− [3 · 2k, 2k]n).

Proof. Define vectors: r1 =
(

x1, x2

)
, rn = (12 × rn−1)(hn × 12n−2) for n > 2, where hn =

(
0, 1, bn+1, an+1

)
.

It can be easily shown that |(rn)2n

2n−1+1|1 = xn+1. Solving the recurrence equation we get: rn = (12n−1 ×
r1)∏n

k=2(12n−k ×hk×12k−2). Taking into account that hk =
(

0, 1, 1, 1
) (

bk+1, 1, bk+1, 1
) (

1, 1, 1, ak+1

)
and doing

some calculations we get the result.

The following lemma allows us to generalize the result to the nonhomogeneous case.

Lemma 1. If x1 is arbitrary vector, bn is 0, 1-vector sequence, an and cn are such that |an| = |cn| = |x1|∏n
i=2 |bi|;

xn = an(bn × xn−1) + cn for n > 2, then

xn = (bn,2 × x1)
n

∏
k=2

(bn,k+1 × ak) +
n

∑
i=2

(bn,i+1 × ci)
n

∏
k=i+1

(bn,k+1 × ak),

where bn,k = bn × bn−1 × · · · × bk, if k 6 n and bn,k = 11, if k > n.

The proof is straightforward.
Vectors r′n for similar nonhomogeneous sequence x′n = anx′n−1 + bnx′n−2 + cn such that |(r′n)2n

2n−1+1|1 =

x′n+1, are defined as follows: r′1 =
(

x1, x2

)
, r′n = (12 × r′n−1)(hn × 12n−2) + cn(02n−1 `11) for n > 2. To use the

lemma we should, of course, do substitutions an = hn × 12n−2 and bn,k = 12n−k+1 .

Theorem 3. If w0 is arbitrary number, an,j is arbitrary number sequence and wn = ∑n−1
j=0 an,jwj for n ∈ N, then

n

∑
j=0

wj = w0 ∑
v∈Vn

|v|

∏
k=1

a(v)k ,(01 `v)k
,

where set Vn consists of all vectors v such that 1 6 (v)i−1 < (v)i 6 n for 2 6 i 6 |v|.

Proof. Define vectors: w0 =
(

w0

)
, w1 =

(
w0, a1,0w0

)
, wn = wn−1 `(wn−1qn) for n > 2, where (qn)1 = an,0,

(qn)2k

2k−1+1 = an,k12k−1 for 1 6 k 6 n− 1. From the recurrence equation it follows that if equality |wl |1 = ∑l
j=0 wj

is true for l = n − 1 > 1, then it is true for l = n; it is true for l = 1, so we conclude that it is true for any
l ∈ N. Solving the recurrence equation, we get: wn = w0 ∏n

k=1(12n−k × (12k−1 `qk)) for n ∈ N. Noting that

qk =
(

ak,dlog2 je
)2k−1

j=1
, we have

|wn|1 = w0

2n

∑
j=1

n

∏
k=1

([2k−1, 2k−1]j(ak,dlog2(1+(j−1) mod 2k−1)e − 1) + 1).
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The quantity [2k, 2k]j equals the value of kth digit of number (j− 1) in binary numeral system. If ki is serial
number of ith digit 1, then dlog2(1 + (j− 1) mod 2ki )e = 1 + ki−1. Therefore, |wn|1 = w0 ∑j ∏i aki+1,ki−1+1,
assuming k0 = −1. Here (ki + 1) ranges over v ∈ Vn: ki + 1 = (v)i.

In the same way vectors w′n for nonhomogeneous sequence w′n = cn + ∑n−1
j=0 an,jw′j such that |w′l |1 =

∑l
j=0 wj, are defined as follows: w′0 =

(
w0

)
, w′1 =

(
w0, c1 + a1,0w0

)
, w′n = w′n−1 `(w

′
n−1qn) + cn(02n−1 `11)

for n > 2.

3. Quadratic map

It is well-known that in many cases iterations of a polynomial of degree 2 in the general case, i.e. solutions
of quadratic map, can be expressed by iterations of a polynomial of degree 2 with one parameter.

Theorem 4. Let p(0)(x) = x, p(n)(x) = p(n−1)(p(x)) ( for n ∈ N ) be iterations of polynomial p(x) = λ(x + 1)x,
then

p(n)(x) =
2n

∑
k=1

xk
kωn−1

∑
i=(k−1)ωn

n

∏
j=1

λµi,j−1

(
µi,j−1

µi,j − µi,j−1

)
,

where ωn = 2
n(n−1)

2 , µi,j = d
1+i mod ωj+1

ωj
e.

Proof. Any polynomial p(n)(x) can be expressed as follows: p(n)(x) = ∑2n

k=1 gn,kxk, where gn,k = gn,k(λ) are
polynomials defined by equalities: g0,1 = 1, gn,k = ∑2n−1

i=1 qk,ign−1,i (for 1 6 k 6 2n), where qk,i = λi( i
k−i).

Let p0 =
(

1
)

, pn = (12n × pn−1)(qn × 1ωn−1) for ∈ N, where

qn = (q1,j)
2n−1

j=1 `(q2,j)
2n−1

j=1 ` . . . `(q2n ,j)
2n−1

j=1 =
(

qdi/2n−1e,1+(i−1) mod 2n−1

)22n−1

i=1
.

Then |(pn)
kωn
1+(k−1)ωn

|1 = gn,k. Solving the equation, we get:

pn =
n

∏
k=1

(
1

2
(n+k+1)(n−k)

2
× qk × 1ωk−1

)
.

The last step is to check that 1∞ × qk × 1ωk−1 =
(
qµj,k ,µj,k−1

)∞

j=0
.

Remark 1. Using generating polynomial |qk|t = λ(1 + tm)((λtm+1 + λt2m+1)m − 1)/(λtm+1 + λt2m+1 − 1),
where m = 2k−1 and taking in account formula |a× b|t = |a|t|b| |b|t we can represent p(n)(x) as Hadamard’s
product of n functions. The polynomial |qk|t can be derived using polynomials ϕk,m = ∑m

j=1 (
j

k−j)(λt)j−1 as

follows. Taking in account that ϕk,m = λt(ϕk−1,m + ϕk−2,m)− (λt)m( m+1
k−m−1) for k > 3 and m > 1, we can write

λ−1|qk|t =
2m

∑
k=1

t(k−1)m ϕk,m = 1 + tm + λtm+1
2m−1

∑
k=1

t(k−1)m ϕk,m + λt2m+1
2m−2

∑
k=1

t(k−1)m ϕk,m − λm
2m

∑
k=2

tkm
(

m + 1
k−m− 1

)
= 1 + tm + λtm+1(λ−1|qk|t − tm(2m−1)ϕ2m,m) + λt2m+1(λ−1|qk|t − tm(2m−1)ϕ2m,m − tm(2m−2)ϕ2m−1,m)

− λm(tm(m+1)(1 + tm)m+1 − (m + tm + 1)t2m2+m).

From here taking in account ϕ2m,m = (λt)m−1 and ϕ2m−1,m = m(λt)m−1 we immediately get |qk|t.

Let’s consider another episode. Let s(0)(x) = x, s(n)(x) = s(n−1)(s(x)) (for n ∈ N) be iterations
of polynomial s(x) = sλ(x) = λ(x2 − 1) + 1 and λ 6= 0. Define vectors: s1 =

(
x− 1, 1

)
, sn =

λs
〈2〉
n−1 − (λ − 1)(0

22n−1−1 `
1) for n > 2, where triangular brackets indicate Kronecker degree. Obviously,

|sn|1 = s(|sn−1|1) = s(n)(x).
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Solving the equation, we get:

sn = λs
〈2〉
n−1ln−1 = λ2n−1−1s

〈2n−1〉
1 rλ,n−1 = λ2n−1−1s

〈2n−1〉
1 (r˘)

22n−1

1 (1)

where ln = 122n−1 `

(
λ−1

)
, rλ,n = ∏n

i=1 l
〈2n−i〉
i , r˘ = ∏∞

i=1 l
〈∞〉
i .

Therefore, we have

s(n)λ (x) = λ2n−1−1
22n

∑
j=1

(x− 1)(hn)j λ−(log2 r2,n−1)j (2)

where hn = log2

(
2, 1
)〈2n−1〉

. And it can be easily shown that

(hn)j = 2n−1 −
∞

∑
k=0

[2k, 2k]j and (log2 r2,n)j =
∞

∑
k,i=0

[22ik(22i − 1), 22ik]j

by using simple formula

(log2(1m−1 `

(
2
)
)〈n〉)j =

n−1

∑
k=0

[mk(m− 1), mk]j (for j 6 mn).

Substituting 2 for x in (2), we have

s(n)λ (2) = λ2n−1−1
2n−1

∑
k=1

κn,kλ−k,

where κn,k denotes the number of elements in log2 r2,n−1 that equal to k. This function can be defined
recursively as follows:

κn,0 = 32n−1
, κ1,k = δk,1, κn,k = δk,2n−1 − δk,2n−2 +

k

∑
i=0

κn−1,k−iκn−1,i.

Evaluating κn,k we have:

κn,1 = 2n−132n−1−1, κn,2 = −κn,1(
1

12
−

n−1

∑
i=0

κi+1,1(κi,1
2 + δk,2n−1 − δk,2n−2)

and so on.

Remark 2. Replacing 2n−1 by n in the last expression of (1), we get new sequence of vectors: s′n =

λn−1s
〈n〉
1 (r)2n

1 . Let fn(x) = |s′n|1. Conjecture:

fn(x) =


fn/2(s(x)), if n is even

λx fn−1(x), if n is odd

x, if n = 1.

Conflicts of Interest: “The author declares no conflict of interest.”

References

[1] Popenda, J. (1987). One expression for the solutions of second order difference equations. Proceedings of the American
Mathematical Society, 100(1), 87-93.

[2] Kittappa, R. K. (1993). A representation of the solution of the nth order linear difference equation with variable
coefficients. Linear algebra and its applications, 193, 211-222.



Open J. Discret. Appl. Math. 2020, 3(1), 20-24 24

[3] Mallik, R. K. (2000). On the solution of a linear homogeneous difference equation with variable coefficients. SIAM
Journal on Mathematical Analysis, 31(2), 375-385.

[4] Allouche, J. P., & Shallit, J. (2003). Automatic sequences: theory, applications, generalizations. Cambridge university press.
[5] Lando, S. K. (2003). Lectures on generating functions (Vol. 23). American Mathematical Society.
[6] Voevodin, V., & Kuznetsov Y. (1984). Matrices and calculations. Nauka (in Russian).
[7] Fomin, S. (1975). Number systems. The University of Chicago Press.

c© 2020 by the author; licensee PSRP, Lahore, Pakistan. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Linear recurrences
	Quadratic map

