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Abstract: For every n ≥ 3, we determine the minimum number of edges of graph with n vertices such that
for any non edge xy there exits a hamiltonian cycle containing xy.
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1. Introduction

F or all graph theoretical terms and notations not defined here the reader is referred to [1]. We only
consider simple finite loopless undirected graphs. For a graph G = (V, E) with |V| = n vertices,

an edge is a pair of two connected vertices x, y, we denote it by xy, xy ∈ E; when two vertices x, y are not
connected this pair form the non-edge xy, xy 6∈ E. In G a 2-factor is a subset of edges F ⊂ E such that every
vertex is incident to exactly two edges of F. Since G is finite a 2-factor consists of a collection of vertex disjoint
cycles spanning the vertex set V. When the collection consists of an unique cycle the 2-factor is connected, so
it is a hamiltonian cycle.

We intend to determine, for any integer n ≥ 3, a graph G = (V, E), n = |V| with a minimum number of
edges such that for every non-edge xy it is always possible to include the non-edge xy into a connected 2-factor,
i.e., the graph Gxy = (V, E ∪ {xy}) has a hamiltonian cycle H, xy ∈ H. In other words for any non-edge xy of
G there exits a hamiltonian path between x and y.

This problem is related to the minimal 2-factor extension studied in [2] in which the 2-factors are not
necessary connected. It is also related to the problem of finding minimal graphs for non-edge extensions in the
case of perfect matchings (1-factors) studied in [3]. Another problem of hamiltonian extension can be found in
[4].

Definition 1. Let G = (V, E) be a graph and xy 6∈ E an non-edge. If Gxy = (V, E ∪ {xy}) has a hamitonian
cycle that contains xy we shall say that xy has been extended (to a connected 2-factor, to an hamiltonian cycle).

Definition 2. A graph G = (V, E) is connected 2-factor expandable or hamiltonian expandable (shortly expandable)
if every non-edge xy 6∈ E can be extended.

Definition 3. An expandable graph G = (V, E) with |V| = n and a minimum number of edges is a minimum
expandable graph. The size |E| of its edge set is denoted by Exph(n).

The case where the 2-factor is not constrained to be hamiltonian is studied in [2]. In this context Exp2(n)
denotes the size of a minimum expandable graph with n vertices. It follows that Exph(n) ≥ Exp2(n).

We use the following notations. For G = (V, E), N(v) is the set of neighbors of a vertex v, δ(G) is the
minimum degree of a vertex. A vertex with exactly k neighbors is a k-vertex. When P = vi, . . . , vj is a sequence
of vertices that corresponds to a path in G, we denote by P̄ = vj, . . . , vi its mirror sequence (both sequences
correspond to the same path).

We state our result.
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Theorem 1. The minimum size of a connected 2-factor expandable graph is:

Exph(3) = 2, Exph(4) = 4, Exph(5) = 6; Exph(n) = d
3
2

ne, n ≥ 6

Proof. For n ≥ 3 we have Exph(n) ≥ Exp2(n).
In [2] it is proved that the three graphs given by Figure 1 are minimum for 2-factor extension. They are

also minimum expandable for connected 2-factor extension.

Figure 1. P3, the paw, the butterfly.

Now let n ≥ 6. From [2] we know the following when G a minimum expandable graph for the 2-factor
extension:

• G is connected;
• if δ(G) = 1 then Exp2(n) ≥ 3

2 n;
• for n ≥ 7, if u, v are two 2-vertices such that N(u) ∩ N(v) 6= ∅ then Exp2(n) ≥ 3

2 n;

Figure 2. A minimum hamiltonian expandable graph with 6 vertices.

The graph given by Figure 2 is minimum for 2-factor extension (see [2]). One can check that it is
expandable for connected 2-factor extension. So we have Exph(6) = 9 = 3

2 n.
Suppose that G is a minimum expandable graph with n ≥ 7 and δ(G) = 2. Let v ∈ V with d(v) = 2,

N(v) = {u1, u2}. If u1u2 6∈ E then u1u2 cannot be expanded into a hamiltonian cycle. So u1u2 ∈ E. If d(u1) = 2
then u2 ∈ N(u1) ∩ N(v) and Exph(n) ≥ 3

2 n. So from now one we may assume d(u1), d(u2) ≥ 3. Suppose that
d(u1) = d(u2) = 3. Let N(u1) = {v, u2, v1}, N(u2) = {v, u1, v2}. If v1 6= v2 then u1v2 is not expandable. If
v1 = v2 then vv1 is not expandable. From now we can suppose that d(u1) ≥ 3, d(u2) ≥ 4. Moreover v is the
unique 2-vertex in N(u2). It follows that every 2-vertex u ∈ V can be matched with a distinct vertex u2 with
d(u2) ≥ 4. Then Σv∈Vd(v) ≥ 3n and thus m ≥ 3

2 n.
When δ(G) ≥ 3 we have Σv∈Vd(v) ≥ 3n. Thus for any expandable graph we have |E| = m ≥ 3

2 n, n ≥ 7.
For any even integer n ≥ 8 we define the graph Gn = (V, E) as follows. Let n = 2p, V = A ∪ B

where A = {a1, . . . , ap} and B = {b1, . . . , bp}. A (resp. B) induces the cycle CA = (A, EA) with EA =

{a1a2, a2a3, . . . , apa1} (resp. CB = (B, EB) with EB = {b1b2, b2b3, . . . , bpb1}. Now E = EA ∪ EB ∪ EC with
EC = {a2b2, a3b3, . . . , ap−1bp−1, a1bp, apb1}. Note that Gn is cubic so m = 3

2 n. (see G10 in Fig. 3)
We show that Gn is expandable. First we consider a non-edge aiaj, p ≥ j > i ≥ 1. Note that the case

of a non-edge bibj is analogous. We have j ≥ i + 2 and since a1ap ∈ E from symmetry we can suppose that
j < p. Let P = aj, aj−1, . . . , ai+1, bi+1, bi+2, . . . , bj+1, aj+1, aj+2, bj+2, . . . , cj where cj is either ap or bp and let
Q = ai, bi, bi−1, ai−1, . . . , ci where ci is either a1 or b1. From P and Q one can obtain an hamiltonian cycle
containing aibj whatever ci and cj are.

Now we consider a non-edge aibj. Without loss of generality we assume j ≥ i. Suppose first that j = i, so
either i = 1 or i = p. Without loss of generality we assume i = j = 1: a1, bp, bp−1, . . . , b2, a2, a3, . . . , ap, b1, a1 is an
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Figure 3. The graphs G7, G10, G11, from the left to the right.

hamiltonian cycle. Now assume that j > i: Let Pj = bj, bj−1, . . . , bi+1, ai+1, ai+2, . . . , aj+1, bj+1, bj+2, aj+2, . . . , cp

where either cp = ap or cp = bp, Pi = ai, bi, bi−1, ai−1, ai−2, . . . , c1 where either c1 = a1 or c1 = b1. If cp = ap and
c1 = a1 then Pj, b1, bp, Pi, aj is an hamiltonian cycle. If cp = ap and c1 = b1 then Pj, a1, bp, Pi, aj is an hamiltonian
cycle. The two other cases are symmetric.

For any odd integer n = 2p + 1 ≥ 7 we define the graph Gn = (V, E) as follows. We set V = A∪ B∪ {vn}
where A = {a1, . . . , ap} and B = {b1, . . . , bp}. A∪ {vn} (resp. B∪ {vn}) induces the cycle CA = (A∪ {vn}, EA)

with EA = {a1a2, a2a3, . . . , apvn, vna1} (resp. CB = (B ∪ {vn}, EB) with EB = {b1b2, b2b3, . . . , bpvn, vnb1}. Now
E = EA ∪ EB ∪ EC with EC = {aibi|1 ≤ i ≤ p} ∪ {a1vn, b1vn, apvn, bpvn}. Note that m = d 3

2 ne. (see G7 and G11

in Figure 3)
We show that Gn is expandable. First, we consider a non-edge

aiaj, p ≥ j > i ≥ 1 (the case of a non-edge bibj is analogous).
ai, ai+1, . . . , aj−1, bj−1, bj−2, bj−3, . . . , bi, bi−1, ai−1, ai−2, bi−2, . . . , vn, cp, dp, dp−1, cp−1, . . . , cj, dj, where dj = aj
and for any k, j ≤ k ≤ p, the ordered pairs ck, dk correspond to either ak, bk or bk, ak, is an hamiltonian cycle.
Second, let a non-edge aibj, p ≥ j > i ≥ 1. We use the same construction as above taking dj = bj.
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