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Abstract: The Wiener index is a topological index of a molecule, defined as the sum of distances between
all pairs of vertices in the chemical graph. Hexagonal chains consist of hexagonal rings connected with each
other by edges. This class of chains contains molecular graphs of unbranched catacondensed benzenoid
hydrocarbons. A segment of length ` of a chain is its maximal subchain with ` linear annelated hexagons. We
consider chains in which all segments have equal lengths. Such chains can be uniquely represented by binary
vectors. The Wiener index of hexagonal chains under some operations on the corresponding binary vectors
are investigated. The obtained results may be useful in studying of topological indices for sets of hexagonal
chains induced by algebraic constructions.
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1. Introduction

D istance-based graph invariants, called topological indices, are widely used in studying of structure
of molecular graphs in organic chemistry. The Wiener index is a well-known topological index

introduced as structural descriptor for acyclic organic molecules [1]. It is defined as the sum of distances
between all unordered pairs of vertices of an undirected connected graph G with vertex set V(G):

W(G) = ∑
{u,v}⊆V(G)

d(u, v),

where distance d(u, v) is the number of edges in the shortest path connecting vertices u and v in G. The Wiener
index is intensively studied in mathematical and theoretical chemistry and has found numerous applications in
the modeling of physico-chemical, pharmacological and biological properties of organic molecules (see books
[2–10] and reviews [11–19]).

We will consider the Wiener index of hexagonal chains that include molecular graphs of catacondensed
unbranched benzenoid hydrocarbons. Since this class of chemical compounds is attracting the great attention
of theoretical chemists, the theory of the Wiener index of the respective molecular graphs has been developed
for many years [20,21]. Changes of the Wiener index of polycyclic structures under transformations of various
kinds were investigated in [22–29]. The structure of hexagonal chains of certain classes can be encoded by
binary vectors. Operations on chains’ binary codes generate new hexagonal chains. In this paper, relations
between Wiener indices of chains for some operations on chains’ codes are studied and illustrative numeric
examples are presented.
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Figure 1. All hexagonal chains of G5,3 with 5 segments of length 3.

2. Hexagonal chains and their segments

The classification of molecular graphs of benzenoid hydrocarbons is based on the kind of connection of
hexagonal rings with one another [30]. A hexagonal chain is a connected plane graph in which every inner face
is bounded by a hexagon. An inner face with its hexagonal bound is called a hexagonal ring (or simply ring).
Two hexagonal rings of a chain are either disjoint or have exactly one common edge (adjacent rings), and no
three rings share a common vertex. A ring having exactly one adjacent ring is called terminal. A hexagonal
chain has exactly two terminal rings. A ring adjacent to exactly two other rings has two vertices of degree 2. If
these two vertices are adjacent, then the ring is angularly connected; if these two vertices are not adjacent, then
it is linearly connected. A segment is a maximal subchain in which all rings are linearly connected. A segment
including a terminal hexagon is a terminal segment. The number of hexagons in a segment is called its length.
Denote by Gn,` the set of all hexagonal chains having n segments of length `. All hexagonal chains of G5,3 are
shown in Figure 1. Some properties of graphs of this class were studied in [31–35]. Hexagonal chains of Gn,2

with minimal length of segments are known as fibonacenes [36,37]. The number of hexagonal rings of G ∈ Gn,`
is equal to h = n(`− 1) + 1 and the number of segments is n = (h− 1)/(`− 1). Since | Gn,2| = | Gn,` | for all
` ≥ 3, the cardinality of Gn,` is equal to | Gn,` | = 2n−3 + 2b

n−3
2 c, n ≥ 2 [37].

3. Representation of hexagonal chains

The structure of hexagonal chains is completely defined by a way of segment attachment. We consider
a nonterminal segment S with two neighboring segments embedded into the regular hexagonal lattice on the
plane and draw a line through the centers of the hexagons of S. If the neighboring segments of S lie on different
sides of the line, then S is called a zigzag segment. If these segments lie on the same side, then S is said to be
a spiral segment. It is convenient to assume that the terminal segments are zigzag segments. For a hexagonal
chain X, denote by U(X) the set of its spiral segments, uX = |U(X)|.

Based on two types of segments, hexagonal chains of Gn,` can be represented by binary codes. We assume
that all segments of a chain are sequentially numbered by 0, 1, . . . , n− 1 beginning from a terminal segment.
Since the terminal segments can be ignored when a chain is restored, codes of all hexagonal chains of Gn,` have
a length of n− 2, n ≥ 3. Assume that every spiral segment of chain X corresponds to 1 in the code of X while
every zigzag segment corresponds to 0. A binary code of hexagonal chain X and a hexagonal chain X induced
by a binary word r will be denoted by r(X) and X(r), respectively. Note that molecular graphs of more general
classes of benzenoid hydrocarbons can be also represented by binary codes [31,38].

There are two extremal chains with respect to the type of segments. The zigzag hexagonal chain Zn,` ∈ Gn,`
contains only zigzag segments, r(Zn,`) = (00..0). All segments of the spiral hexagonal chain On,` ∈ Gn,`
are spiral ones (with the exception of the terminal segments), r(On,`) = (11..1). The zigzag and the spiral

hexagonal chains of G5,3 are shown in Figure 1. Denote by ei the binary vector ei = (0...0
i
10...0) of length n− 2

for n ≥ 3, i = 1, 2, . . . , n− 2. These vectors form the standard basis for the vector space of dimension n− 2 over
Z2. Let Ci be the basis hexagonal chains corresponding to basis vectors ei, i = 1, 2, . . . , n− 2. Then code r(X) of
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X ∈ Gn,` can be expressed as a linear combination of the basis vectors: r(X) = x1 e1 + x2 e2 + · · ·+ xn−2 en−2.
Since codes ei and en−i−1 are symmetrical, basis chains Ci and Cn−i−1 are isomorphic and W(Ci) = W(Cn−i−1).

Hexagonal chains On,` and Zn,` are extremal graphs with respect to the Wiener index among all chains of
Gn,` [13]: W(On,`) < W(G) < W(Zn,`) for all G ∈ Gn,` \ {On,`, Zn,`}, where

Wmin =
(
8n3(`− 1)2(2`− 3) + 96n2(`− 1)2 − 2n(`− 1)(2`− 75) + 81

)
/3,

Wmax =
(
16n3(`− 1)3 + 72n2(`− 1)2 + n(`− 1)(12`+ 134) + 81

)
/3.

The average of these extremal values is equal to

Wavr = (Wmin + Wmax) /2

=
(

4n3(`− 1)2(4`− 5) + 84n2(`− 1)2 + 2n(`− 1)(2`+ 71) + 81
)

/3.

4. Graph operations

Let X, Y ∈ Gn,` with codes r(X) = x = (x1, x2, . . . , xn−2) and r(Y) = y = (y1, y2, . . . , yn−2). Define the
following operations of these hexagonal chains:

• the complement of a hexagonal chain X is a new chain Y with code r(Y) = r(X) = (x1, x2, . . . , xn−2), that
is, r(Y) is a bitwise complement of r(X). This operation changes the type of all segments of X. Example:
(10011) = (01100);

• the unary operation ti,j(X) changes the type of i-th and j-th segments to opposite. For example, if r(X) =

(1000111), then hexagonal chain Y = t2,6(X) has code r(Y) = (1100101);
• the sum modulo 2 of hexagonal chains X and Y is a new chain G = X + Y with code r(G) = x + y =

(x1 + y1, x2 + y2, . . . , xn−2 + yn−2). The resulting chain inherits spiral segments of the initial chains except
spiral segments in the same positions. Example: (10011) + (10101) = (00110);
• the difference modulo 2 of hexagonal chains X and Y is a new chain G = X−Y with code r(G) = x− y =

(x1 − y1, x2 − y2, . . . , xn−2 − yn−2). Despite of G = X − Y = X + Y, we will distinguish between these
operations. Example: (10011)− (10101) = (00110);
• a hexagonal chain G = XY is called the product of chains X and Y with code r(G) = xy =

(x1y1, x2y2, . . . , xn−2 yn−2). This operation is an analogue of bitwise logical operation “AND”. The
resulting chain has spiral segments if they are in the same positions of the initial chains. Example:
(10011)(10101) = (10001);

• operation “∨” of hexagonal chains X and Y gives a new chain G = X ∨ Y with code r(G) = x ∨ y =

(x1 ∨ y1, x2 ∨ y2, . . . , xn−2 ∨ yn−2), where xi ∨ yi is an analogue of bitwise logical operation “OR”. All
spiral segments of the initial chains are served in G. Example: (10011) ∨ (10101) = (10111).

The binary relation X ≤ Y between chains X, Y ∈ Gn,` is defined by conditions xi ≤ yi, i = 1, 2, . . . , n− 2.
This relation induces a partial order on Gn,`.

In the next section, changes of the Wiener index under introduced operations over chains’ codes are
examined.

5. Changes of the Wiener index

The following useful formula allows the calculation Wiener index of hexagonal chains through their
binary codes [26].

Proposition 1. For a hexagonal chain X∈ Gn,` with a code (x1, x2, . . . , xn−2),

W(X) = Wmax − 16(`− 1)2
n−2

∑
i=1

i(n− i− 1)xi.

The sum of Wiener indices of a hexagonal chain and its complement is twice the average value Wavr.

Proposition 2. If X ∈ Gn,`, then W(X) = Wmin + Wmax −W(X).
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Figure 2. Hexagonal chains X, Y ∈ G7,3 and X + Y.

Proof. By Proposition 1,

W(X) + W(X) = Wmax + Wmax − 16(`− 1)2
n−2

∑
i=1

i(n− i− 1) · 1

= Wmax + Wmin.

Proposition 2 allows to determine the structure of hexagonal chains with average value of the Wiener
index. If r(X) = r(X), then chains X and X are obviously isomorphic. This implies equality W(X) = Wavr.
There are also non-isomorphic chains X and X with property W(X) = W(X) = Wavr [26].

Consider hexagonal chains without units in the same positions of their codes.

Proposition 3. Let X, Y ∈ Gn,` and XY = Zn,`. If G = X + Y, then

W(G) = W(X) + W(Y)−Wmax.

Proof. Let x = r(X) and y = r(Y). By Proposition 1, we can write

W(X) + W(Y)−Wmax = Wmax − 16(`− 1)2 ∑
i

i(n− i− 1)(xi + yi) = W(G).

As an illustration, consider chains X, Y ∈ G7,3 and G = X + Y shown in Figure 2. These graphs have
codes r(X) = (10010), r(Y) = (00101), and r(G) = (10111). By computer calculations, their Wiener indices
are W(X) = 19327, W(Y) = 19263, W(G) = 18431, and Wmax = 20159. By Proposition 3, W(G) = 19327 +

19263− 20159 = 18431.

Proposition 4. Let X, Y ∈ Gn,` and Y ≤ X. If G = X−Y, then

W(G) = W(X)−W(Y) + Wmax.

Proof. If x = r(X) and y = r(Y), then by Proposition 1

W(Y)−W(X)−Wmax = −Wmax + 16(`− 1)2 ∑
i

i(n− i− 1)(xi − yi)

= −W(G).
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Figure 3. Hexagonal chains X, Y ∈ G7,3 and X−Y.

Since yi ≤ xi, (xi − yi) ≥ 0 for every i.

Hexagonal chains X, Y ∈ G7,3 and G = X − Y shown in Figure 3 illustrate Proposition 4. Codes of
these graphs are r(X) = (11001), r(Y) = (01001), and r(G) = (10000). Computer calculations give the
following Wiener indices: W(X) = 19007, W(Y) = 19327, and W(G) = 19839. By Proposition 4, W(G) =

19007− 19327 + 20159 = 19839.
The next result answers on the following question: how many times do we need to apply operation ti,j

to a hexagonal chain X such that W(X) = W(ti,j(X))? For asymmetrical chains, it is sufficient to apply the
operation once time.

Corollary 1. Let X ∈ Gn,` be an asymmetrical hexagonal chain with a code (x1, x2, . . . , xn−2), i.e., xi 6= xn−i−1 for
some i ∈ {1, 2, . . . , d(n− 2)/2e}. If Y = ti,n−i−1(X), then W(Y) = W(X).

Proof. Assume that xi = 0 and xn−i−1 = 1. Then Y = (X + Ci)− Cn−i−1. By Propositions 4 and 3, we can
write W(Y) = W(X + Ci)−W(Cn−i−1) +Wmax = W(X) +W(Ci)−Wmax −W(Cn−i−1) +Wmax = W(X).

Let µ(X) be the number of pairs of non-equal i-th and (n − i − 1)-th components of chain’s code r(X),
i = 1, 2, . . . , d(n− 2)/2e. Repeating Corollary 1, one can construct a family of 2µ(X) chains having the same
Wiener index (some chains may be isomorphic).

Decomposition of the Wiener index of chains of Gn,` into the sum of Wiener indices of basis hexagonal
chains was reported in [26]. It can be also derived using graph operations.

Corollary 2. Let X ∈ Gn,` and r(X) = (x1, x2, . . . , xn−2). Then

W(X) = x1W(C1) + x2W(C2) + · · ·+ xn−2W(Cn−2)− (u− 1)Wmax,

where u = x1 + x2 + · · ·+ xn−2 is the number of units of x.

Proof. Let i1, i2, . . . , iu be positions of units in x. Then the corresponding hexagonal chain X can be represented
as X = Ci1 + Ci2 + · · ·+ Ciu . Applying Proposition 3, we get W(X) = W(Ci1) +W(Ci2) + · · ·+W(Ciu)− (u−
1)Wmax = x1W(C1) + x2W(C2) + · · ·+ xn−2W(Cn−2)− (u− 1)Wmax.

Let us consider operations of hexagonal chains with arbitrary codes.

Proposition 5. Let X, Y ∈ Gn,`. If G = X + Y, then

W(G) = W(X) + W(Y)− 2W(XY) + Wmax.
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Figure 4. Hexagonal chains X, Y ∈ G7,3 and X + Y (general case).

Proof. It is easy to verify that the hexagonal chain G can be represented as G = X +Y = (X−XY)+ (Y−XY),
where (X− XY)(Y− XY) = Zn,` and X ≥ XY, Y ≥ XY. By Propositions 3 and 4,

W(G) = W(X− XY) + W(Y− XY)−Wmax

= W(X)−W(XY) + Wmax + W(Y)−W(XY) + Wmax −Wmax

= W(X) + W(Y)− 2W(XY) + Wmax.

Hexagonal chains X, Y ∈ G7,3 and G = X + Y shown in Figure 4 illustrate Proposition 5. These chains
have codes r(X) = (11100), r(Y) = (00110), r(XY) = (00100), and r(G) = (11010). Their Wiener indices are
W(X) = 18751, W(Y) = 19071, W(XY) = 19583, and W(G) = 18815. By applying Proposition 5, W(G) =

18751 + 19071− 2 · 19583 + 20159 = 18815.

Proposition 6. Let X, Y ∈ Gn,`. If G = X−Y, then

W(G) = W(X)−W(Y) + 2W(XY)−Wmax.

Proof. Hexagonal chain G can be decomposed as G = X − Y = (X + XY)− (Y − XY), where (X + XY) ≥
(Y− XY), X(XY) = Zn,` and Y ≥ XY. By Propositions 3 and 4,

W(G) = W(X + XY)−W(Y− XY) + Wmax

= W(X) + W(XY)−Wmax − (W(Y)−W(XY) + Wmax) + Wmax

= W(X)−W(Y) + 2W(XY)−Wmax.

Consider again hexagonal chains X and Y shown in Figure 4. Chains XY and X−Y have codes r(XY) =
(00010), r(X − Y) = (00101), and Wiener indices W(XY) = 19647, W(X − Y) = 18815. By Proposition 6, we
obtain W(G) = 18751− 19071 + 2 · 19647− 20159 = 18815.

Proposition 7. Let X, Y ∈ Gn,`. If G = X ∨Y, then

W(G) = W(X) + W(Y)−W(XY).
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Figure 5. Hexagonal chains X, Y ∈ G9,3 and X ∨Y.

Proof. Using Proposition 1, we get

W(X)+W(Y)−W(XY) = Wmax−16(`− 1)2 ∑
i

i(n− i− 1)(xi + yi − xiyi),

W(X ∨Y) = Wmax − 16(`− 1)2 ∑
i

i(n− i− 1)(xi ∨ yi).

Comparison of these equalities completes the proof.

Hexagonal chains X, Y ∈ G9,3 and G = X ∨ Y of Figure 5 illustrate Proposition 7. The structure of graph
X + Y is presented for comparison. These chains have codes r(X) = (1010101), r(Y) = (0100011), r(XY) =

(0000001), and r(G) = (1110111), and their Wiener indices are equal to W(X) = 37111, W(Y) = 37943,
W(XY) = 39479, and W(G) = 35575. By Proposition 7, W(G) = 37111 + 37943− 39479 = 35575.

In conclusion, we note that the considered approach may be useful in studying of topological indices for
sets of hexagonal chains induced by algebraic constructions.
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