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Abstract: In this paper, we establish a connection between differential operators and Narayana numbers of
both kinds, as well as a kind of numbers related to central binomial coefficients studied by Sulanke (Electron.
J. Combin. 7 (2000), R40).
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1. Introduction

t is well known that the central binomial coefficients have the following expressions;
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For 0 < k < n, the Narayana numbers of types A are defined as;
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Let N, (x) = ZZ;& N(n,k)x* be the Narayana polynomials of types A (see [1]). It is well known that N, (x)
is the rank-generating function of the lattice of non-crossing partition lattice with cardinality n%_l (2;‘ ) (see [2]).
Hence the Catalan numbers have the following expression;
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The Narayana numbers of type B are given as;

M(n k) = (Z)z

Let My, (x) = Y}_, M(n, k)x*. Reiner [2] showed that M, (x) is the rank-generating function of a ranked
self-dual lattice with the cardinality (2").

Let P(n,k) = ({)("{!), and S = P x P. According to [3, Proposition 1], P(n,k) is the number of paths in
Aj(n +1) having k + 1 steps, where A;(n) is the set of all lattice paths running from (0; —1) to (n;n) that use
the steps in S and that remain strictly above the line y = —1 except initially.

The numbers N(#n,k), M(n, k) and P(n, k) have been extensively studied. The readers are referred to [4]
for details. In [5], Daboul et al., reveals that

%(em) (=)l i <’;> <’Z - }) (n—k)x—"k,

k=1

Open |. Discret. Appl. Math. 2020, 3(1), 37-40; doi:10.30538 / psrp-odam2020.0028 https:/ /pisrt.org/psr-press/journals/odam


https://pisrt.org/psr-press/journals/odam/
https://pisrt.org/psr-press
https://pisrt.org/psr-press/journals/odam

Open J. Discret. Appl. Math. 2020, 3(1), 37-40 38

where the (Z)(Z:})(n — k)! are the Lah numbers. Motivated by this result, in this paper we show that the
numbers M(n, k), N(n, k) and P(n, k) can be generated by higher-order derivative of functions of e*. As an
application, we obtain new recurrence relations for these classical combinatorial numbers.

2. Differential operators and Narayana polynomials
Let Py(x) = Y} oP(nk)x" %, Qu(x) = YTf_oP(nk)x*, then Qu(x) = x"P,(1/x). The first few
Ny (x), My (x) and P, (x) are listed as follows;
Ni(x) =1, Np(x) =1+x,N3(x) =1+ 3x +x%, Ny(x) =14 6x + 6x% + x5,
Mi(x) =1+x, Ma(x) =1+ 4x + x%, Ma(x) = 1+ 9x + 9% + 1,
Pi(x) =2+, Py(x) =3+ 6x+ x%, P3(x) = 4+ 18x + 12x% + x>,

We define N (n,k) = (n+1)n!N(n, k) and M(n, k) = n!>M(n, k). By using the explicit formulas of N (n, k)
and M(n, k), it is routine to verify the following lemma.

Lemma 1. For 0 < k < n+ 1, we have

N(n+1,k) = ((n+1)(n+2) +2nk + k> 4+ 3k)N(n, k) + (4n +2n> —2(k* — 1))N(n,k — 1)

+(nn—1)— (k—2)2n—k+1))N(nk—2),
M(n+1,k) = ((n4+1)>+2(n+ 1)k + k2)M(n, k) 4+ (1 4 4n + 2n* — 2k(k — 1)) M(n, k — 1)
+(n?—(2n+2—k)(k—2))M(nk —2),

with initial conditions N(0,0) = M(0,0) = 1and N(0,k) = M(0,k) = 0 for k # 0.
In the following discussion, let D = %.

Theorem 1. For n > 1, we have
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Hence the formula (1) holds for n = 1,2,3. Assume that the result holds for 1, where n > 3. Let N,,(x) =
Yoo N(n, k)x*. Note that

eln 1)x*n ex
(De*D)" <1 _1€x> = (De*D) <(1+_ ei\)IZn(H)) :

It follows that
Nup1(x) = (n+1)(n+2) + (4n +2n?)x + n(n — 1)x*) N, (x) + (4x — 6x2 +2x3 + 2nx(1 — x?))D(N,(x))
+x2(1 — x)2D?(Ny(x)).
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Equating the coefficients of x* in both sides, we immediately get the recurrence relation of N(,k) given
in Lemma 1. Therefore, the result holds for n + 1.
Similarly, note that

e (1) - (14 ¢%)
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Hence the formula (2) holds for n = 1,2,3. Assume it holds for n, where n > 3. Let M,(x) =
Yo M(n,k)x*. Note that

e(n 1)x*n ex
(exDZ)nJrl <1 _1€x> — (exDz) ( (1+_ eXZn(Jrl)) .

It follows that
Myp1(x) = (T+ x4+ 121+ x)% +n(2 4 4x)) M, (x) + (3x — 4x% 4+ 23 + 2nx(1 — x2))D(M,(x))
+x2(1 — x)2D?(My(x)).

Equating the coefficients of x* in both sides, we immediately get the recurrence relation of M(n, k) given in
Lemma 1. Therefore, the result holds for n 4+ 1. Along the same lines, it is routine to derive (3). This completes
the proof. O

Note that P(n,n — k) = (,,";) (Zfi), then P(n+1,n+1—k) = (nfgik)(nf{zk)

It is easy to verify the following lemma;

Lemma 2. For 0 < k < n+1, we have (n +1)(n +2)P(n +1,n+1—k) = [(n +2)%> + (2n + 5)k + k(k —
DP(n,n—k) +2(n*>+3n+1) —6(k—1) —2(k —1)(k - 2)]P(n,n —k+1) + [n®> — 2n — 1) (k — 2) + (k —
2)(k—=3)|P(n,n —k+2).

Theorem 2. For n > 1, we have
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2 x\n —
<D ¢ ) (1 _ ex)Z - (1 _ ex)2n+2 ’ )
e~ nl(n+1)leDxQ, (e¥)
(DexD)n(l_ex)z = (1— ex)2nt2 . ®)
Proof. Note that 2 )
5y e* _2e7F(24eF
D) G = A=yt -
2 o € 1263%(3 4 6e¥ + )
D e = a—ep

Hence the result holds for n = 1, 2. Assume that the result holds for nn. Then from (4), we get the recurrence
relation
(n4+1)(n+2)Pyyq(x) = [n26% + (2 +1)% +2x(1+ 31+ n?)|Py(x) + x(1 — x)[(2n — 1)x +2n + 5] P (x) + x>(1 —
x)2P/ (x).

Equating the coefficients of x¥ in both sides, we get the recurrence relation of the numbers P(n,n— k),
which is given in Lemma 2, as desired. Along the same lines, one can derive (5). This completes the proof. []

By a change of variable y = ¢*, we end our paper by giving a corollary;

Corollary 1. Forn > 1, let Dy = %, we have
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Proof. It's not hard to verify the equations hold whenn = 1,2

2
(yDuy"Dy) <1 13/) B (12—yy)3'

3
(yDyysz)z <1 :1/) = 12(y1 (_1;;5”'

Assume the result holds for m, where m > 3. Setting y = ¢*, we get

m( 1 vy e M+ )Y TN (y)
(yDyy*Dy)(yDyy*Dy) (1—y> = (¢*Dye**Dy) (1= y)2ni =

m!(m +1)letMm+DXN,, (e¥)
(1 _ ex)2m+1

(m +1)!(m +2)1em+2XN, o (e¥)
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Along the same lines, we can get the other statements. This completes the proof. O
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