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Abstract: In this paper, we establish a connection between differential operators and Narayana numbers of
both kinds, as well as a kind of numbers related to central binomial coefficients studied by Sulanke (Electron.
J. Combin. 7 (2000), R40).
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1. Introduction

I t is well known that the central binomial coefficients have the following expressions;(
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For 0 ≤ k ≤ n, the Narayana numbers of types A are defined as;

N(n, k) =
1
n

(
n

k + 1

)(
n
k

)
.

Let Nn(x) = ∑n−1
k=0 N(n, k)xk be the Narayana polynomials of types A (see [1]). It is well known that Nn(x)

is the rank-generating function of the lattice of non-crossing partition lattice with cardinality 1
n+1 (

2n
n ) (see [2]).

Hence the Catalan numbers have the following expression;
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The Narayana numbers of type B are given as;

M(n, k) =
(

n
k

)2
.

Let Mn(x) = ∑n
k=0 M(n, k)xk. Reiner [2] showed that Mn(x) is the rank-generating function of a ranked

self-dual lattice with the cardinality (2n
n ).

Let P(n, k) = (n
k)(

n+1
k ), and S = P× P. According to [3, Proposition 1], P(n, k) is the number of paths in

A1(n + 1) having k + 1 steps, where A1(n) is the set of all lattice paths running from (0;−1) to (n; n) that use
the steps in S and that remain strictly above the line y = −1 except initially.

The numbers N(n, k), M(n, k) and P(n, k) have been extensively studied. The readers are referred to [4]
for details. In [5], Daboul et al., reveals that

dn
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(n− k)!x−n−k,

Open J. Discret. Appl. Math. 2020, 3(1), 37-40; doi:10.30538/psrp-odam2020.0028 https://pisrt.org/psr-press/journals/odam

https://pisrt.org/psr-press/journals/odam/
https://pisrt.org/psr-press
https://pisrt.org/psr-press/journals/odam


Open J. Discret. Appl. Math. 2020, 3(1), 37-40 38

where the (n
k)(

n−1
k−1)(n − k)! are the Lah numbers. Motivated by this result, in this paper we show that the

numbers M(n, k), N(n, k) and P(n, k) can be generated by higher-order derivative of functions of ex. As an
application, we obtain new recurrence relations for these classical combinatorial numbers.

2. Differential operators and Narayana polynomials

Let Pn(x) = ∑n
k=0 P(n, k)xn−k, Qn(x) = ∑n

k=0 P(n, k)xk, then Qn(x) = xnPn(1/x). The first few
Nn(x), Mn(x) and Pn(x) are listed as follows;

N1(x) = 1, N2(x) = 1 + x, N3(x) = 1 + 3x + x2, N4(x) = 1 + 6x + 6x2 + x3,

M1(x) = 1 + x, M2(x) = 1 + 4x + x2, M3(x) = 1 + 9x + 9x2 + x3,

P1(x) = 2 + x, P2(x) = 3 + 6x + x2, P3(x) = 4 + 18x + 12x2 + x3.

We define N(n, k) = (n+ 1)!n!N(n, k) and M(n, k) = n!2M(n, k). By using the explicit formulas of N(n, k)
and M(n, k), it is routine to verify the following lemma.

Lemma 1. For 0 ≤ k ≤ n + 1, we have

N(n + 1, k) = ((n + 1)(n + 2) + 2nk + k2 + 3k)N(n, k) + (4n + 2n2 − 2(k2 − 1))N(n, k− 1)

+ (n(n− 1)− (k− 2)(2n− k + 1))N(n, k− 2),

M(n + 1, k) = ((n + 1)2 + 2(n + 1)k + k2)M(n, k) + (1 + 4n + 2n2 − 2k(k− 1))M(n, k− 1)

+ (n2 − (2n + 2− k)(k− 2))M(n, k− 2),

with initial conditions N(0, 0) = M(0, 0) = 1 and N(0, k) = M(0, k) = 0 for k 6= 0.

In the following discussion, let D = d
dx .

Theorem 1. For n ≥ 1, we have
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)
=
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(1− ex)2n+1 , (2)
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(
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)
=

n!2enx Mn(ex)

(1− ex)2n+1 . (3)

Proof. Note that

(DexD)

(
1
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)
=

2e2x

(1− ex)3 ,

(DexD)2
(

1
1− ex

)
=

12e3x(1 + ex)

(1− ex)5 ,

(DexD)3
(

1
1− ex

)
=

144e4x(1 + 3ex + e2x)

(1− ex)7 .

Hence the formula (1) holds for n = 1, 2, 3. Assume that the result holds for n, where n ≥ 3. Let Nn(x) =
∑n−1

k=0 N(n, k)xk. Note that

(DexD)n+1
(

1
1− ex

)
= (DexD)

(
e(n+1)x Nn(ex)

(1− ex)2n+1

)
.

It follows that
Nn+1(x) = ((n + 1)(n + 2) + (4n + 2n2)x + n(n− 1)x2)Nn(x) + (4x− 6x2 + 2x3 + 2nx(1− x2))D(Nn(x))
+ x2(1− x)2D2(Nn(x)).
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Equating the coefficients of xk in both sides, we immediately get the recurrence relation of N(n, k) given
in Lemma 1. Therefore, the result holds for n + 1.

Similarly, note that

(exD2)

(
1
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)
=

e2x(1 + ex)

(1− ex)3 ,

(exD2)2
(

1
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=

4e3x(1 + 4ex + e2x)
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(exD2)3
(

1
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36e4x(1 + 9ex + 9e2x + e3x)

(1− ex)7 .

Hence the formula (2) holds for n = 1, 2, 3. Assume it holds for n, where n ≥ 3. Let Mn(x) =

∑n
k=0 M(n, k)xk. Note that

(exD2)n+1
(

1
1− ex

)
= (exD2)

(
e(n+1)x Mn(ex)

(1− ex)2n+1

)
.

It follows that
Mn+1(x) = (1 + x + n2(1 + x)2 + n(2 + 4x))Mn(x) + (3x− 4x2 + x3 + 2nx(1− x2))D(Mn(x))
+ x2(1− x)2D2(Mn(x)).

Equating the coefficients of xk in both sides, we immediately get the recurrence relation of M(n, k) given in
Lemma 1. Therefore, the result holds for n + 1. Along the same lines, it is routine to derive (3). This completes
the proof.

Note that P(n, n− k) = ( n
n−k)(

n+1
n−k), then P(n + 1, n + 1− k) = ( n+1

n+1−k)(
n+2

n+1−k).
It is easy to verify the following lemma;

Lemma 2. For 0 ≤ k ≤ n + 1, we have (n + 1)(n + 2)P(n + 1, n + 1 − k) = [(n + 2)2 + (2n + 5)k + k(k −
1)]P(n, n − k) + [2(n2 + 3n + 1) − 6(k − 1) − 2(k − 1)(k − 2)]P(n, n − k + 1) + [n2 − (2n − 1)(k − 2) + (k −
2)(k− 3)]P(n, n− k + 2).

Theorem 2. For n ≥ 1, we have

(D2ex)n ex

(1− ex)2 =
n!(n + 1)!e(n+1)xPn(ex)

(1− ex)2n+2 , (4)

(DexD)n ex

(1− ex)2 =
n!(n + 1)!e(n+1)xQn(ex)

(1− ex)2n+2 . (5)

Proof. Note that

(D2ex)
ex

(1− ex)2 =
2e2x(2 + ex)

(1− ex)4 ,

(D2ex)2 ex

(1− ex)2 =
12e3x(3 + 6ex + e2x)

(1− ex)6 .

Hence the result holds for n = 1, 2. Assume that the result holds for n. Then from (4), we get the recurrence
relation
(n+ 1)(n+ 2)Pn+1(x) = [n2x2 +(2+ n)2 + 2x(1+ 3n+ n2)]Pn(x)+ x(1− x)[(2n− 1)x+ 2n+ 5]P′n(x)+ x2(1−
x)2P′′n (x).

Equating the coefficients of xk in both sides, we get the recurrence relation of the numbers P(n, n − k),
which is given in Lemma 2, as desired. Along the same lines, one can derive (5). This completes the proof.

By a change of variable y = ex, we end our paper by giving a corollary;

Corollary 1. For n ≥ 1, let Dy = d
dy , we have
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1. (yDyy2Dy)n
(

1
1−y

)
= n!(n+1)!yn+1 Nn(y)

(1−y)2n+1 ,

2. (y2DyyDy)n
(

1
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)
= n!2y(n+1)Mn(y)

(1−y)2n+1 ,

3. (yDyyDyy)n
(

1
1−y

)
= n!2yn Mn(y)

(1−y)2n+1 ,

4. (yDyyDyy)n y
(1−y)2 = n!(n+1)!y(n+1)Pn(y)

(1−y)2n+2 ,

5. (yDyy2Dy)n y
(1−y)2 = n!(n+1)!y(n+1)Qn(y)

(1−y)2n+2 .

Proof. It’s not hard to verify the equations hold when n = 1, 2

(yDyy2Dy)

(
1

1− y

)
=

2y2

(1− y)3 ,

(yDyy2Dy)
2
(

1
1− y

)
=

12y3(1 + y)
(1− y)5 .

Assume the result holds for m, where m ≥ 3. Setting y = ex, we get

(yDyy2Dy)(yDyy2Dy)
m
(

1
1− y

)
= (exDye2xDy)

m!(m + 1)!yn+1Nm(y)
(1− y)2m+1

= (DexD)
m!(m + 1)!e(m+1)x Nm(ex)

(1− ex)2m+1

=
(m + 1)!(m + 2)!e(m+2)x Nm+1(ex)

(1− ex)2m+3

=
(m + 1)!(m + 2)!ym+1Nm+1(y)

(1− y)2m+3 .

Along the same lines, we can get the other statements. This completes the proof.
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