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Abstract: Capacitated vehicle routing problem is one of the variants of the vehicle routing problem which
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reduce the cost of transportation of goods and services. Each vehicle originates from a depot, service the
customers and return to the depot. We compare the reinforcement learning model with an exact method;
column generation and Google’s OR-tool. Our objective is to solve a large-size of problem to near-optimality.
We were able to use reinforcement learning to solve upto 101 nodes to near-optimality.

Keywords: Combinatorial optimization, vehicle routing problem, column generation, google’s operation
research tool, reinforcement learning, gurobi.

MSC: 26B25, 26A33, 26A51, 33E12.

1. Introduction

T he concept of Vehicle Routing Problem (VRP) was first proposed in [1] and a mathematical
programming formulation and algorithm method for VRP were also developed in this study. This

problem generalizes the famous and common Traveling Salesman Problem (TSP) which is one of the simplest
routing problems. According to [2], the TSP involves finding the optimal/shortest route that connects all
routes exactly once and return to the starting node from a given set of finite route and also measuring the
distance between them. Due to the set of several available routes, VRP is a computationally difficult problem
even though many algorithms (such as heuristic and exact algorithm) have been proposed over the years. The
challenging task is how to produce a solution that will be fast and reliable.

The VRP is a combinatorial optimization and integer programming problem which finds optimal path
in order to deliver goods and services to a finite set of customers. It can be described as a graph G(V , E)
where V denote the set of nodes and E denote the weighted edges between the nodes. The VRP has been a
problem for several decades and one of the most studied problem in logistics engineering, applied mathematics
and computer science, and which is described as finding optimal routes for a fleet of vehicles to serve some
scattered customers from depot [1,3–6].

The Capacitated VRP (CVRP) involves finding set of optimal routes for some fleets of homogeneous
vehicles with capacity constraints, moving from a central depot to service customer demands and return to
same depot. Our basic assumption before solving CVRP includes; for the customer, the quantity of demand
and the traveling cost from one customer to another are known, and for the vehicles, the exact number of
vehicles and its capacity must be known.

The VRP consists of several variants which includes; TSP [7–10], Multiple TSP [11,12], CVRP [10,13,14],
VRP with time windows (VRPTW) [15,16], dynamic VRP (DVRP) [17,18], pickup and delivery VRP (PDVRP)
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[19], periodic VRP (PVRP) [20] and so on. These variants have several application which include; DVRP is
applicable in the courier services [21], Milk-collection problem [22], and so on.

In this paper, our goal is to find optimal set of routes for some vehicles delivering goods or services to
some known locations. Further, the capacity of these homogeneous vehicles must not be exceeded. To achieve
this goal, we shall;

1. formulate a mathematical model for the CVRP problem,
2. develop a reinforcement learning framework for solving CVRP, and
3. check the optimal gap between column generation, Google’s operations research tools and reinforcement

learning.

Our proposed algorithm is different from [5] and will be applied on Augerat et al., [14] instances. The
remainder of our paper is broken down as follows: Section 2 shows the literature review. Section 3 introduces
the mathematical model of CVRP and algorithms to be used. The various techniques discussed are then
applied on CVRP in Section 4. A summary of the findings and proposed future research directions are finally
given in Section 5.

2. Literature review

Some researchers came up with significant ideas which has really contributed to solving VRP and
transportation problem in general. In the first article [1], some trial problems were calculated but no practical
application was made. Based on the first article [1], Clarke and Wright in [27] developed a saving-based
heuristics algorithm that enables rapid selection of optimal or near-optimal route. Augerat et al., [14] applied
three algorithm namely; constructive, randomized greedy and a very simple tabu search algorithms to
separate capacity constraints from CVRP and some experimental results (from known instances and romdomly
generated instances) with these algorithms were reported. Toth and Vigo [28] reviewed exact algorithms based
on branch-and-bound approach and applied it on CVRP. Experimental results comparing the performance of
different relaxations and algorithms on some instances were also presented. Fukasawa et al., [29] applied
branch-and-cut-and-price algorithm to solve several instances of CVRP to optimality. Baldacci and Mingozzi
[30] solved a CVRP problem using an exact method based on set-partitioning formulation of the problem. The
proposed method was effective but has limited solving power of customers to about 100. Uchoa et al., [31]
proposed and used new set of CVRP instances ranging from 100 to 1000 customers. Some exact and heuristic
methods were also applied on the proposed instances.

Akhtar et al., [32] applied Backtracking Search Algorithm (BSA) on CVRP in order to minimize travel cost
for waste collection routes distances. The obtained results showed 36.80% distance reduction and reducing the
fuel cost by 4.77%, thus the BSA algorithm was concluded to be a viable tool. Franco et al., [33] used Nearest
Neighbor Algorithm (NNA) to perform a comparative study between Augerat et al., [14] instances to solve
CVRP and determine which instance offers the best solution. In their work, there was 15.7% improvement on
opt− A− n33− k5 instance. Rojas-Cuevas et al., [34] used Capacitated Vehicle Routing Problem for Carriers
(CVRPfC) to solve distribution problem. The route planning were obtained through CVRPfC and the authors
concluded that the CVRPfC can improve the competitiveness of the carriers by providing better fares to their
customers. Ibrahim with his coauthors [7,13] applied column generation to solve CVRP to optimality using
Augerat et al., [14] instances. Kohl et al., [35] and Desrochers et al., [15] applied column generation to solve
VRP with time windows. Some experimental results were presented and it was concluded that the algorithm
are helpful in solving VRP with practical-sized VRPTW benchmark.

Reinforcement learning, pointer network and Neural combinatorial Optimization have also been applied
in solving VRP. Bello et al., [25] proposed a neural networks and reinforcement learning to solve VRP with
single vehicle. The algorithm (Neural combinatorial Optimization) achieved near-optimal results on 2D
euclidean graphs upto 100 nodes. Ishaya et al., [8] improved the algorithms given in [25], by adding 2-opt
search on the algorithms to achieve a near-optimal solution and was able to solve upto 200 nodes. Nazari et
al., [5] presented a reinforcement learning framework for solving the VRP. The model was applied on VRP
and TSP and this approach perform very well on medium-sized problem in terms of the solution quality with
computational time. Advantage of this method is that it scales well when the problem-size is increasing.
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3. Mathematical Model and Methodology

3.1. Nomenclature definitions

All vehicles will originate and end at the depot, while each of the customer is visited exactly once. Let us
define the following:

• C = {1, 2, . . . , m} represent the set of m-customers to be considered,
• V = {v0, v1, . . . , vm, vm+1} is the set of vertices in G. The vertices v0 = vm+1 represent the depot, and
{v1, . . . , vm} represent customers nodes,

• E = {(vi, vj) | 0 ≤ i, j ≤ m, i 6= j} is a set of |V| ∗ (|V| − 1) directed routes/edges between the vertices.
If in both directions the distance between two vertices are identical, we then add the (i < j) restriction,

• K denote the fleet of available vehicles in a single depot. All vehicles considered are homogeneous i.e.,
equal capacities. We have n-vehicles,

• Q is the maximum capacity of a vehicle, which limits the number of customers to be visited before
returning to the depot,

• π(a|s) is the probability density function,
• A is the set of actions,
• Q(s, a; π) is the action value function,
• |x1 − x2|+ |y1 − y2| is the manhattan distance,
• π is the policy,
• P(s, a, y) is the transitive probability,
• an is the alignment vector,
• C = (cij) is the cost of traveling from nodes i to j and cij ≥ 0 is the corresponding distance of edges (vi, vj),

the diagonal of the matrix i.e cii = 0 always. Depending on whether the VRP variant in consideration is
symmetric or not, cij = cji. The triangle inequality is assumed to hold generally, i.e., cij ≤ cik + ckj and
(0 ≤ i, j, k ≤ m),

• Ri = (vi
0, vi

1, vi
2, vi

3 . . . , vi
ki

, vi
ki+1

) is a vector of the route of vehicle i which start and end at the depot, with

vi
0 = vi

ki+1
= v0, vi

j 6= vi
`, 0 ≤ j < ` ≤ ki, and ki is the length of route Ri,

• S = {R1, . . . , Rn} is the set of route which represent the VRP solution instance,
• C(Ri) = ∑ki

j=0 C(vi
j, vi

j+1) is the cost of route Ri,
• C(S) = ∑n

i=1 C(Ri) is the total cost of solution S which satisfies Ri ∩ Rj = {v0} ∀Ri, Rj, (1 ≤ i, j ≤
n, i 6= j) and ∪n

i=1Ri = S in order for each customer to be served once. The route vectors is treated here
as a set.

The goal of the VRP is to minimize the C(S) on the graph G(V , E). Let G is the graph which contains
|E |+ 2 vertices, and the customers ranges from (1, 2, . . . , m). The starting and returning depots are denoted
by 0 and m + 1 respectively. Earlier in this section, we introduced the vehicle routing problem which we have
now defined. However, the problem is not all about visiting the customers, there is more to their demands. In
the following definitions, we shall specify these additional demands of the customers:

• demand; d = (d0, . . . , dm, dm+1) with di > 0 and m is the total number of customers which is a vector of
the demands of customer, the demand of the depot is denoted by d0; d0 = dm+1 = 0 always.

• Let us define our decision variable; xijk =


1 iff vehicle k moves from node i to j

0 otherwise.
• qj is the quantity of demand at node j

The problem definition will be based on the following assumptions;

• The capacity constraints of all the vehicles are observed.
• Each customer can be served by only one vehicle.
• Each and every route starts at vertex 0 and ends at vertex (m + 1).

The mathematical formulation of CVRP is stated as follow, starting with the objective function

min ∑
k∈K

∑
i∈V

∑
j∈V

cijxijk (1)
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subjected to:

∑
k∈K

yik = 1, ∀ i ∈ V\{0, f } (2)

∑
j∈V\{i}

xijk − ∑
j∈V\{i}

xjik = 0 ∀ i ∈ V\{0, f }, k ∈ K (3)

∑
j∈V\{v0}

x0jk − ∑
j∈V\{v0}

xj0k = 1, ∀ k ∈ K (4)

yik = ∑
j∈V\{i}

xijk, ∀ i ∈ V\{ f }, k ∈ K (5)

ydk = ∑
i∈V\{v1}

xi f k, ∀ k ∈ K (6)

uik + qj ≤ ujk + Q(1− xijk), ∀ i, j ∈ V, k ∈ K (7)

qi ≤ uik ≤ Q, ∀ i ∈ V, k ∈ K (8)

xijk ∈ {0, 1}, ∀ i, j ∈ V, k ∈ K (9)

yik ∈ {0, 1} ∀ i ∈ V, k ∈ K (10)

where (1) minimize the total travel cost by vehicle, constraint (2) restrict a customer to be visited by exactly
one vehicle, (3) and (4) is the path-flow of vehicles, (5) and (6) is the coupling, (7) and (8) ensures the capacity
constraint is observed and constraints (9) and (10) indicate integrality constraints. Also, we encode 0 and f in
the model to denotes begin and final nodes, respectively, for convenience.Therefore, 0 = v0 and f = vm+1.

Note that subtours are avoided in the solution with constraint (7) that is, cycling paths which do not pass
through the depot. Constraints (7) and (8) advantage in this problem is that in terms of our customers, the
formulation has a polynomial number of constraints.

However, the Linear Programming (LP) relaxation of this formulation (model) generate a lower bound
which is known to be weak when compared to other models. Many researchers and authors emphasized on
capacity constraints that produce a better lower bounds, although the constraints increases exponentially in
terms of number of customer thereby requiring the application of branch and cut (BAC) technique [36].

3.2. Column generation (CG) technique

In order to solve our objective function (1), we shall apply CG technique. This technique is efficient in
solving large linear program problems [37]. The idea of this technique is that LP problems are usually too
large and difficult to consider all variables explicitly. CG considers variables with potential to improve our
objective function and this strategy helps to reduce the number of variables. In CG, the problem is splitted into
some iterative steps which are; Restricted Master Problem and Pricing Problem.

3.3. Restricted master problem (RMP)

We are going to use set-partitioning to re-write the objective function. Let us recall that in problem
definition Section 3.1 we defined

We shall introduce following variables here:

yk =


1 if route k is in the solution

0 otherwise.

and

aik =


1 if customer i use route k

0 otherwise.
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Also, we denote Ck as the total costs of driving a route, this include cost of overtime, fixed cost, early and
late arrival penalties. Then, we formulate the objective function as:

min ∑
k∈R

Ckyk, (11)

subject to:

∑
kεR

aikyk = 1, ∀ i ∈ V \ {0}, (12)

yk ∈ {0, 1}, ∀ k ∈ R. (13)

Given a restricted set of routes (say R) (11) is the objective function, each and every customer is visited by
a vehicle exactly once in constraint (12) and constraint (13) is the integrality constraint that restrict the value of
yk to 0 or 1. The master problem can be solved using simplex algorithm described in Algorithm 1.

Algorithm 1 Simplex Algorithm Process

(i) Convert the Linear Program (LP) to standard form.
(ii) Obtain a Basic Feasible Solution (BFS) (if possible) from the standard form.
(iii) Determine whether the current BFS is optimal.
(iv) If the current BFS is not optimal, then determine which nonbasic variable should become a basic
variable and which basic variable should become a nonbasic variable to find a new BFS with a better
objective function value.
(v) Use Elementary Row Operations (EROs) to find the new BFS with the better objective function value.
Go back to step (iii).

3.4. The pricing-problem (subproblem)

In order to solve the CVRP with column generation approach, the pricing-algorithm decomposes into |V|
identical problems, where each of the problem is a shortest path problem with time windows and capacity
constraints. Specifically, the pricing-problem is an elementary shortest path with capacity and time windows
constraints (ESPWCTWC), the elementary shortest path implies that each customer cannot appear more than
once in the shortest path. We can now formulate the subproblem as follow,

min ∑
iεV

∑
jεV

(cij − πi)yij, (14)

such that

∑
iεC

di ∑
jεN

yij ≤ Q, (15)

yijε{0, 1}, (16)

When solving ESPWCTWC as the subproblem, Ĉij = Cij − πi is the reduced cost of using route (i, j) and
Cij is non-negative integer.

Solving the subproblem as a linear mixed integer programming will potentially reduce the integrality gap
between optimal integer solution and the relaxed version of the CVRP problem, since the subproblem does not
have integrality constraint/property [37]. More literatures on column generation technique can be obtain in
[29,38–45]. The column generation algorithm is given in Algorithm 2.

Algorithm 2 Column generation algorithm

(i) Start with a basic feasible solution B.
(ii) For any pattern j, reduced cost is 1 − ∑m

i=1 πiaij, where πi = cBB−1, i ∈ [1 . . . , m], is the simplex
multipliers vector associated with current basis.
(iii) Identify a pattern with negative reduced costs, or prove that none exists. Update basis and repeat.
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3.5. Google’s operations research tool

The second technique to be used is the Operations Research Tools (Goole’s OR-Tool). Goole’s OR-Tool
is an open source software suitable for solving optimization problems. The algorithm is suitable in solving
routing problem, constraint programming, flows problem, integer programing and so on [46]. The advantage
of this software to us is that it enables us to find optimal tour and its length for routing problem using python.
Its computational time is usually very fast compared to other techniques. Its solutions are usually near-optimal
when compared with exact method. The algorithm computes distance between two points; (x1, y1), (x2, y2),
using the manhattan distance which sum up the absolute distance of x and y coordiantes respectively. This
can be obtained mathematically as |x1 − x2| + |y1 − y2|. We convert the algorithm’s formula for computing
the cost of transportation by computing the distance between two coordinates; (x1, y1), (x2, y2), i.e., using the
Euclidean formula

√
(x1 − x2)2 + (y1 − y2)2. One major advantage is that the algorithm is computationally

very fast. Application of this technique shall be given in Section 4.

3.6. Reinforcement learning

Reinforcement learning (RL) is the learning of what-to-do, how to map situations to actions in order to
maximize a numerical reward signal. The learner (agent) is not explicitly told the actions to take, but instead
discover which actions yield more rewards by trying different action. RL provides a mathematical framework
suited to solving games. In RL, Markov Decision Process (MDP), tool for modeling artificial intelligence
agents that interacts with environment that offers rewards on completion of some certain actions, is the central
mathematical concept [47].

Markov decision processes (MDP)

MDP is defined as a stochastic process in discrete time. The mathematical space of MDP has a defined
states S, for each state a reward signal r : S × A → R. The agent has some actions, A, and probability
distribution P(y|s, a), with current state s ∈ S and action a ∈ A, the probability of moving into given state y.
In this environment, the goal is to find a policy, π : S → A in order to maximize the discounted sum of total
rewards R over all time steps

R = ∑
t

σtrt+1, t ∈ [0, T] (17)

where t denotes current time and σ ∈ [0, 1) is the discount factor. Solution to this problem is the stationary
policy π∗ and this may be stochastic giving a probability distribution over the actions A and state S,

at ∼ π(st) (18)

where the probability density function is given as π(a|s). Furthermore, we introduce the Action-Value function
Q(s, a; π), the expected reward from state s, action a, with a given policy π,

Q(s, a; π) = E
[

T

∑
t=0

σtrt|S0 = s,A0 = a, π

]
. (19)

Following π∗ from any time step,t and onwards, the optimality principle yields a recursive relation which
is given as follows,

Q(st, at; π∗) = E [rt + σQ(st+1, at+1; π∗)|S0 = s,A0 = a, π] , (20)

through the optimal action-value function, Q(s, a; π), the optimal deterministic policy can be stated. According
to the principle of optimality dictates that the path generated by choosing action a must be followed in order to
maximize the expected return in state s

π∗(a, s) = δa,x, x = argmaxa′∈AQ(s, a′), (21)
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where δa,x denotes the kroniker delta function. The expected value can be defined in terms of expected reward
r(s, a), transitive probability P(s, a, y), and the state-value function V(x) as follows,

Q∗(a, s) = r(s, a) + σ ∑
y∈S

P(s, a, y)V∗(y), (22)

V∗(x) = sup
a∈A

Q∗(a, s). (23)

Furthermore, the optimal policy, π can be expressed as a function of V∗ or Q∗,

∑
a∈A

π∗(a|s)Q∗(s, a) = V∗(x), ∀s ∈ S, (24)

Now, the knowledge of V∗ or Q∗ are sufficient in finding the optimal policy π∗ [48]. More explanation
can be found in [48].

3.7. Sequence-to-sequence model

Sequence-to-sequence models [23,24,49] are handy in tasks for which mapping from one sequence to
another is required [5]. Over the past several years, these models have been studied extensively in the field of
neural machine translation, and there are many variants of these models. Generally speaking, the architecture
for the different versions is almost the same, which consists of two Recurrent Neural Networks (RNN), called
the encoder and decoder. An encoder network reads through the input sequence and store the output knowledge
in a fixed size sequence of vectors, and a decoder converts the encoded information back to an input sequence.

3.8. Neural combinatorial optimization

Several methods have been developed in order to solve a combinatorial optimization problem using
recent techniques in artificial intelligence. Vinyals et al., [24] was the first who first proposed the concept
of Pointer Network, model inspired by sequence-to-sequence models [5]. Because it is invariant to the encoder
sequence length, the Pointer Network enables the model to be applicable to combinatorial optimization
problems, where the length of output sequence is determined by the source sequence. Vinyals et al., [24]
used the pointer network architecture in supervised fashion in order to find a near optimal tours for TSPs from
heuristic solutions. This dependence limits the Pointer Network from obtaining better solutions order than the
ones provided during the training.

3.9. The model

In this section, we introduce our model, which is the simplified version of the Pointer Network. We
formally define the problem and our proposed framework for generic combinatorial optimization problem
with a set of input X = xj, j=̇1, 2, . . . , N. Some elements of each input is allowed to change between the
decoding steps, which is the case in several combinatorial problems such as the VRP. The dynamic elements
might be an artifact of the decoding step itself, or they can be imposed by the environment. We represent
every input xj by a sequence of tuples {xj

n=̇(sj, dj
n), n = 0, 1, 2, . . . }, where sj and dj

t are the static and dynamic
elements of input, respectively, which can also be a tuples. xj

n can be viewed as a vector which describes at
time n the state of input j. We will represent the set of all input states at fixed time n with Xn. Starting with
an arbitrary input in X0 and pointer z0 refer to this input. At every decoding time n, zn+1 points to one of the
available Xn, which will determine the input for the next decoding step; and this process goes on and on until
a termination condition is satisfied. The termination condition is specific on a particular problem, showing
that the sequence generated satisfies the feasibilty constraints. For instance, for the CVRP considered in this
work, the terminating condition is satisfied when there is no more demand to be satisfied.

This process will generate sequence of length N, Z = {zn, n = 0, 1, . . . , N}, with a different
sequence-length (probably), when compared with the length of the input sequence M. The reason is, the
vehicle may have to return to the depot to refill several times. Furthermore, we use Zn to denote the decoded
sequence up to time n. Our interest is to find a stochastic policy π that will generates the sequence Z in a way
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that minimizes a loss objective function while the problem constraints are satisfied. The optimal policy π∗ will
generate the optimal solution with probability 1. Our goal to to make the optimal gap between π and π∗ close
to zero. Similar to [23], in order to decompose the probability of generating sequence Z we use the probability
chain rule, as follows:

P(Z|X0) =
N

∏
n=0

P(zn+1|Zn, Xn), (25)

and

Xn+1 = h(zn+1, Xn), (26)

is a recursive update of the problem representation with h as the state transition function. The right hand side
of Equation (26) is computed using the attention mechanism, i.e.,

P(zn+1|Zn, Xn) = so f tmax(g( fn, Xn)), (27)

where g is an affine function which outputs a vector with input-size, and hn is the RNN state decoder that
gives the summaries of previous information on decoded steps, (z0, z1, . . . , zn) [5].

3.10. Attention mechanism

Attention mechanism is a differentiable structure for addressing different parts of the input. The attention
mechanism employed in our method is illustrated in [5]. In words, an specifies how much every input data
point might be relevant in the next decoding step n. Set the embedded input j as x̄j

n = (s̄j, d̄j
n), and fn ∈ RD is

the memory state of the RNN cell at decoding step n. The alignment vector an is computed as;

an = an(x̄j
n, fn) = so f tmax(pn), (28)

where pj
n = qN

a tanh(Wa[x̄
j
n; fn]). The “;” here means the concatenation of two vectors. The conditional

probabilities is computed by combining the context vector cvn as

cvn =
M

∑
j=1

aj
n x̄j

n, (29)

with the embedded inputs, and then normalizing the values with the softmax function, as follows;

P(zn+1|Zn, Xn) = so f tmax( p̄j
n), (30)

where x̄j
n = qN

c tanh(Wc[x̄
j
n; cvn]). from (28) to (30) qa, qc, Wa and Wc are trainable variables [5].

For training the policy gradient, we utilize the REINFORCE approach (in algorithm 0) which can be found
in [5,8,25] for VRP. Consider N problems with probability distribution ΦN .

4. Results

We show the applications of Column Generation, Google’s OR-Tools and Reinforcement Learning on
Capacitated Vehicle Routing Problem. Our results were compared with best known values for each instances.
These techniques have been previously discussed explicitly in Section 3, and Augerat et al., [14] instances will
be use to test these methodologies and their results shall be compared. For our experiments, we used HP
Elitebook 840 PC, 1.9GHz processor, core i5 with 8GB Memory. We started by showing optimal tour with
tables and graphs for Column generation, Google’s OR-Tools and comapre them with reinforcement learning.

We used Augerat et al., [14] (set P) data to perform our experiment. The optimality gap here is computed
as

gap =
Upper bound− Lower bound

lower bound
× 100%. (31)
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Algorithm 3 Reinforce algorithm [5]

proceedure: Initialize the actor and critic networks with random weights θ and φ, respectively
for i = 1, 2, . . . do

reset gradients: dθ ← 0, dφ← 0
sample M instances based on ΦN
for i = 1, 2, . . . do

initialize step counter t← 0
repeat
choose ym

t+1 according to the distribution P(ym
t+1|Ym

t , Xm
t )

observe new state Xm
t+1

t← t + 1
until termination condition is satisfied
compute the reward Rm = R(Ym, Xm

0 )

end for
dθ ← 1

M ∑M
m=1(Rm −V(Xm

0 ; φ))5θ logP(Ym|Xm
0 )

dθ ← 1
M ∑M

m=1(Rm −V(Xm
0 ; φ))2

update θ and φ using dθ and dφ respectively.
end for
End proceedure

As we progress, the optimal gap for each technique will given and computed.

4.1. Column generation applied on CVRP

The Column Generation (CG) method is an exact method for solving the CVRP and the VRP in general,
this technique has been explicitly explained in Section 3.2, and gives an optimal solution to a small-size
problem but become inefficient on big-size problem.

Table 1 gives the summary of the comparison of this technique’s primal and dual problem, since CG work
on dual solution of the relaxed master problem, their optimal gap in percentage. The table 1 consists of seven
columns; Instances (contains the instances written as P− n16− k8 which means the data consists of 16 nodes with 8
fleets of vehicles),Cities (locations to be visited), Best value (from literature), Relaxed Master Problem (RMP), Column
Generation (based on dual values), column generation computational time and optimality gap. From the table, the
optimal gap for all the instances considered gives 0.00%. From the instances we consider in this research,
only coordinates and demands for each nodes are given, CG compute the distance between two coordinates;
(x1, y1), (x2, y2), using the euclidean formula;

C12 =
√
(x1 − x2)2 + (y1 − y2)2 (32)

Table 1. CG results

Instances Cities Best value RMP (primal) CG result (cost) CG time gap
P-n16-k8 16 450 [50] 450 450.00 14.72 0.00%
P-n20-k2 20 220 [50] 220 220.00 38.64 0.00%
P-n22-k2 22 216 [50] 216 216.00 44.31 0.00%
P-n22-k8 22 603 [50] 603 603.00 19.66 0.00%
P-n40-k5 39 458 [50] 458 458.00 32.22 0.00%

P-n50-k10 49 696 [50] 696 696.00 38.42 0.00%
P-n101-k4 100 681 [50] 681 681.00 39.16 0.00%

To obtain the optimality gap between the two results, we use the formula in (31). These results were
obtained using gurobi solver in python [51].

The optimal routes for the first four instance is given in Figure 1.
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Figure 1. Optimal routes for some instances in table 1.

The route for instance p− n22− k8 is shown in (33) and the routes is shown

R1 = (v13, v18, v22), R2 = (v15, v21, v19), R3 = (v8, v3, v2, v7), R4 = (v11, v9, v4, v5), R5 = (v14, v12),

R6 = (v16, v17), R7 = (v10, v6), R8 = (v20). (33)

4.2. Google’s OR-tool applied on CVRP

We applied Google’s OR-Tool on CVRP as follow, the optimal gap formula is given in (31)

Table 2. Goole’s OR-Tool results

Instances Best known values Google’s OR-Tool Optimality gapresult time (s)
A-n32-k5 784* [50] 796 .04 1.53%
P-n16-k8 450* [50] 450 .50 0.00%
P-n20-k2 216* [50] 227 .02 5.09%
P-n22-k2 216* [50] 217 .02 0.46%
P-n22-k8 603* [50] 623 .51 3.32%
P-n40-k5 458* [50] 494 .10 7.86%
P-n50-k7 554* [50] 574 .08 3.61%

P-n70-k10 827* [50] 940 .17 13.66%
P-n101-k4 681* [50] 741 .35 8.81%

From Table 2, the Google’s OR-Tool computation seem to be very very fast, and gives a near-optimal
solution when compared with our column generation. The percentage of the optimality gap is quite small
for some instances. It is observed that the instance p-n16-k8 gives a gap of 0.00% which means the solution is
optimal. The Google’s OR-Tool does not give us optimal solution but a near-optimal solution. Figure 2 shows
the plot with optimal gap.

Figure 2. Plot showing optimal gap between Google’s OR-Tool and Best known solution

The percentage of the optimal gap between the solutions plots are given in fifth column in Table 2. From
our experiments, the instance P− n70− k10 appear to have the largest gap from optimality which is 13.66%.
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However, large optimal gap between the solutions shows that the obtained solution is far from optimality.
Instances P− n101− k4, P− n40− k5 and P− n20− k2 with gap 8.81%, 7.86% and 5.09% respectively shows
that their solutions are not ’optimal’. Optimality gap of 0.00% was obtained on instance P− n16− k8 which
indicate an optimal solution was reached.

Similarly, the tour for instance p− n101− k4 with cost 741 is given as follow:
R1 = (v28, v12, v68, v80, v54, v24, v29, v3, v77, v79, v78, v34, v35, v65, v66, v71, v9, v81, v33, v51, v20, v30, v70, v31, v88, v7, v52),
R2 = (v89, v60, v5, v84, v17, v45, v47, v36, v49, v64, v63, v90, v32, v10, v62, v11, v19, v48, v82, v8, v32, v18),
R3 = (v27, v69, v1, v50, v76, v26, v58, v13, v94, v95, v97, v87, v57, v15, v43, v100, v85, v93, v59, v99, v96, v6),
R4 = (v92, v37, v98, v91, v61, v16, v86, v44, v38, v14, v42, v2, v41, v22, v23, v67, v67, v39, v25, v55, v4, v56, v75, v74, v72, v73, v21,
v40, v53) .

4.3. CG, Google’s OR-tools and RL on CVRP

So far we have shown the results for each of our methodologies i.e CG in Table 1, Google’s OR-Tool with
our algorithm in Table 3. Now, we compute the final table which summarize the CG, Google’s OR-Tool and
RL techniques and shown in Table 3. We use Beam Search with width 10 (BS10) for the RL.

Table 3. Summary of CG, Google’s OR-Tools and RL results

Instance best value CG Google’s OR-Tool RL
result (gap) time (s) result (gap) time (s) result (gap) time (s)

P-n16-k8 450* [50] 450 (0.00%) 14.72 450 (0.00%) 0.50 451 (0.22%) 0.30
P-n20-k2 216* [50] 216 (0.00%) 38.64 227 (5.09%) .20 220 (1.85%) 0.45
P-n22-k2 216*[50] 216 (0.00%) 44.31 217 (0.46%) .20 218 (0.93%) 0.55
P-n22-k8 603*[50] 603 (0.00%) 19.66 623 (3.32%) .51 615 (2.67%) 1.10

From our comparison Table 3 above, we see that the first technique; column generation solution gives us
the best bound, of course we expect nothing less since the technique gives an optimal solution but limited to
a small size problem. The second technique, the Google’s OR-Tool solution gives a near-optimal solution and
the advantage of this technique over the previous is, it solves more problems than CG. The optimal gap for
each of the instances considered using this technique is < 15%. Lastly, the reinforcement learning also gives
a new optimal solution compared with the previous two techniques. Its solutions outperform the OR-tools
and is closer to the exact solution, the optimality gap is quite smaller compared with the Google’s OR-Tool
optimality gap. This technique is quite good since it can handle a large-size problem.

The computational time for each of these techniques are also of importance, since we want an algorithm
that will be fast in computations. Although the CG technique gives an optimal solution, it has high
computational time when compared with OR-Tools and RL. The Google’s OR-Tool and RL appear to have
’almost’ the same computational time and lesser than CG time, which shows these two techniques perform
their experiment faster than the CG. The Optimal gap between the CG and OR-Tools is 0.00% on instance
P− n16− k8. The gap between the CG and RL appears to be better and smaller ib value when compared with
the gap between CG and OR-Tools.

4.4. Google’s OR-Tools and RL with CVRP

Google’s OR-Tools and RL have been compared with CG previously on small-sized problem. Here,
we shall compare these two techniques to solve bigger-size problems. Table 4 shows the path-length and
computational time for these techiques and their optimal gap. The “instances" column shows the size of the
problems and their vehicle capacity, Q.

From Table 4, both technique’s result are shown with their computational times. Our RL outperforms the
google’s OR-Tools. The solutions here are scaled down to [0, 1]× [0, 1] for a better solution.

We have shown results using various techniques discussed and their tour-length cost, optimal tour,
optimality gap and computational time. Each of these technique is applied on the same data set and the
same PC was used to perform these experiments.
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Table 4. OR-Tools and RL result

Instances OR-Tools RL optimality gappath-length time path-length time
vrp50, Q=150 31.50 0.29 30.88 02.25 2.01%
vrp70, Q=135 36.05 0.29 35.74 03.02 0.87%

vrp100, Q=400 55.62 0.29 55.05 06.23 1.04%

5. Conclusion

The three algorithms discussed here; column generation, google’s OR-Tools and reinforcement learning
algorithms are examined on a small-scale problem. Also, google’s OR-Tools and reinforcement learning are
examined on large scale data. An algorithm that will find a near-optimal solution have been developed. We
find the optimal set of routes for a fleet of vehicles delivering goods or services to various locations. In order
to achieve this aim, we formulated a mathematical formulation for the Capacitated Vehicle Routing Problem.
We further to solved this formulation with the three techniques; Column generation, Google’s Operational
Research tool and Reinforcement Learning. We compared the objective values for these techniques with
the ”best known values" and calculated for the “optimality gap” between this solution, taking the ”best
known value" as the lower bound. From our experiment, our Reinforcement Learning outperformed the
google’s OR-Tools a little bit. Although the computational time for the google’s OR-Tools is faster than the
Reinforcement Learning time but these experimental times are very close and the reinforcement learning is
able to solve a large data set.

In our future work, a “time window" constraint can be added to this problem. Basically, this problem shall
have multiple vehicles with capacity constraint and each location will have a time window. This means that
each of the customer/location will require demand at a particular time window [ai, bi], where ai is the opening
time at a location and a vehicle must arrive on or before ai and bi is the closing time, a vehicle is not allowed
to come after bi . Hence, the delivery time, si to a location must be ai ≤ si ≤ bi . Customers with similar time
window can be merged together as long as the capacity limit of the vehicle is not exceeded.
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