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Abstract: This paper serves as the first extension of the topic of dominator colorings of graphs to the setting
of digraphs. We establish the dominator chromatic number over all possible orientations of paths and cycles.
In this endeavor we discover that there are infinitely many counterexamples of a graph and subgraph pair
for which the subgraph has a larger dominator chromatic number than the larger graph into which it embeds.
Most importantly, we use these results to characterize all digraph families for which the dominator chromatic
number is two. Finally, a new graph invariant measuring the difference between the dominator chromatic
number of a graph and the chromatic number of that graph is established and studied. The paper concludes
with some of the possible avenues for extending this line of research.
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1. Introduction

D ominator colorings of graphs are a variant of the longstanding problem of finding a proper coloring of
the vertex set of a graph. The topic of dominator colorings can be traced back to the work of Gera

in [1]. Let f : V(G) C be a vertex coloring function which establishes the vertex coloring C = {C1, . . . , Ck}.
A proper dominator coloring of a graph G is a coloring C of the vertices V(G) such that C is a proper vertex
coloring and every vertex v ∈ V(G) dominates some color class in C. This type of graph coloring problem
helps to relate other problems involving domination and related topics in graph theory [2,3].

Initial results in this relatively new area have been bountiful, ranging from general results to tighter results
on special classes of graphs [4–10]. Results on dominator colorings of graphs that are products of elementary
graphs, such as paths and cycles, as well as other graph operations, were studied in [11] and [12].

Extending this foundational line of research, [13] made headway in finding extremal graphs with respect
to various domination parameters. Algorithmic aspects were studied in [14] in which it was determined that
even for several rather elementary classes of graphs, dominator colorings cannot be found in polynomial time.
This result answered a standing question posed in [15]. Further results on computation complexity of pertinent
algorithms were developed in [16], and improved algorithms for special classes of graphs, such as trees were
given in [17]. In addition, These results have proven useful for the development of many domination based
network theoretic tools and applications, including those found in [18–22].

Broadly, this field has blossomed into a rather diverse collection of variants of domination and
independence, in some cases combined with graph coloring problems. Examples include total domination
[23–25], power domination [26,27], broadcast domination [28–32], and geodetic domination [33], among others.
In addition to these highly similar problems, more nuanced relations between domination and other areas of
graph theory exist, such as decycling or network dismantling problems [34–37].

The direction this paper takes is to initiate the extension of the study of dominator colorings of graphs
to the natural setting of digraphs. By definition digraphs have notions of domination embedded into the
foundation of their own existence; the definition of an arc as an ordered pair, rather than an unordered pair,
of vertices speaks strongly to this idea. Many forms of vertex coloring problems exist in digraphs beyond the
standard problem, see, e.g., [38], and dominator colorings are a natural addition to the list.

Formally, a dominator coloring of a digraph D is a vertex coloring f : V(D) → C of the vertex set V(D)

such that f is a proper vertex coloring and for all v ∈ V(D) with positive out-degree there exists some color
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class C ∈ C such that for all u ∈ C the arc vu exists as a member of the arc set A(D). Vertices with out-degree
zero cannot dominate another vertex in the directed setting and therefore need not dominate any color class
C ∈ C. As will be seen throughout this paper, even in the most elementary of settings this problem becomes
quite tedious rather quickly.

Before beginning this study, we take the time to elucidate several highly used notations and assumptions.
All digraphs are simple, loopless, and connected unless specified otherwise. The notation GD of underling
graph of a digraph D. A directed path Pn = v1v2 . . . vn is the orientation of a path of length n whose out-degree
sequence is given by {1, 1, 1, . . . , 1, 1, 0}. A directed cycle Cn = v1v2 . . . vnv1 is the orientation of a cycle of
length n whose out-degree sequences is given by {1, 1, 1, . . . , 1, 1, 1}.

To maintain traditional (dominator) chromatic number notation, we use the notation χd(D) throughout
this text. It is very important to note now that the value χd(D) is in reference to the cardinality of a smallest
possible set of color classes used in any proper dominator coloring of any possible orientation of the digraph
D. That is to say, this paper focuses in particular with the problem of finding the smallest possible (minimum)
dominator coloring, i.e., the dominator chromatic number, over all possible orientations of a graph. The
problem of finding the dominator chromatic number of specific orientations of digraphs is not addressed in
this work.

We conclude the introduction with two examples of digraphs presented with their dominator chromatic
number, see Figure 1 and Figure 2. In each example we show an orientation of the underlying graph that
attains the dominator chromatic number, and an orientation which is sub-optimal.

Figure 1. Three different orientations of the path P5. The labels in the vertices represent color classes. As we
will see later in the paper, the dominator chromatic number of P5 is 3. The top orientation can be colored with
three colors and is in fact a minimum dominator coloring over all orientations of P5 satisfying χd(P5) = 3. The
middle orientation is a directed path and required 5 colors for a minimum proper dominator coloring. The
bottom orientation can also be colored with only three colors and represents a second orientation of P5 which
can be given a proper dominator coloring with fewest possible colors (3).

Figure 2. Two different orientations of the cycle C4. The labels in the vertices represent different color classes.
As we will see later in the paper, the dominator chromatic number of C4 is 2. The orientation on the left is a
directed cycle and requires 4 colors for a proper dominator coloring. The orientation on the right is the unique
orientation which admits a minimum dominator coloring over all orientations of C4.

Extending this foundational line of research, [13] made headway in finding extremal graphs with respect
to various domination parameters. Algorithmic aspects were studied in [14] in which it was determined that
even for several rather elementary classes of graphs, dominator colorings cannot be found in polynomial time.
This result answered a standing question posed in [15]. Further results on computation complexity of pertinent
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algorithms were developed in [16], and improved algorithms for special classes of graphs, such as trees were
given in [17]. In addition, These results have proven useful for the development of many domination based
network theoretic tools and applications, including those found in [18–22].

Broadly, this field has blossomed into a rather diverse collection of variants of domination and
independence, in some cases combined with graph coloring problems. Examples include total domination
[23–25], power domination [26,27], broadcast domination [28–32], and geodetic domination [33], among others.
In addition to these highly similar problems, more nuanced relations between domination and other areas of
graph theory exist, such as decycling or network dismantling problems [34–37].

The direction this paper takes is to initiate the extension of the study of dominator colorings of graphs
to the natural setting of digraphs. By definition digraphs have notions of domination embedded into the
foundation of their own existence; the definition of an arc as an ordered pair, rather than an unordered pair,
of vertices speaks strongly to this idea. Many forms of vertex coloring problems exist in digraphs beyond the
standard problem, see, e.g., [38], and dominator colorings are a natural addition to the list.

Formally, a dominator coloring of a digraph D is a vertex coloring f : V(D) → C of the vertex set V(D)

such that f is a proper vertex coloring and for all v ∈ V(D) with positive out-degree there exists some color
class C ∈ C such that for all u ∈ C the arc vu exists as a member of the arc set A(D). Vertices with out-degree
zero cannot dominate another vertex in the directed setting and therefore need not dominate any color class
C ∈ C. As will be seen throughout this paper, even in the most elementary of settings this problem becomes
quite tedious rather quickly.

Before beginning this study, we take the time to elucidate several highly used notations and assumptions.
All digraphs are simple, loopless, and connected unless specified otherwise. The notation GD of underling
graph of a digraph D. A directed path Pn = v1v2 . . . vn is the orientation of a path of length n whose out-degree
sequence is given by {1, 1, 1, . . . , 1, 1, 0}. A directed cycle Cn = v1v2 . . . vnv1 is the orientation of a cycle of
length n whose out-degree sequences is given by {1, 1, 1, . . . , 1, 1, 1}.

Figure 3. This digraph H is an orientation of C6 which requires 6 colors in a minimum proper dominator
coloring.

Figure 4. A digraph D satisfying H ⊂ D and χd(D) = 3 < 6 = χd(H).
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To maintain traditional (dominator) chromatic number notation, we use the notation χd(D) throughout
this text. It is very important to note now that the value χd(D) is in reference to the cardinality of a smallest
possible set of color classes used in any proper dominator coloring of any possible orientation of the digraph
D. That is to say, this paper focuses in particular with the problem of finding the smallest possible (minimum)
dominator coloring, i.e., the dominator chromatic number, over all possible orientations of a graph. The
problem of finding the dominator chromatic number of specific orientations of digraphs is not addressed in
this work.

We conclude the introduction with two examples of digraphs presented with their dominator chromatic
number, see Figure 3 and Figure 4. In each example we show an orientation of the underlying graph that
attains the dominator chromatic number, and an orientation which is sub-optimal.

2. Preliminary Results

In this section we provide some preliminary results on elementary digraph structures and dominator
colorings of digraphs. We begin with two trivial observations and a result that shows the incredible nature of
dominator colorings of digraphs.

Observation 1. For any digraph D, we have that χd(D) ≥ χ(D).

Observation 2. For any digraph D, we have that χd(D) ≤ |V(D)|.

Lemma 1. It is NOT true that for any digraph D and sub-digraph H ⊂ D, χd(H) ≤ χd(D).

Proof. Consider the path P4 with out-degree sequence {0, 2, 0, 1} and the cycle C4 with out-degree sequence
{0, 2, 0, 2}. As will be shown later, these are orientations admitting minimum dominator colorings of each
digraph. However, χd(P4) = 3 > 2 = χd(C4).

This result is what makes dominator colorings of digraphs stand out from all other variants of vertex
coloring. However, using the fact that χd(Pn) ≤ χd(Cn) for m > 4 will be very important later on in this
work, and in fact will be proven in Section 3 in between proving the minimum dominator chromatic number
of paths and cycles. However, as it turns out, this is not a unique instance. We present another, similar result
showing that there are infinitely many counterexamples to the claim that for every digraph D and subdigraph
H, χd(H) ≤ χd(D).

It is important to emphasize again that throughout this paper we are concerned with finding the smallest
possible dominator coloring over all orientations of a particular graph structure. It is easy to see that we
may reduce the number of colors used in a minimum proper coloring of a given orientation of a graph by
embedding this digraph into a larger digraph. In addition to the pair (C4, P4), it turns out that there are indeed
other examples of this phenomenon. With the goal of constructing an infinite family of digraphs satisfying
this relationship (χd(H) > χd(D) for a digraph D and a subdigraph H of D), consider the following example
(which spans two figures).

While the formal results for the dominator chromatic number of a cycle will be proven later in this paper
(see Theorem 2), we claim now that it is larger than the chromatic number of the underlying cycle, which is
either two or three depending on the parity of the size of the cycle. By adding a single vertex that is adjacent
to every vertex in the cycle, we may orient this graph such that the new vertex is a sink and the remaining
vertices are oriented into a directed cycle, thereby allowing us to color the cycle on either two or three colors,
depending on parity, and then using only one more color for the sink. Call such a graph (including the sink)
C̃n. The family of digraphs {C̃n}∞

n=7 constitutes infinitely many counterexamples to the claim that for any
digraph D and subdigraph H, χd(H) ≤ χd(D). The reason that the index starts at seven is a consequence
of the dominator chromatic number of cycles and comes from the result to be proven in Theorem 2 which
provides the minimum dominator chromatic number over all orientations of cycles.

To formalize this observation as a problem in the topic of dominator colorings of digraphs, we introduce
the following notation. Let H ⊂ D be a sub-digraph of a digraph D with H and D satisfying χd(H) > χd(D).
Let δ(D, H) = χd(H) − χd(D) denote the dominator discrepancy of H in D. A very interesting problem not
addressed in this paper would be to find: (1) which digraphs have positive dominator discrepancies; (2) what
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the largest dominator discrepancies are for various families of digraphs; (3) which sub-digraphs are responsible
for the largest dominator discrepancies in given families of digraphs; and (4) do some particular families
of digraphs and particular families of sub-digraphs of these digraphs offer well-parameterized dominator
discrepancies?

We proceed by studying perhaps the two most fundamental structures, paths and cycles, in their directed
setting as a basis for the main results to come in Section 3. While this paper is concerned with smallest possible
dominator colorings, we consider now the natural questions of finding the dominator chromatic number of
directed paths and cycles. In the process, we find an orientation which required the largest possible number of
colors for a minimum proper dominator coloring over all orientations of paths and cycles, namely, the directed
path and the directed cycle.

Before presenting these two propositions, we mention that these are intended to be illustrative examples
only. The definition of χd states that it is the minimum value over all orientations of a given graph. In an
effort to build intuition, we first prove the dominator chromatic number for two fixed orientations, namely the
directed path and the directed cycle.

Proposition 1. For any directed path P of order n, we have that χd(P) = n.

Proof. The proof is by induction on the length of the directed path. As our basis is obvious, assume that for
every directed path of length k < n we have that χd(P) = k and consider a directed path of length n given
by P = v0v1 . . . vn−1. If we remove the vertex v0 we obtain a directed path P′ of length n− 1 which, by our
inductive hypothesis, has χd(P′) = n− 1. We immediately see that c(v0) 6= c(v1) must hold, else we do not
have a proper coloring of P. If we chose to color v0 so that c(v0) = c(vi) for some i ∈ {2, . . . , n− 1} then the
vertex vi−1 would no longer dominate a color class. Therefore we must assign a new color to v0 and obtain
that χd(P) = n.

Proposition 2. For any directed cycle C or order n, we have that χd(C) = n.

Proof. Let C = v0v1 . . . vn−1v0 be a directed cycle of order n and assume that F is a total dominator coloring of
C attaining χd(C) = m < n. Then there is some color class ci ∈ F such that |ci| ≥ 2. Without loss of generality,
let vi and vj be two vertices with color ci in our coloring of C, and consider the arc vi−1vi of C. Clearly vi−1
does not dominate any color class of F , a contradiction. Therefore it must be that χd(C) = n.

Figure 5. ThAn example of a digraph with a Hamiltonian directed path that has χd(D) < |V(D)|. We may
assign the vertices v0 and v5 to the same color class even though the digraph has a Hamiltonian directed path
v0v1v2v3v4v5.

At this point, it would seem natural to determine if the existence of a Hamiltonian directed path/cycle in
a digraph D is a sufficient condition for the digraph to have χd(D) = |V(D)|. As the following two examples
(Figures 5 and 6) demonstrate, these are certainly not sufficient conditions for a digraph D to satisfy χd(D) =

|V(D)|.
While the formal results for the dominator chromatic number of a cycle will be proven later in this paper

(see Theorem 2), we claim now that it is larger than the chromatic number of the underlying cycle, which is
either two or three depending on the parity of the size of the cycle. By adding a single vertex that is adjacent
to every vertex in the cycle, we may orient this graph such that the new vertex is a sink and the remaining
vertices are oriented into a directed cycle, thereby allowing us to color the cycle on either two or three colors,
depending on parity, and then using only one more color for the sink. Call such a graph (including the sink)
C̃n. The family of digraphs {C̃n}∞

n=7 constitutes infinitely many counterexamples to the claim that for any
digraph D and subdigraph H, χd(H) ≤ χd(D). The reason that the index starts at seven is a consequence
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of the dominator chromatic number of cycles and comes from the result to be proven in Theorem 2 which
provides the minimum dominator chromatic number over all orientations of cycles.

Figure 6. An example of a digraph with a Hamiltonian directed cycle that has χd(D) < |V(D)|. We may
assign the vertices v0 and v2 to the same color class even though the digraph has a Hamiltonian directed cycle
v0v1v2v3v4v5v0.

To formalize this observation as a problem in the topic of dominator colorings of digraphs, we introduce
the following notation. Let H ⊂ D be a sub-digraph of a digraph D with H and D satisfying χd(H) > χd(D).
Let δ(D, H) = χd(H) − χd(D) denote the dominator discrepancy of H in D. A very interesting problem not
addressed in this paper would be to find: (1) which digraphs have positive dominator discrepancies; (2) what
the largest dominator discrepancies are for various families of digraphs; (3) which sub-digraphs are responsible
for the largest dominator discrepancies in given families of digraphs; and (4) do some particular families
of digraphs and particular families of sub-digraphs of these digraphs offer well-parameterized dominator
discrepancies?

We proceed by studying perhaps the two most fundamental structures, paths and cycles, in their directed
setting as a basis for the main results to come in Section 3. While this paper is concerned with smallest possible
dominator colorings, we consider now the natural questions of finding the dominator chromatic number of
directed paths and cycles. In the process, we find an orientation which required the largest possible number of
colors for a minimum proper dominator coloring over all orientations of paths and cycles, namely, the directed
path and the directed cycle.

Before presenting these two propositions, we mention that these are intended to be illustrative examples
only. The definition of χd states that it is the minimum value over all orientations of a given graph. In an
effort to build intuition, we first prove the dominator chromatic number for two fixed orientations, namely the
directed path and the directed cycle.

Proposition 3. For any directed path P of order n, we have that χd(P) = n.

Proof. The proof is by induction on the length of the directed path. As our basis is obvious, assume that for
every directed path of length k < n we have that χd(P) = k and consider a directed path of length n given
by P = v0v1 . . . vn−1. If we remove the vertex v0 we obtain a directed path P′ of length n− 1 which, by our
inductive hypothesis, has χd(P′) = n− 1. We immediately see that c(v0) 6= c(v1) must hold, else we do not
have a proper coloring of P. If we chose to color v0 so that c(v0) = c(vi) for some i ∈ {2, . . . , n− 1} then the
vertex vi−1 would no longer dominate a color class. Therefore we must assign a new color to v0 and obtain
that χd(P) = n.
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Proposition 4. For any directed cycle C or order n, we have that χd(C) = n.

Proof. Let C = v0v1 . . . vn−1v0 be a directed cycle of order n and assume that F is a total dominator coloring of
C attaining χd(C) = m < n. Then there is some color class ci ∈ F such that |ci| ≥ 2. Without loss of generality,
let vi and vj be two vertices with color ci in our coloring of C, and consider the arc vi−1vi of C. Clearly vi−1
does not dominate any color class of F , a contradiction. Therefore it must be that χd(C) = n.

At this point, it would seem natural to determine if the existence of a Hamiltonian directed path/cycle in
a digraph D is a sufficient condition for the digraph to have χd(D) = |V(D)|. As the following two examples
(Figures 5 and 6) demonstrate, these are certainly not sufficient conditions for a digraph D to satisfy χd(D) =

|V(D)|.
To conclude this section, we provide an analogous proposition for the dominator chromatic number of

orientations of star graphs. A star graph is simply the complete bipartite graph K1,k. As the following lemma
will show, star graphs are perhaps as elementary of a class of graphs as possible in which the dominator
chromatic number χd(D) is not invariant under orientation.

Proposition 5. Let D be an orientation of a star graph, G. Then 2 ≤ χd(D) ≤ 3, χd(D) = 2 if and only if all arcs are
oriented similarly with respect to the central vertex, and χd(D) = 3 otherwise.

Proof. First assume that all arcs of D are oriented similarly with respect to the central vertex, call it v. Clearly
we may color D by assigning a unique color to v and a common color (distinct from the color c(v)) to V(D) \
{v}.

Next, assume that all arcs of D do not share a similar orientation with respect to v. Again color v with a
unique color c(v). Then assign one color to each of N+(v) and N−(v). This establishes a dominator coloring
of D using three colors, so in order to complete the entire proof, it remains to be shown that this coloring uses
the fewest possible colors for this orientation. Clearly we must have distinct colors for N+(v) and N−(v), else
v does not dominate any color class. Similarly we have that v and each of N−(v) and N+(v) must not share
any colors. Thus, under such an orientation, χd(D) = 3 and the entire proof is complete.

Thus we see that the dominator chromatic number of a star graph directly indicates the uniformity (or
lack thereof) in arc orientation. Equivalently, for an orientation D of a star graph, χd(D) = 2 if and only if
either D or D−, the digraph obtained by reversing the orientation of every arc of D, results in an arborescence.
Clearly the dominator chromatic number of a digraph can be directly indicative of crucial structural properties
of the digraph. Characterizing to what extent this is the case would prove an insightful contribution.

3. Orientations of Paths

In the previous section we determined that directed paths, directed cycles, and tournaments all obtain a
largest possible dominator chromatic number. Given this, at least in the cases of paths and cycles, we might ask
whether or not this particular orientation of a path or cycle is unique in maximizing the dominator chromatic
number of the digraph. We begin by studying orientations of paths, then proceed to orientations of cycles,
and then further generalize orientations of paths by looking at specific types of orientations of trees, chiefly
orientations of stars.

In an arbitrary orientation of a path, the vertices may have out degree between zero and two, with
there being precisely one more out degree zero vertex than out degree two vertex (due to the degree sum
formula). We begin by proving the minimum dominator chromatic number over all possible orientations of
paths. Before doing this, however, we present a lemma about dominator coloring of sub-paths of paths dealing
with containment.

Lemma 2. Let m, n ∈ N such that m < n and let Pm and Pn be orientations of paths of length m and n, respectively. If
Pm ⊂ Pn then χd(Pm) ≤ χd(Pn).

Proof. It is obvious that no color classes of Pm may be combined if Pm is embedded into a larger path when Pm

has been given a proper dominator coloring of the fewest possible colors, given its orientation.
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Theorem 1. The minimum dominator chromatic number over all orientations of the path Pn is given by

χd(Pn) =


k + 2 if n = 4k

k + 2 if n = 4k + 1

k + 3 if n = 4k + 2

k + 3 if n = 4k + 3

for k ≥ 1 with the exception χd(P6) = 3.

Proof. Our proof consists of proving a series of claims which, collectively, prove the theorem. For clarity, the
completion of the proof of each claim is denoted by a diamond symbol, i.e., by 3. Additionally, notice that the
dominator chromatic number of Pn for n < 4 is given by

χd(Pn) =


1 if n = 1

2 if n = 2

2 if n = 3

We begin this proof with an obvious but important claim.
Claim 1. Let S = {v ∈ V(Pn)|d+(v) = 2}. Then S is colored completely by one color class in any

minimum dominator coloring of Pn.
Proof. No vertex in a path can dominate a vertex of out-degree two. 3
Next, we show that a particular structure yields a minimum dominator coloring over all orientations of

the path Pn for n = 4k + 1 where n is a positive integer. Unless otherwise specified, we assume that k ≥ 1.
Claim 2. Let Pn = v0v1 . . . vn−1 be an orientation of a path on n vertices and let C be a dominator coloring

of Pn using fewest possible colors. Then we have that @ vi, vi+1 ∈ V(Pn) s.t. d+(vi) = d+(vi+1) = 1.
Proof. Define Pn = v0v1 . . . vn−1. There are two cases to consider; either d+(v0) = d+(v1) = 1 or there

exists a subsequence of Pn, say vi−1, vi, vi+1 with out-degree sequence {2, 1, 1}.
In the first case, we have that the vertex v0 must be colored with the same color as the vertices of

out-degree two, i.e., the color assigned to all vertices not dominated by any other vertex, else C is not minimal.
However, since d+(v0) = 1, the color assigned to v1 must be unique. Similarly, since d+(v1) = 1, the color
assigned to v2 must be unique. This constitutes three color classes used on the vertices v0, v1, and v2, with two
of these colors being unique. Re orient the arc v0v1 so that it becomes v1v0. If we leave the color assigned to
v2, recolor v0 with the same color as v2, and color v1 with the color assigned to all non-dominated vertices, we
recolor Pn with fewer colors, contradicting that C was a minimum dominator coloring.

For the second case, consider the vertex sequence vi−1, vi, vi+1 with out-degree sequence {2, 1, 1}. By
Claim 1, we have that vi−1 is colored with the same color assigned to all non-dominated vertices in Pn, call
it c2. By extending the vertex sequence by one vertex in each direction, we see that we have the subpath
vi−2vi−1vivi+1vi+2 assigned the colors cx, c2, cy, u1, u2 where it may be the case that cx = cy and the colors ui
are unique, i.e., they are only assigned to one vertex in all of Pn. By reversing the orientation of the arc v+ivi+1,
we get that d+(vi) = 0 and d+(vi+1) = 2. We may recolor this subpath with the colors cx, c2, cy, c2, u2 to achieve
a proper dominator coloring of Pn with fewer colors than C, contradicting that C was a minimum dominator
coloring of Pn. Therefore we may conclude that in a minimum dominator coloring over all orientations of the
path Pn, there are no consecutive vertices with out-degree one. 3

As a consequence, we have that a valid out-degree sequence for an orientation of a path on n = 4k + 1
vertices, for any k ∈ N, is {0, 2, 0, 2, 0, . . . , 2, 0, 2, 0}. The next claim shows that this is necessarily the optimal
structure.

Claim 3. For k > 2 there are no vertices with out-degree equal to one in an orientation of P4k+1 which
admits a minimum dominator coloring.

Proof. Let P4k+1 be an orientation with vertices of out-degree one. Per Claim 2, no two consecutive
vertices of out-degree one exist. Notice that there must be an even number of vertices with out-degree one, as
each vertex of out-degree one is between a vertex of out-degree two and a vertex of out-degree zero, and the
removal of all vertices of out-degree one would leave a path whose out-degree sequence is {0, 2, 0 . . . , 0, 2, 0}
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which necessarily has an odd number of members. Thus we may conclude that there are at least two vertices
with out-degree one. Notice next that each vertex dominated by a vertex of out-degree one must be uniquely
colored. Thus, if we remove all vertices of out-degree one from P4k+1, the resulting path has a proper dominator
coloring. Consider the vertices of out-degree two which dominated vertices of out-degree one that were
not uniquely colored in this minimal dominator coloring of P4k+1. The vertex of out-degree zero that was
dominated by the vertex of out-degree two in the original path was either uniquely colored, in which case the
vertex of out-degree two now dominates two color classes, or the vertex of out-degree zero shared a color with
the vertex of out-degree one that we removed. In either case, the vertex of out-degree two dominates two color
classes in the resultant path. Let P′ be the subpath of P4k+1 obtained by removing all vertices of out-degree one,
and let C and C ′ be their respective minimal dominator colorings. Let there have been 2m vertices of out-degree
one in P4k+1 (recall that there are necessarily an even number of such vertices). By coloring the neighbors of
each vertex of out-degree two that originally dominated a vertex of out-degree one with the same color, we
have that C ′ uses 2m− 1 fewer colors than C. We can easily append the 2m removed vertices to either end of
P′ such that the out-degree sequence of the new path on 4k + 1 vertices is {0, 2, 0, . . . , 0, 2, 0} using fewer than
2m− 1 new colors simply by coloring all new vertices of out-degree two with the same color used to color all
existing out-degree two vertices.

All that remains to be shown, then, is the case where m = 1, i.e., when there were exactly two vertices
of out-degree one in P4k+1. One can construct examples which obtain a minimum dominator coloring using
the out-degree sequence {1, 0, 2, 0, 1} and {1, 0, 2, 0, 2, 0, 2, 0, 1} for P5 and P9, respectively. However, when
k > 2, if we assume the same out-degree sequence, we can remove the outermost two vertices from each
end ({v1, v2, v4k, v4k+1) and obtain a smaller path with the same out-degree sequence which, presumably,
also admits a minimum dominator coloring. However, if this is the case, it is easy to see that to extend this
dominator coloring to the original path P4k+1, we need two more colors. If this was not the case, then P4(k−1)+1
would not have been given a minimum dominator coloring as we had assumed. The extension from P5 to P9

exists only because the vertex v5 dominates all out-degree zero vertices in P9 not dominated by a vertex of
out-degree one. This is not possible for k > 2.

Therefore we conclude that any minimum dominator coloring of the paths P4k+1 has no vertices with
out-degree one.3

Thus we have that the unique out-degree sequence of the path P4k+1 which admits a minimum dominator
coloring over all orientations of P4k+1 for k > 2.

Claim 4. Let n = 4k + 1 for some k ∈ N. Then χd(Pn) ≥ k + 2.
Proof. From Claim 2 we know that the out-degree sequence of Pn is precisely {0, 2, 0, . . . , 0, 2, 0}. We must

color all vertices with out-degree two with the same color. Moreover, each vertex with out-degree two must
dominate some color class. Since there are 2k vertices with out degree two, we must introduce at least 2k

2 = k
more color classes; we may reduce this from 2k to k on the basis that it is possible to have as many as two
vertices with out-degree two dominate the same color class, but never more than two vertices may dominate
the same color class in an orientation of a path. Then, if the remaining vertices are all colored with the same,
new color (these vertices are dominated), we have used k + 2 colors in total. 3

Claim 5. χd(P4k+1) = k + 2.
Proof. Orient P4k+1 such that the out-degree sequence is given by the sequence {0, 2, 0, . . . , 0, 2, 0}. From

Claim 3, it suffices to show that this orientation of Pn for n = 4k + 1 uses only k + 2 colors to give a proper
dominator coloring of Pn. Let Pn = v1v2 . . . v4k+1. Color Pn with the function c given below.

c(vi) =


c1 if i ≡ 0 (mod 4)

c2 if i ≡ 1 (mod 2)

unique otherwise

The coloring function c is a proper dominator coloring of Pn which uses only k + 2 colors, thereby completing
the proof of this claim. 3

Now that we have a parameterized value for the minimum dominator chromatic number over all
orientations of all paths of length 4k+ 1, we can use this to establish parameterized values for all other possible



Open J. Discret. Appl. Math. 2020, 3(2), 50-67 59

path lengths, thereby completing the proof of this theorem. Next we establish a relationship between χd(P4k+1)

and χd(P4k+2).
Claim 6. χd(P4k+2) > χd(P4k+1) for k ≥ 2.
Proof. First, notice the exception in the statement of the theorem which states that χd(P6) = 3. If we let

P6 = v1 . . . v6 have out-degree sequence {1, 0, 2, 0, 2, 0}, we may color vertices v1, v3, and v5 with the same
color since none of these vertices are dominated. The vertex v2 mus be colored uniquely, as it is dominated
by a vertex of out-degree one, but we may color v4 and v6 with the same color and obtain a proper dominator
coloring of P6 on 3 colors.

Since P4k+1 ⊂ P4k+2, it follows that χd(P4k+1) ≤ χd(P4k+2). Moreover, any orientation of P4k+2 which
admits a minimum dominator coloring cannot have more than one vertex of out-degree one. To see this,
choose any vertex of out-degree one and remove it, creating a path of length 4k + 1. If this path has any
vertices of out-degree one, it does not admit a minimum dominator coloring over all paths of length 4k + 1.
We obviously cannot use fewer colors by inserting the original vertex back into our path and re-obtaining
our original path of length 4k + 2, so the original path of length 4k + 2 cannot have a dominator coloring on
χd(P4k+1) colors.

If the out-degree sequence of P4k+2 = v1v2 . . . v4k+2 is given by the sequence {1, 0, 2, 0, . . . , 0, 2, 0}, the
sub-path v2v3 . . . v4k+2 has length 4k + 1 and thus admits a unique coloring scheme. This dominator coloring
cannot be extended to P4k+2 since v2 is not uniquely colored, therefore we may assume that the out-degree
sequence of P4k+2 is either {0, 2, 0, . . . 0, 1, 2, 0, . . . 0, 2, 0} or {0, 2, 0, . . . 0, 2, 1, 0, . . . 0, 2, 0}. The proof for these
two is similar, so, for concision, we only present the first case. Let vi be the vertex of out-degree one. Then vi−1
and at least one of {vi, vi+2} must be uniquely colored. If vi+2 is not uniquely colored, then we may remove
vi to create a path of length 4k + 1 which has a proper dominator coloring. If this path uses fewest possible
colors, we still obtain that χd(P4k+2) > χd(P4k+1) since vi is uniquely colored. Now, if vi+2 is uniquely colored,
then vi may not be uniquely colored. However, by removing vi, we obtain an orientation of P4k+1 that does not
admit a minimum dominator coloring (both out-neighbors of vi+1 are uniquely colored), and so our dominator
coloring of P4k+2 uses strictly more than χd(P4k+1) colors.

Thus we may conclude that, for k ≥ 2, χd(P4K+2) = χd(P4k+1) + 1 = k + 3, thus completing the proof of
this claim. 3

Claim 7. χd(P4k+3) = k + 3.
Proof. Since χd(P4k+1) = k + 2 and χd(P4k+2) = k + 3, it suffices to show that we can extend a minimum

dominator coloring of P4k+1 to P4k+3 by adding only one new color. Let P4k+1 = v1v2 . . . v4k+1 be a subset of
P4k+3 = P4k+1v4k+2v4k+3, let the out-degree sequence of P4k+3 = {0, 2, 0, . . . , 0, 2, 0}, and let C be a minimum
dominator coloring of P4k+1 with the structure provided in Claim 4. We complete the proof of this claim by
coloring v4k+2 with the color assigned to the non-dominated vertices of P4k+1 and by assigning a new color to
v4k+3. 3

Claim 8. χd(P4k+4) = χd(P4k+3).
Proof. First, notice that this claim is equivalent to proving that χd(P4k) = χd(P4k+1) since P4k+4 is just

P4(k+1) and the theorem claims that χd(P4(k+1)) = χd(P4k+3) = χd(P4k+1) + 1.
Our previous claim gave us a specific orientation and well-defined minimum possible dominator coloring

for P4k+3. Using this orientation and coloring, call it C, of P4k+3, we add a new vertex, v4k+4, which dominates
v4k+3. Since v4k+3 was the lone member of its color class in C, v4k+4 dominates a color class. To ensure that the
dominator coloring of P4k+4 is minimum and proper and thereby complete the proof of this claim, we assign
the vertex v4k+4 to the same color class that contains all out-degree two vertices. 3

This completes the proof of the theorem.

Thus we have not only bounded in both directions the dominator chromatic number of all possible
orientations of a path, but also characterized specific orientations which attain these bounds.

We conclude this section by showing a very interesting result relating the dominator chromatic number
of digraphs to digraph parameters. To motivate this result, recall that the chromatic number of graphs satisfies
the relation lim

∆(G)→∞

χ(G)
∆(G)

≤ lim
∆(G)→∞

∆(G)+1
∆(G)

= 1.

However, the dominator chromatic number does not obey this limit in general. Using the results we
just obtained on the minimum dominator chromatic number of orientations of paths, we can actually obtain
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that lim
∆(G)→∞

χd(D)
∆(D)

actually can go to infinity in certain cases, such as that of orientations of paths. As we will

see later, if we choose a different family of graphs, such as tournaments, the original limit on the chromatic
number of graphs and this limit on the dominator chromatic number of digraphs are equal. Phrased slightly
differently, this becomes lim sup

∆(G)→∞

χd(D)
∆(D)

→ ∞.

An interesting problem, one which will be recounted in the Conclusion, would be to describe families of
digraphs which have a finite lim sup

∆(G)→∞

χd(D)
∆(D)

= r for some r ∈ R.

4. Orientations of Cycles

We next turn our attention to orientations of cycles. To do this, we first prove a lemma that considers the
problem of embedding paths into cycles.

Lemma 3. χd(Pm) ≤ χd(Cm) for m 6= 4.

Proof. First, see that a minimum dominator coloring orientation of Pm can be embedded into some orientations
of Cm. Since the arc Cm \ Pm can combine at most two color classes, we need only consider the case where Pm

admits a minimum dominator coloring, for if a cycle Cm contains no minimum dominator coloring of any
subpath Pm, χd(Cm) ≥ χd(Pm). Thus, to prove this lemma, we will show that any orientation of Cm which
contains a minimum orientation of Pm cannot have a smaller dominator chromatic number, with the exception
of C4 which can indeed combine two color classes of a minimum dominator coloring of P4 in precisely this
manner.

Let Pm = v1v2 . . . vm be a subpath of Cm which admits a minimum dominator coloring over all orientations
of Pm. In order for χd(Cm) < χd(Pm), the arc between v1 ad vm allows for two color classes to be merged. From
this fact, we may conclude that, without loss of generality, v1 and vm−1 are each uniquely colored in Pm (notice
that the vertex vm must have out-degree equal to one, for if both end vertices of Pm are uniquely colored, the
added arc vmv1 clearly cannot combine color classes).

First consider the case where m = 4k + 1 for some k ∈ N. Since Pm has a unique structure and coloring
scheme which admits a minimum dominator coloring, it follows that χd(Cm) ≥ χd(Pm) since m− 1 = 4k and
1 6≡ 4k (mod 4).

Next, consider the case where m = 4k + 2 for some k ∈ N. Since we may assume that vm has out-degree
one, and since there is exactly one vertex of out-degree one in a minimum dominator coloring of P4k+2, we
may infer that the out-degree sequence of Pm is {0, 2, 0, 2, . . . , 2, 0, 1}, that the color scheme of the vertices v1

through vm−1 is identical to that of the first 4k vertices of a minimum dominator coloring of the path P4k+1
(m− 1 = 4k + 1 in this case), that we may assign vm to the same color class as the vertices of out-degree two,
and that the vertex vm−1 is uniquely colored. This implies that v1 is not uniquely colored, but since vm−1 is
uniquely colored, we may recolor the odd-indexed vertices by the following color scheme that is a variant
of the color scheme of a minimum dominator coloring of the path P4k+1 and obtain a minimum dominator
coloring of P4k+2 that assigns v1 to a unique color class.

c(vi) =


c1 if i ≡ 0 (mod 2)

c2 if i ≡ 3 (mod 4)

unique otherwise

However, under this color scheme, the vertices v1 and vm−1 cannot belong to the same color class in Cm for if
they do, the vertex v2 no longer dominates any color class. It is east to see that any other dominator coloring
will require more colors.

For our next case, we consider m = 4k for k > 1. To show that χd(P4k) ≤ χd(C4k), consider a minimum
dominator coloring of C4k. If there exists some vertex v ∈ V(C4k) such that d+(v) = 0 and v is not uniquely
colored, then we may split v into two non-adjacent vertices, each of the same color as v, creating a proper
dominator coloring of an orientation of P4k+1. Since χd(P4k) = χd(P4k+1), this implies that χd(P4k) ≤ χd(C4k).
Thus we need only to show that there exists such a vertex in any minimum dominator coloring of C4k.
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To accomplish this, we first show that there are no consecutive vertices of out-degree one in a minimum
orientation. Assume there are. Then there a subset {vi, vi+1, vi+2, vi+3} of V(C4k) with out-degree sequence
either {2, 1, 1, 0} or {1, 1, 1, 0}. In either case we may reverse the orientation of the arc vi+1vi+2 to vi+2vi+1 and
change only the color of the vertex vi+2 to the color assigned to the vertices of out-degree two (such a vertex
exists because there is a bijection between out-degree zero and out-degree two vertices in an orientation of a
cycle). This contradicts the assumption that the dominator coloring was minimum.

Next we show that there are no vertices of out-degree one. Since there are no consecutive vertices of
out-degree one, the existence of a vertex of out-degree one implies that there is a subsequence {vi, vi+1, vi+2}
of C4k = v1v2 . . . v4kv1 with the out-degree sequence {2, 1, 0}. If vi is uniquely colored, then we may remove vi
and insert it after some other vertex of out-degree one, maintaining a proper dominator coloring of C4k using
the same number of colors. But we just showed that any dominator coloring of C4k with consecutive vertices
of out-degree one is not a minimum dominator coloring. Thus we can assume that no vertex of out-degree one
is uniquely colored. By removing all vertices of out-degree one, say 2m, we reduce the number of colors used
by some value r ≥ 1. Additionally, each vertex of out-degree two that was adjacent to a vertex of out-degree
one now dominates two color classes comprised of one element each. Since we can recolor one of these two
dominated vertices with the color of the other dominated vertex in every case, at worst every two vertices of
out-degree one correspond to a reduction in the number of colors used in this smaller cycle (it is possible that
a vertex of out-degree two dominated two vertices of out-degree one that together comprised an entire color
class in the original dominator coloring of C4k). Thus we have reduced the number of colors used by at least
m + 1, and so it suffices to show that we can insert these 2m vertices using no more than m colors. To do this,
simply chose a vertex of out-degree two, call it vi, which dominates a single color class of two vertices, i.e., a
vertex of out-degree two which was adjacent to a vertex of out-degree one in the original orientation of C4k.
Between Vi and vi+1 insert the removed vertices ({x1, . . . , x2m}) by orienting them such that their out-degree is
{0, 2, . . . , 0, 2}. Since the vertices now having out-degree two can all be assigned to an existing color class, this
leaves only m vertices needing color assignments. If we color x1 with the same color as vi−1 and uncolor the
vertex vi+1, we still have only m vertices needing colors assigned to them. Even if each receives a unique color,
we have still reduced the number of colors used to properly dominator color C4k. Thus a minimum dominator
coloring of C4k has no vertices of out-degree one.

From here it is obvious that any minimum dominator coloring o C4k must have non-uniquely colored
vertices of out-degree zero.

Lastly, consider the case when m = 4k + 3. Particularly, consider a minimum dominator coloring of
C4k+3. Since Theorem 1 tells us that χd(P4k+3) = χd(P4(k+1)), and since we just established that χd(P4(k+1)) ≤
χd(C4(k+1)), it suffices to prove that χd(C4(k+1)) ≤ χd(C4k+3). To do this, we simply extend our minimum
dominator coloring of C4k+3 to a proper dominator coloring of C4(k+1).

With a similar argument to that used to establish valid out-degree orientations for minimum dominator
colorings in the case of C4k, we can assume the existence of a subsequence {vi−1, vi, vi+1} of V(C4k+3) which
has out-degree sequence {2, 1, 0}. If vi is uniquely colored, then we may insert a vertex u between vi−1 and vi
that has out-degree zero, creating an orientation of C4(k+1). By coloring u with c(vi) and by recoloring vi with
c(vi−1), we create a proper dominator coloring of C4(k+1) on χd(C4k+3) colors, establishing that χd(C4k+3) ≥
χd(C4(k+1)) as desired.

Next assume that the vertex vi is not uniquely colored. Either the vertex vi−2 and vi together comprise
an entire color class, or the vertex vi−2 is uniquely colored, else vi−1 does not dominate any color class,
contradicting our assumption of a minimum dominator coloring of C4k+3. If c(vi−2) = c(vi), then we may
insert a vertex u of out-degree zero between vi−1 and vi, color u with c(vi), and recolor vi with c(vi−1). If
vi−2 is uniquely colored, we may insert a vertex u of out-degree zero between vi−1 and vi, color u with c(vi),
and recolor vi with c(vi−1). In either case we again establish the inequality χd(C4k+3) ≥ χd(C4(k+1)). This
completes the case of m = 4k + 3 and thus completes the proof of the lemma.

With this very important lemma proven, we are now ready to prove the minimum dominator chromatic
number of cycles.
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Theorem 2. The minimum dominator chromatic number over all orientations of the cycle Cn is given by χd(Cn) = k+ 2
where n = 4k− i for i ∈ {0, 1, 2, 3}1 with the exceptions χd(C4) = 2 and χd(C5) = χd(C6) = 3.

Proof. In the same fashion as the last proof, this proof will consist of a series of claims and proofs of these
claims which, in total, will prove this theorem. Observe first that the cycle C3 is a tournament and thus
χd(C3) = 3, and also that χd(C5) = χd(C6) = 3.

Claim 1. Let S = {v ∈ V(Cn)|d+(v) = 2}. Then S is colored completely by one color class in any
minimum dominator coloring of Cn.

Proof. No vertex in any orientation of a cycle can dominate a vertex with out-degree two, hence all
out-degree two vertices may be assigned to the same color class. 3

Claim 2. Let Cn = v1v2 . . . vnv1 be an orientation of a cycle on n vertices and let C be a dominator coloring
of Cn using fewest possible colors. Then we have that @ vi, vi+1 ∈ V(Cn) s.t. d+(vi) = d+(vi+1) = 1.

Proof. Assume not. First, consider the case in which the out-degree sequence for Cn is {1, 1, 1, . . . , 1, 1, 1}.
It is immediately obvious that the out-degree sequence {0, 2, 0, 2, . . . , 0, 2} is an orientation of Cn which can be
dominator colored with fewer colors than were used when the out-degree sequence was {1, 1, 1, . . . , 1, 1, 1}.
This implies that ∃ u, v ∈ V(Cn) such that d+(u) = 0 and d+(v) = 2.

Next, assume that there is a sequence of at least two consecutive vertices in Cn which all have out-degree
equal to one. Do notice that these vertices must be preceded by a vertex of out-degree two. Let the subsequence
of V(Cn) whose out-degree sequence is {2, 1, 1} be denoted by {vi, vi+1, vi+2}. We know that the vertex vi+2
and the out-neighbor of vi+2 are both uniquely colored since each of these vertices is dominated by a vertex
of out-degree one. If we reverse the orientation of the arc vi+1vi+2 so that it becomes vi+2vi+1, we may recolor
the vertex vi+2 with the same color that was assigned to vi and all other vertices with out-degree two since we
now have d+(vi+2) = 2. This alone suffices to complete the proof since vi+2 was previously uniquely colored.
3

Claim 3. There are no vertices with out-degree one in any minimum dominator coloring of the cycle C4k.
Proof. This has been established in the proof of Lemma 3 when showing that χd(P4k) ≤ χd(C4k). 3
With these first three claims intact, we are now ready to begin to prove results on the smallest possible

dominator chromatic number for cycles.
Claim 4. χd(C4k) = k + 2.
Proof. Let C be a minimum dominator coloring of the cycle C4k. By choosing any non-uniquely colored

vertex of out-degree zero in C4k, call it v1 for convenience, we may split v1 into two non-adjacent vertices v1

and v4k+1, each with the same color, thus creating a path of length 4k + 1. Since all vertices of out-degree two
still dominate a color class, this constitutes a proper dominator coloring of an orientation of the path P4k+1,
hence χd(P4k+1) ≤ χd(C4k).

Next, let C be a minimum proper dominator coloring of the path P4k+1 = v1v2 . . . v4k+1. From Theorem 1
we know that both end vertices of P4k+1 are colored with the same color. Given this, we may merge the vertices
v1 and v4k+1 into a single vertex with the same color as v1 and v4k+1 to create a cycle of length 4k that has a
proper dominator coloring, whence χd(C4k) ≤ χd(P4k+1) and the proof of this claim is complete. 3

Claim 5. χd(C4(k+2)) = χd(C4(k+1)) + 1 for k ∈ N.
Proof. First observe that χd(C4) = 2 and χd(C8) = 4, hence the importance of the indexing in this

claim. From Claim 3 we know that the out-degree sequence of any cycle is precisely {0, 2, 0, 2, . . . , 0, 2, 0, 2}.
Let vi ∈ V(C4(k+1)) have out-degree two and let vi−1 be uniquely colored. By inserting four consecutive
vertices in between vi−1 and vi with out-degree sequence {2, 0, 2, 0} we may extend this dominator coloring
to C4(k+2) by using only one more color as follows. Call these four new vertices w, x, y, and z. We may color
w and y with the same color as vi since they all have out-degree two. The vertex x may be colored with a
non-dominated color class for vertices of out-degree zero. By coloring the vertex z uniquely, we show that
χd(C4(k+2)) ≤ χd(C4(k+1)) + 1 (χd(C4(k+2)) cannot be less than χd(C4(k+1)) due to Theorem 1 and Lemma 3).

Now assume that there is a smallest counterexample to this claim, call it C4(k+2) for some fixed k > 1. It
must be the case that χd(C4(k+2)) = χd(C4(k+1)). But if this is true, we may remove any four consecutive

1 Do notice the definition of n as n = 4k − i for i ∈ {0, 1, 2, 3}. While being slightly cumbersome notationally, this expression most
succinctly expresses the value of the smallest possible dominator chromatic number as a function of the parameter k.
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vertices from C4(k+2) and get a proper dominator coloring of C4(k+1) on fewer colors than χd(C4(k+2)), a
contradiction, To see that this holds, see that any four consecutive vertices, say vi through vi+3, of C4(k+2) have
out-degree sequence {0, 2, 0, 2} or {2, 0, 2, 0}. Since the entire out-neighborhood of vi+1 (vi+2, respectively) is
included in this sequence, thus some entire color class is also contained in this sequence. This allows us to
derive the desired contradiction and completes the proof of this claim. 3

Claim 6. χd(C4k+1) > χd(C4k).
Proof. From Theorem 1, Lemma 3, and Claim 4 of this theorem, we know that χd(C4k) = χd(P4k) =

χd(P4k+1) ≤ χd(C4k+1). Hence it suffices to show that χd(P4k+1) < χd(C4k+1). Since we know that there is
a unique orientation and color scheme combination for P4k+1 which admits a minimum dominator coloring
over all orientations of P4k+1, and since the end vertices of this P4k+1 are given the same color, it is impossible
to extend a minimum dominator coloring of P4k+1 to C4k+1 using only the same color pallet. Hence we may
assume that any sub-path P4k+1 of any orientation of C4k+1 which attains a minimum dominator coloring over
all orientations of C4k+1 must use at least k + 3 colors rather than the k + 2 colors specified in Theorem 1. Let
P4k+1 = v1v2 . . . v4k+1 and, without loss of generality, assume that we are adding the arc v4k+1v1 to complete
C4k+1. Then it must be the case that v1 and v4k were both uniquely colored, else we cannot reduce the number
of colors used in our dominator coloring of C4k+1. Consider the vertex v1. Either d+(v1) = 1 or d+(v1) = 0.

If d+(v1) = 1, then v2 must also be uniquely colored. This means that the vertices S = {v1, v2, v4k, v4k+1}
collective require four three colors (each of v1, v2, and v4k are uniquely colored). Of these four colors, only the
color assigned to v4k+1 may appear elsewhere in C4k+1, else we do not have a proper dominator coloring. Since
the induced subgraph D[V(D) \ S] amounts to an orientation of P4(k−1)+1, we know that we must use at least
(k− 1) + 2 = k+ 1 colors to color these vertices. Together this all implies that we need at least k+ 1+ 2 = k+ 3
colors for C4k+1 if d+(v1) = 1, even if we combine a color class when creating C4k+1 from P4k+1.

If d+(v1) = 0 then we may color the vertices of S with three colors (one each for v1 and v4k, but v2 and
v4k+1 may belong to the same color class). Again see that the induced subgraph D[V(D) \ S] is an orientation
of P4(k−1)+1 and requires at least k + 1 colors in any proper dominator coloring. Moreover, this subpath can
only attain k + 1 colors if both end vertices are not uniquely colored. Since we assumed v1 is uniquely colored,
we may add v1 and v2 back to the path, creating a path of length 4(k− 1) + 3 using k + 2 colors. Adding v4k
and v4k+1 using their original colors implies that the vertex v4k−1, the vertex that was the end vertex of the path
D[V(D) \ S] of length 4(k− 1)+ 1 has out-degree one in P4k+1 and thus must dominate the color class assigned
to v4k. This implies that if we use k + 3 colors to properly dominator color P4k+1 and require the vertices v1

and v4k to each be uniquely colored, adding the arc v4k+1v1 does not permit the vertex v4k+1 to combine color
classes in C4k+1. Hence χd(C4k+1) ≥ k + 3. Since this now covers all possible cases, the proof of this claim is
complete. 3

Claim 7. χd(C4k) > χd(C4k−i) for i ∈ {1, 2, 3}.
Proof. First, see that Claims 5 and 6 just established this result for the case of i = 3, and the case of i = 1

was actually proven in the conclusion of the proof of Lemma 3 (in the case of m = 4k + 3). Thus we need only
to prove that this holds in the case of i = 2.

Our goal is to construct a minimum dominator coloring of C4k+2 which can be extended to a dominator
coloring of C4(k+1) without the addition of new color classes since Claims 4 and 5 have established for us
that χd(C4k) = k + 2 and χd(C4(k+1)) = k + 3, and since Theorem 1 and Lemma 3 combine to tells us that
k + 3 = χd(P4k+2) ≤ χd(C4k+2). To do this, begin with a minimum dominator coloring of the smaller path
P4k+1 = v1v2 . . . v4k+1. We know precisely what this looks like, and that it uses k + 2 colors, so we may create
our minimum dominator coloring of P4k+2 by recoloring the vertex v4k+1 with a new color, adding the vertex
v4k+2, assigning v4k+2 to the same color class as v4k (which is a vertex of out-degree two in P4k+1), and by
adding the arc v4k+2v4k+1. Since this uses k + 3 colors, this is a minimum dominator coloring of P4k+2. Since
χd(P4k+2) ≤ χd(C4k+2), the arc v4k+2v1 establishes a minimum dominator coloring of C4k+2 on precisely k + 3
colors. This establishes that χd(C4k) < χd(C4k+2) = χd(), and the proof of this last case is complete. 3

This completes the proof of the theorem.

Corollary 1. The directed cycle is the unique orientation of a cycle which maximizes the dominator chromatic number of
an orientation of a cycle.
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5. Orientations of Kn and Km,n

Orientations of complete graphs, i.e., tournaments, are rather easily characterized. As a direct
consequence of Observations 1 and 2, we provide the dominator chromatic number of any orientation of a
complete graph with the following observation.

Observation 3. For any tournament Tn on n vertices, we have χd(Tn) = n.

As it turns out, complete bipartite graphs are also a very important class of digraphs when it comes to
dominator colorings. The following theorem provides another complete characterization of a very important
problem in dominator colorings of digraphs.

Theorem 3. Let D be a simple, connected digraph. Then χd(D) = 2 ⇐ D = Km,n with partite sets X and Y satisfying
xy ∈ A(D) ∀ x ∈ X and ∀ y ∈ Y.

Proof. ( ⇐= ) Let V(D) = {X, Y} be a bipartition of D = Km,n satisfying xy ∈ A(D) ∀ x ∈ X and ∀ y ∈ Y.
Color x with c1 for all x ∈ X and color y with c2 for all y ∈ Y.

( = ) Let D be a simple, connected digraph with χd(D) = 2. Partition V(D) into two sets X and Y
such that X = {v ∈ V(D)|c(v) = c1} and Y = {v ∈ V(D)|c(v) = c2}. Since this is a proper dominator
coloring of D, there do not exists arcs of the form xixj for xi, xj ∈ X or of the form yiyj for yi, yj ∈ Y, hence
{X, Y} is a bipartition of V(D). Without loss of generality, assume that there exists the arc x?y? ∈ A(D)

for x? ∈ X and y? ∈ Y. Since c(y) = c2 ∀ y ∈ Y, and since this is a proper dominator coloring of D, it
follows that x?y ∈ A(D) ∀ y ∈ Y. Since D is connected, we have that ∀ x ∈ X ∃ y ∈ Y such that either
xy ∈ A(D) or yx ∈ A(D). Assume that there exists some x ∈ X and y ∈ Y such that yx ∈ A(D). We know
already that x?y ∈ A(D) and c(x) = c(c?), so y does not dominate any color class in D, a contradiction. Thus
d+(y) = 0 ∀ y ∈ Y and all that remains to be shown is that D is complete. Assume that ∃ x̂ ∈ X and ∃ ŷ ∈ Y
such that x̂ŷ 6∈ A(D). Since D is connected and since d+(y) = 0 ∀ y ∈ Y, it follows that d+(x̂) ≥ 1. Thus,
for D to have a proper dominator coloring, it must be that x̂ŷ ∈ A(D). Therefore, if χd(D) = 2 for a simple,
connected digraph D, it must be the case that D = Km,n.

6. Quantifying the Effect of Orientation on Dominator Colorings

In this section we introduce an interesting graph invariant, ς?(D), which is the difference between the
minimum dominator chromatic number over all all orientations of the digraph and the chromatic number
of the underlying graph. This invariant tell us about how impactful orientations of the underlying graph
structure are on vertex coloring and domination problems in the sense of measuring how much the dominator
chromatic number of a given graph can change across all possible orientations. Formally, the graph invariant
ς?(D) is defined by the following two equations.

ς(D) = χd(D)− χ(GD) (1)

ς?(D) = max{ς(D)} over all orientations of GD (2)

With this formal definition intact, we provided several initial results on this graph invariant.

Proposition 6. For all orientations of Kn, ς(Kn) = ς?(Kn) = 0.

Proof. This follows directly from Observation 3.

Proposition 7. For the orientation of Km,n where all arcs orient from X to Y, ς(Km,n) = ς?(Km,n) == 0.

Proof. This follows directly from Theorem 3.

Proposition 8. For orientations of the path Pn, ς(Pn) = 0 ⇐ Pn is the directed path on n vertices.

Proof. This follows directly from Theorem 1.
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Proposition 9. For orientations of the path Cn, ς(Cn) = 0 ⇐ Cn is the directed cycle on n vertices.

Proof. This follows directly from Theorem 2.

Proposition 10. For orientations of the path Pn, we have

ς?(Pn) =


3k− 2 if n = 4k

3k− 1 if n = 4k + 1

3k− 1 if n = 4k = 2

3k if n = 4k = 3

Proof. This follows directly from Theorem 1.

Proposition 11. For orientations of Cn we have

ς?(Cn) =


3k− 2 if n = 4k

3k− 2 if n = 4k + 1

3k− 1 if n = 4k = 2

3k if n = 4k = 3

Proof. This follows directly from Theorem 2.

We conclude this section by mentioning that Observation 1 implies that the digraph invariant is
necessarily a non-negative integer.

7. Conclusion

This paper developed the beginnings of a theory of dominator coloring for directed graphs. As it
turns out, orienting arcs makes the notion of domination much more complicated, so rather than attempting
to describe dominator chromatic numbers of digraphs for a given orientation, we focused on proving the
minimum dominator chromatic number over all possible orientations for a given graph structure. In particular
we proved the minimum dominator chromatic number for orientations of paths and cycles. We successfully
characterized all graphs of dominator chromatic number two with Theorem 3.

Perhaps most notably, dominator coloring of digraph are particularly interesting for the fact that it is
not generally the case that χd(H) ≤ χd(D) for a subgraph H of a digraph D. The example provided, and
only known, is that χd(P4) = 3 > 2 = χd(C4) (notice that the orientations of each which attain minimum
dominator colorings do indeed directly satisfy this property). This is an interesting example demonstrating
the mathematical intrigue of dominator colorings of digraphs. Adding to this intrigue, we also saw that the
dominator chromatic number of a digraph is not bounded by the maximum degree of the digraph. To aid in
the future study of this deviance, we introduced the graph invariant ς?(D) which tells us how much orienting
a graph can affect results in vertex coloring and domination.

To conclude this paper, we recognize some of the many potential avenues for further exploration into the
topic of dominator colorings of digraphs.

Problem 4. Which digraphs satisfy χd(D) = χ(D)?

Notice that by answering this problem we are answering an important question about the graph invariant
ς?(D), namely which graphs admit an orientation such that ς?(D) = 0.

Problem 5. When is χd(D) invariant under all possible orientations of the underlying graph GD?

Notice that this problem may be restricted in the possibly more convenient manner.
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Problem 6. When is χd(D) invariant under arc reversal? I.e., when does χd(D) = χd(D−) where D− is the
digraph on the same underlying graph GD as D, but the arc set A(D−) = {uv|vu ∈ A(D)}?

Problem 7. How far can Theorem 3 be generalized in terms of domination among partite sets?

Alternatively, we can attempt to generalize Theorem 3 in the following manner.

Problem 8. Which digraphs have dominator chromatic number n.

Problem 9. Are there families of digraphs which satisfy lim sup
n→∞

χd(D)
∆(D)

= r for some r ∈ R? What are they?

And if so, is this phenomenon related to ς?(D)?

Notice that the above problem may be defined for any of ∆+(D), ∆−(D), or ∆(D) = ∆(GD).

Problem 10. How does ς?(D) behave with respect to graph operations? What about subgraph containment?

Problem 11. Which families of graphs and subgraphs admit a positive dominator discrepancy δ(D, H)?
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