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Abstract: In this paper, we study the existence of nontrivial solution for the fractional differential equation of
order α with three point boundary conditions having the following form

Dαu(t) = f (t, v(t), Dνv(t)), t ∈ (0, T)

u(0) = 0, u(T) = au(ξ),

where 1 < α < 2, ν, a > 0, ξ ∈ (0, T), Tα−1 + aξα−1 6= 0. D is the standard Riemann-Liouville fractional
derivative operator and f ∈ C([0, 1]× R2, R). Applying the Leray-Schauder nonlinear alternative we prove
the existence of at least one solution. As an application, we also given some examples to illustrate the results
obtained.
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1. Introduction

F ractional differential equations arise in many engineering and scientific disciplines as the mathematical
modeling of systems and processes in the fields of physics, chemistry, aerodynamics, electrodynamics

of complex medium, polymer rheology, Bode’s analysis of feedback amplifiers, signal and image processing,
capacitor theory, electrical circuits, electron-analytical chemistry, biology, ow in porous media, aerodynamics,
viscoelasticity, control theory, fitting of experimental data, and so forth, and involves derivatives of fractional
order. Fractional derivatives provide an excellent tool for the description of memory and hereditary properties
of various materials and processes (for details, see [1–9]). The fractional differential equations under various
conditions have been studied by ([10–13]), etc. The three point boundary value problem given by a coupled
system of FDE on the interval (0, 1) was studied by Bashir [10]

Dαu(t) = f (t, v(t), Dpv(t)), t ∈ (0, 1),

Dβv(t) = f (t, u(t), Dqu(t)), t ∈ (0, 1),

u(0) = 0, u(1) = au(ξ), v(0) = 0, v(1) = av(ξ),

(1)

where 1 < α, β < 2, p, q, a > 0, 0 < ξ < 1, α− q ≥ 1, β− p ≥ 1, aξα−1 < 1 and aξβ−1 < 1. D is the standard
Riemann-Liouville fractional derivative operator and f : [0, 1]× R2 −→ R2.

Infinite systems of ODE’s was first studied by Persidskii [14] with the aid of classical tools such as
successive approximation and the classical Banach fixed point principle. The infinite systems of differential
equations emerge in study of various topics of nonlinear analysis. For example semidiscretization of certain
parabolic partial differential equation leads to an infinite system of ODE [15], while modeling certain physical
phenomenon in theory of neural sets, branching process and mechanics ([16,17]), where the infinite system
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can be represented as an ordinary differential equation. Consider the following infinite system of fractional
differential equations [18] 

Dαui(t) = fi(t, u(t)), t ∈ (0, T)

ui(0) = u0
i = 0, ui(T) = aui(ξ), i = 1, 2, 3...

1 < α < 2, aξα−1 < Tα−1,

(2)

where each ui(t) is a differentiable function of class C[α]+1. We will denote the sequence {ui(t)}∞
i=1 = u(t),

{ui(0)}∞
i=1 = u0, {ui(ξ)}∞

i=1 = u(ξ) and { fi(t, u(t))}∞
i=1 = f (t, u(t)) which is an element of some Banach

sequence space (E, ‖.‖).
Motivated by the above works, the aim of this paper is to establish some sufficient conditions for the

existence of nontrivial solution for the fractional differential equations (FDE) as follows{
Dαu(t) = f (t, v(t), Dνv(t)), t ∈ (0, T)

u(0) = 0, u(T) = au(ξ),
(3)

where 1 < α < 2; ν, a > 0, ξ ∈ (0, T); α− µ ≥ 1 and Tα−1 + aξα−1 6= 0. D is the standard Riemann-Liouville
fractional derivative operator and f ∈ C([0, 1]× R2, R).

This paper is organized as follows. In Section 2, we present some definitions and lemmas that will be
used to prove the results. Then, in Section 3, we present and prove our main results which consists of existence
theorems and corollary for nontrivial solution of the FDE 3, and we establish some existence criteria of at least
one solution by using the Leray-Schauder nonlinear alternative. Finally, in Section 4, as an application, we
give some examples to illustrate the results we obtained.

2. Preliminaries

In this section, we introduce some necessary definitions and lemmas of fractional calculus to facilitate
the analysis of the Problem (3). These details can be found in the recent literature, see ([3,7,19–23]) and the
references therein.

Definition 1. Let α > 0, n− 1 < α < n, n = [α] + 1 and u ∈ C([0, 1), R). The Caputo derivative of fractional
order α for the function u is defined by

cDαu(t) =
1

Γ(n− α)

∫ t

0
(t− s)n−α−1u(n)(s)ds,

where Γ(·) is the Gamma function.

Definition 2. The Riemann-Liouville fractional integral of order α > 0 of a function u : (0, ∞) −→ R is given
by

Iαu(t) =
1

Γ(α)

∫ t

0
(t− s)α−1u(s)ds, t > 0,

where Γ(·) is the Gamma function, provided that the right side is pointwise defined on (0, ∞).

Lemma 1. ([23]) Let α, β > 0 and u ∈ Lp(0, 1), 1 ≤ p ≤ +∞. Then the next formulas hold;
(i) (Iβ Iαu)(t) = Iα+βu(t),
(ii) (Dβ Iαu)(t) = Iα−βu(t),
(iii) (Dα Iαu)(t) = u(t).

Lemma 2. Let α > 0, n − 1 < α < n and the function g : [0; T] −→ R be continuous for each T > 0. Then, the
general solution of the fractional differential equation cDαg(t) = 0 is given by

g(t) = c0 + c1t + ... + cn−1tn−1,

where c0, c1, ..., cn−1 are real constants and n = [α] + 1.
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Lemma 3. Assume that u ∈ C[0, 1] ∩ L1(0, 1) with a Caputo fractional derivative of order α > 0 that belongs to
u ∈ Cn[0, 1], then

Iα cDαu(t) = u(t) + c0 + c1t + ... + cn−1tn−1,

where c0, c1, ..., cn−1 are real constants and n = [α] + 1.

Lemma 4. For α > 0, the general solution of the fractional differential equation Dαu(t) = 0 with u ∈ C[0, 1]∩ L1(0, 1)
is given by

u(t) = c1tα−1 + c2tα−2 + ... + cntα−n,

where ci ∈ R, i = 1, 2, ..., n. Hence for u ∈ C[0, 1] ∩ L1(0, 1), we have

IαDαu(t) = u(t) + c1tα−1 + c2tα−2 + ... + cntα−n.

Lemma 5. Let y ∈ C([0, T]), Tα−1 + aξα−1 6= 0. Then FDE{
Dαu(t) = y(t), t ∈ (0, T)

u(0) = 0, u(T) = au(ξ),

has a unique solution

u(t) =
1

Γ(α)

∫ t

0

[
(t− s)α−1 − (t(T − s))α−1

(Tα−1 − aξα−1)

]
y(s)ds− 1

(Tα−1 − aξα−1)Γ(α)

∫ T

t
(t(T − s))α−1y(s)ds

+
a

(Tα−1 − aξα−1)Γ(α)

∫ ξ

0
(t(ξ − s))α−1y(s)ds.

Proof. ([10])The general solution of FDE is

u(t) = Iαy(t) + c1tα−1 + c2tα−2, where c1, c2 ∈ R.

Using the boundary conditions, we find that c2 = 0 and

c1 = − 1
(Tα−1 − aξα−1)

[∫ T

0

y(s)ds
(T − s)α−1Γ(α)

− a
∫ ξ

0

y(s)ds
(ξ − s)α−1Γ(α)

]
.

Substituting c1 and c2 by their values in u(t), we obtain the solution in the statement of the lemma. This
completes the proof.

Define the integral operator F : E→ E, by

Fu(t) =
1

Γ(α)

∫ t

0

[
(t− s)α−1 − (t(T − s))α−1

(Tα−1 − aξα−1)

]
f (s, v(s), Dνv(s))ds

− 1
(Tα−1 − aξα−1)Γ(α)

∫ T

t
(t(T − s))α−1 f (s, v(s), Dνv(s))ds

+
a

(Tα−1 − aξα−1)Γ(α)

∫ ξ

0
(t(ξ − s))α−1 f (s, v(s), Dνv(s))ds.

By Lemma 5, the FDE (3) has a solution if and only if the operator F has a fixed point in E. So we only
need to seek a fixed point of F in E. By Ascoli-Arzela theorem, we can prove that F is a completely continuous
operator. Now we cite the Leray-Schauder nonlinear alternative.

Lemma 6. Let E be a Banach space and Ω be a bounded open subset of E, 0 ∈ Ω. F : Ω→ E be a completely continuous
operator. Then, either

(i) there exists u ∈ ∂Ω and λ > 1 such that F(u) = λu, or
(ii) there exists a fixed point u∗ ∈ Ω of F.
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3. Main results

In this section, we prove the existence of a nontrivial solution for the FDE (3). Let E = C([0, T]) with the
norm ‖v‖ = maxt∈[0,T]{|v(t)|, |Dνv(t)|} for any v ∈ E, f ∈ C([0, T]× R2, R).

Theorem 1. Suppose that f (t, 0, 0) 6= 0, Tα−1 + aξα−1 6= 0, and there exist nonnegative functions k, h, l ∈ L1[0, T]
such that

| f (t, x, y)| ≤ k(t)|x|+ h(t)|y|+ l(t), a.e. (t, x, y) ∈ [0, T]× R2,

and

2Tα−1 + aξα−1

(Tα−1 + aξα−1)Γ(α)

∫ T

0
(T − s)α−1(k(s) + h(s))ds +

aTα−1

(Tα−1 + aξα−1)Γ(α)

∫ ξ

0
(ξ − s)α−1(k(s) + h(s))ds < 1.

Then the FDE (3) has at least one nontrivial solution u∗ ∈ C([0, T]).

Proof. Let

A =
2Tα−1 + aξα−1

(Tα−1 + aξα−1)Γ(α)

∫ T

0
(T − s)α−1(k(s) + h(s))ds +

aTα−1

(Tα−1 + aξα−1)Γ(α)

∫ ξ

0
(ξ − s)α−1(k(s) + h(s))ds,

and

B =
2Tα−1 + aξα−1

(Tα−1 + aξα−1)Γ(α)

∫ T

0
(T − s)α−1l(s)ds +

aTα−1

(Tα−1 + aξα−1)Γ(α)

∫ ξ

0
(ξ − s)α−1l(s)ds,

then A < 1. Since f (t, 0, 0) 6= 0, there exists an interval [a, b] ⊂ [0, 1] such that mina≤t≤b | f (t, 0, 0)| > 0, and, as
l(t) ≥ | f (t, 0, 0)|, a.e., and t ∈ [0, T], so B > 0.

Let C = B(1− A)−1 and Ω = {(u, v) ∈ E2 : ‖(u, v)‖E2 < C}. Assume that u ∈ ∂Ω and λ > 1 such that
Fu = λu, then

λC = λ‖u‖ = ‖Fu‖ = max
0≤t≤T

|(Fu)(t)|

≤ 1
Γ(α)

max
t∈[0,T]

∫ t

0

∣∣∣∣(t− s)α−1 − (t(T − s))α−1

(Tα−1 − aξα−1)

∣∣∣∣ | f (s, v(s), Dνv(s))|ds

+ max
t∈[0,T]

1
|Tα−1 − aξα−1|Γ(α)

∫ T

t
(t(T − s))α−1| f (s, v(s), Dνv(s))|ds

+ max
t∈[0,T]

a
|Tα−1 − aξα−1|Γ(α)

∫ ξ

0
(t(ξ − s))α−1| f (s, v(s), Dνv(s))|ds

≤ 1
Γ(α)

∫ T

0

[
(T − s)α−1 +

(T(T − s))α−1

(Tα−1 + aξα−1)

]
| f (s, v(s), Dνv(s))|ds

+
a

(Tα−1 + aξα−1)Γ(α)

∫ ξ

0
(T(ξ − s))α−1| f (s, v(s), Dνv(s))|ds

≤ (2Tα−1 + aξα−1)

(Tα−1 + aξα−1)Γ(α)

∫ T

0
(T − s)α−1(k(s)|v(s)|+ h(s)|Dνv(s)|+ l(s))ds

+
aTα−1

(Tα−1 + aξα−1)Γ(α)

∫ ξ

0
(ξ − s)α−1(k(s)|v(s)|+ h(s)|Dνv(s)|+ l(s))ds

≤
[

(2Tα−1 + aξα−1)

(Tα−1 + aξα−1)Γ(α)

∫ T

0
(T − s)α−1(k(s) + h(s))‖v‖ds

+
aTα−1

(Tα−1 + aξα−1)Γ(α)

∫ ξ

0
(ξ − s)α−1(k(s) + h(s))‖v‖ds

]
+

[
(2Tα−1 + aξα−1)

(Tα−1 + aξα−1)Γ(α)

∫ T

0
(T − s)α−1l(s)ds +

aTα−1

(Tα−1 + aξα−1)Γ(α)

∫ ξ

0
(ξ − s)α−1l(s)ds

]
= A‖v‖+ B.
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Therefore, λ ≤ A + B
C = A + B

B(1−A)−1 = A + (1− A) = 1. This contradicts λ > 1. By Lemma 6, F has a

fixed point u∗ ∈ Ω. In view of f (t, 0, 0) 6= 0, the FDE (3) has a nontrivial solution u∗ ∈ E.
Now, we prove that the operator F is completely continuous, we have BC = {v ∈ E : ||v|| ≤ C} is a

bounded closed convex set of E. We shall prove that F(BC) is relatively compact. The proof will be done is
some steps.

(i) Let v ∈ BC, we have |Fu(t)| ≤ A‖v‖+ B. Consequently F(BC) is uniformly bounded.
(ii) Let us prove that F(BC) is equicontinuous. Let t1, t2 ∈ [0, T], with t1 < t2, and v ∈ BC, we have∣∣∣∣Fu(t1)− Fu(t2)

∣∣∣∣ =

∣∣∣∣ 1
Γ(α)

∫ t1

0

[
(t1 − s)α−1 − (t1(T − s))α−1

(Tα−1 − aξα−1)

]
f (s, v(s), Dνv(s))ds

− 1
(Tα−1 − aξα−1)Γ(α)

∫ T

t1

(t1(T − s))α−1 f (s, v(s), Dνv(s))ds

+
a

(Tα−1 − aξα−1)Γ(α)

∫ ξ

0
(t1(ξ − s))α−1 f (s, v(s), Dνv(s))ds

− 1
Γ(α)

∫ t2

0

[
(t2 − s)α−1 − (t2(T − s))α−1

(Tα−1 − aξα−1)

]
f (s, v(s), Dνv(s))ds

+
1

(Tα−1 − aξα−1)Γ(α)

∫ T

t2

(t2(T − s))α−1 f (s, v(s), Dνv(s))ds

− a
(Tα−1 − aξα−1)Γ(α)

∫ ξ

0
(t2(ξ − s))α−1 f (s, v(s), Dνv(s))ds

∣∣∣∣
=

∣∣∣∣ 1
Γ(α)

∫ t1

0

[
(t1 − s)α−1 − (t1(T − s))α−1

(Tα−1 − aξα−1)

]
f (s, v(s), Dνv(s))ds

− 1
(Tα−1 − aξα−1)Γ(α)

∫ T

t1

(t1(T − s))α−1 f (s, v(s), Dνv(s))ds

− 1
Γ(α)

∫ t2

0

[
(t2 − s)α−1 − (t2(T − s))α−1

(Tα−1 − aξα−1)

]
f (s, v(s), Dνv(s))ds

+
1

(Tα−1 − aξα−1)Γ(α)

∫ T

t2

(t2(T − s))α−1 f (s, v(s), Dνv(s))ds

+
a(tα−1

1 − tα−1
2 )

(Tα−1 − aξα−1)Γ(α)

∫ ξ

0
(ξ − s)α−1 f (s, v(s), Dνv(s))ds

∣∣∣∣
≤ 1

Γ(α)

∫ t1

0

[
(t1 − s)α−1 +

(t1(T − s))α−1

(Tα−1 + aξα−1)

]
| f (s, v(s), Dνv(s))|ds

+
1

(Tα−1 + aξα−1)Γ(α)

∫ T

t1

(t1(T − s))α−1| f (s, v(s), Dνv(s))|ds

+
1

Γ(α)

∫ t2

0

[
(t2 − s)α−1 +

(t2(T − s))α−1

(Tα−1 + aξα−1)

]
| f (s, v(s), Dνv(s))|ds

+
1

(Tα−1 + aξα−1)Γ(α)

∫ T

t2

(t2(T − s))α−1| f (s, v(s), Dνv(s))|ds

+
a|tα−1

1 − tα−1
2 |

(Tα−1 − aξα−1)Γ(α)

∫ ξ

0
(ξ − s)α−1| f (s, v(s), Dνv(s))|ds.

Therefore,∣∣∣∣Fu(t1)− Fu(t2)

∣∣∣∣ ≤ 1
Γ(α)

∫ t1

t2

[
((t1 − s)α−1 − (t2 − s)α−1) +

[(t1(T − s))α−1 − (t2(T − s))α−1]

(Tα−1 + aξα−1)

]
×| f (s, v(s), Dνv(s))|ds +

1
(Tα−1 + aξα−1)Γ(α)

∫ t2

t1

[(t1(T − s))α−1 − (t2(T − s))α−1]

×| f (s, v(s), Dνv(s))|ds +
a|tα−1

1 − tα−1
2 |

(Tα−1 − aξα−1)Γ(α)

∫ ξ

0
(ξ − s)α−1| f (s, v(s), Dνv(s))|ds.
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Letting t1 → t2, then |Fu(t1) − Fu(t2)| tends to 0. Consequently F(BC) is equicontinuous. From
Ascoli-Arzela theorem, we deduce that F is a completely continuous. This completes the proof.

Theorem 2. Suppose that f (t, 0, 0) 6= 0, Tα−1 + aξα−1 6= 0, and there exist nonnegative functions k, h, l ∈ L1[0, T]
such that | f (t, x, y)| ≤ k(t)|x| + h(t)|y| + l(t), a.e. (t, x, y) ∈ [0, T] × R2. If one of the following conditions is
fulfilled;

(1) There exists a constant p > 1 such that

∫ 1

0
(k(s) + h(s))pds <

[
(Tα−1 + aξα−1)Γ(α)(1 + q(α− 1))1/q

(2Tα−1 + aξα−1)T(1+q(α−1))/q + aTα−1ξ(1+q(α−1))/q

]p

,
1
p
+

1
q
= 1,

(2) k(s) + h(s) satisfies

k(s) + h(s) ≤ αΓ(α)(Tα−1 + aξα−1)

(2Tα−1 + aξα−1)Tα + aTα−1ξα
, a.e. s ∈ [0, T],

meas
{

s ∈ [0, T] : k(s) + h(s) <
αΓ(α)(Tα−1 + aξα−1)

(2Tα−1 + aξα−1)Tα + aTα−1ξα

}
> 0.

Then the FDE (3) has at least one nontrivial solution u∗ ∈ E.

Proof. Let A be defined as in the proof of Theorem 1. To prove Theorem 2, we only need to prove that A < 1.
Since Tα−1 + aξα−1 6= 0, we have

A =
2Tα−1 + aξα−1

(Tα−1 + aξα−1)Γ(α)

∫ T

0
(T − s)α−1(k(s) + h(s))ds +

aTα−1

(Tα−1 + aξα−1)Γ(α)

∫ ξ

0
(ξ − s)α−1(k(s) + h(s))ds.

(1) Using the Hölder inequality, we have

A ≤
[∫ 1

0
(k(s) + h(s))pds

]1/p
{

2Tα−1 + aξα−1

(Tα−1 + aξα−1)Γ(α)

[∫ T

0

(
(T − s)α−1

)q
ds
]1/q

+
aTα−1

(Tα−1 + aξα−1)Γ(α)

[∫ ξ

0

(
(ξ − s)α−1

)q
ds
]1/q

}

≤
[∫ 1

0
(k(s) + h(s))pds

]1/p
 2Tα−1 + aξα−1

(Tα−1 + aξα−1)Γ(α)

[
T1+q(α−1)

(1 + q(α− 1))

]1/q

+
aTα−1

(Tα−1 + aξα−1)Γ(α)

[
ξ1+q(α−1)

1 + q(α− 1)

]1/q


≤
[∫ 1

0
(k(s) + h(s))pds

]1/p
[

(2Tα−1 + aξα−1)T(1+q(α−1))/q

(Tα−1 + aξα−1)Γ(α)(1 + q(α− 1))1/q +
aTα−1ξ(1+q(α−1))/q

(Tα−1 + aξα−1)Γ(α)(1 + q(α− 1))1/q

]

≤ (Tα−1 + aξα−1)Γ(α)(1 + q(α− 1))1/q

(2Tα−1 + aξα−1)T(1+q(α−1))/q + aTα−1ξ(1+q(α−1))/q
× (2Tα−1 + aξα−1)T(1+q(α−1))/q + aTα−1ξ(1+q(α−1))/q

(Tα−1 + aξα−1)Γ(α)(1 + q(α− 1))1/q

= 1.

(2) In this case, we have

A ≤ αΓ(α)(Tα−1 + aξα−1)

(2Tα−1 + aξα−1)Tα + aTα−1ξα

[
2Tα−1 + aξα−1

(Tα−1 + aξα−1)Γ(α)

∫ T

0
(T − s)α−1ds

+
aTα−1

(Tα−1 + aξα−1)Γ(α)

∫ ξ

0
(ξ − s)α−1ds

]
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≤ αΓ(α)(Tα−1 + aξα−1)

(2Tα−1 + aξα−1)Tα + aTα−1ξα

[
(2Tα−1 + aξα−1)Tα

αΓ(α)(Tα−1 + aξα−1)
+

aTα−1ξα

αΓ(α)(Tα−1 + aξα−1)

]
≤ αΓ(α)(Tα−1 + aξα−1)

(2Tα−1 + aξα−1)Tα + aTα−1ξα
.
(2Tα−1 + aξα−1)Tα + aTα−1ξα

αΓ(α)(Tα−1 + aξα−1)
= 1.

This completes the proof.

Corollary 1. Suppose f (t, 0, 0) 6= 0, (1 + a)Tα−1 6= 0, and there exist nonnegative functions k, h, l ∈ L1[0, T] such
that | f (t, x, y)| ≤ k(t)|x|+ h(t)|y|+ l(t), a.e. (t, x, y) ∈ [0, T]× R2. If one of following conditions is fulfilled;

(1) There exists a constant p > 1 such that

∫ 1

0
(k(s) + h(s))pds <

[
(1 + a)Tα−1Γ(α)(1 + q(α− 1))1/q

2(1 + a)Tα−1T(1+q(α−1))/q

]p

,
1
p
+

1
q
= 1.

(2) k(s) + h(s) satisfies

k(s) + h(s) ≤ αΓ(α)
2Tα

, a.e. s ∈ [0, T],

meas
{

s ∈ [0, T] : k(s) + h(s) <
αΓ(α)
2Tα

}
> 0.

Then, the FDE (3) has at least one nontrivial solution u∗ ∈ E.

Proof. In this case, we have

A =
2Tα−1 + aξα−1

(Tα−1 + aξα−1)Γ(α)

∫ T

0
(T − s)α−1(k(s) + h(s))ds +

aTα−1

(Tα−1 + aξα−1)Γ(α)

∫ ξ

0
(ξ − s)α−1(k(s) + h(s))ds

≤ 2Tα−1 + aTα−1

(Tα−1 + aTα−1)Γ(α)

∫ T

0
(T − s)α−1(k(s) + h(s))ds +

aTα−1

(Tα−1 + aTα−1)Γ(α)

∫ T

0
(T − s)α−1(k(s) + h(s))ds

=
2(1 + a)Tα−1

(1 + a)Tα−1Γ(α)

∫ T

0
(T − s)α−1(k(s) + h(s))ds.

Proof of this Corollary 1 is similar to the proof Theorem 2. This completes the proof.

4. Applications

In order to illustrate the above results, we consider some examples.

Example 1. Consider the following system of FDE
D3/2u(t) = t

207 v(t) + t+2
100 D5/4v(t) + t2 − 1, t ∈ (0, T)

u(0) = 0, u(T) = 2u(T/2).
(4)

Set α = 3/2, a = 2, ξ = T/2, and

f (t, x, y) =
t

207
x(t) +

t + 2
100

y(t) + t2 − 1,

k(t) =
t

100
, h(t) =

t + 2
100

, l(t) = t2.

It is easy to prove that k, h, l ∈ L1[0, T] are nonnegative functions, and

| f (t, x, y)| ≤ k(t)|x|+ h(t)|y|+ l(t), a.e. (t, x, y) ∈ [0, T]× R2,

and
Tα−1 + aξα−1 = (1 +

2
21/2 )T

1/2 6= 0.
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Moreover, we have

A =
2Tα−1 + aξα−1

(Tα−1 + aξα−1)Γ(α)

∫ T

0
(T − s)α−1(k(s) + h(s))ds +

aTα−1

(Tα−1 + aξα−1)Γ(α)

∫ ξ

0
(ξ − s)α−1(k(s) + h(s))ds,

A ≈ 13.10−3.T3/2 + 4.10−3.T5/2 < 1.

Hence, by Theorem 1, the FDE (4) has at least one nontrivial solution u∗ in E.

Example 2. Consider the following system of FDE
D1/2u(t) =

3√1+t5

20 v(t) sin v(t) +
3√1+t5

5 D3/4v(t) + cos t− et, t ∈ (0, T)

u(0) = 0, u(T) = 4u(T/3).
(5)

Set α = 1/2, a = 4, ξ = T/3, and

f (t, x, y) =
3
√

1 + t5

20
x(t) sin x(t) +

3
√

1 + t5

5
y(t) + cos t− et,

k(t) = 3
√

1 + t5/10, h(t) = 3
√

1 + t5/4, l(t) = cos t + et.

It is easy to prove that k, h, l ∈ L1[0, T] are nonnegative functions, and

| f (t, x, y)| ≤ k(t)|x|+ h(t)|y|+ l(t), a.e. (t, x, y) ∈ [0, T]× R2,

and
Tα−1 + aξα−1 = (1 +

4
3−1/2 )T

−1/2 6= 0.

Let p = 3, q = 3/2, such that 1
p + 1

q = 1, then

∫ 1

0
(k(s) + h(s))pds =

2401
48000

≈ 0.05.

Moreover, we have[
(Tα−1 + aξα−1)Γ(α)(1 + q(α− 1))1/q

(2Tα−1 + aξα−1)T(1+q(α−1))/q + aTα−1ξ(1+q(α−1))/q

]p

≈ 0.51.T−1/2.

Therefore,

∫ 1

0
(k(s) + h(s))pds <

[
(Tα−1 + aξα−1)Γ(α)(1 + q(α− 1))1/q

(2Tα−1 + aξα−1)T(1+q(α−1))/q + aTα−1ξ(1+q(α−1))/q

]p

.

Hence, by Theorem 2(1), the FDE (5) has at least one nontrivial solution u∗ in E.

Example 3. Consider the following system of FDE
D3/2u(t) =

√
t

2( 1
2+v(t))

e|v
2(t)−1| cos v(t) + (1+t2)

9+et D7/3v(t) + e−t − sin t, t ∈ (0, T)

u(0) = 0, u(T) = 3u(T/4).

(6)

Set α = 3/2, a = 3, ξ = T/4, and

f (t, x, y) =
√

t
2( 1

2 + x(t))
e|x

2(t)−1| cos x(t) +
(1 + t2)

9 + et y(t) + e−t − sin t,
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k(t) =
√

t
2

, h(t) =
(1 + t2)

3
, l(t) = e−t + sin t.

It is easy to prove that k, h, l ∈ L1[0, T] are nonnegative functions, and

| f (t, x, y)| ≤ k(t)|x|+ h(t)|y|+ l(t), a.e. (t, x) ∈ [0, T]× R2,

and
Tα−1 + aξα−1 = (1 +

3
41/2 )T

1/2 6= 0.

Moreover, we have
αΓ(α)(Tα−1 + aξα−1)

(2Tα−1 + aξα−1)Tα + aTα−1ξα
=

15
√

π

31
T−3/2.

Therefore,

k(s) + h(s) =
√

s
2

+
(1 + s2)

3
<

15
√

π

31
T−3/2, s ∈ [0, T],

meas{s ∈ [0, T] : k(s) + h(s) <
αΓ(α)(Tα−1 + aξα−1)

(2Tα−1 + aξα−1)Tα + aTα−1ξα
} > 0.

Hence, by Theorem 2(2), the FDE (6) has at least one nontrivial solution u∗ in E.
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