Article

C_{6}-decompositions of the tensor product of complete graphs

Abolape Deborah Akwu ${ }^{1}$ and Opeyemi Oyewumi ${ }^{\text {2,* }}$
1 Department of Mathematics, Federal University of Agriculture, Makurdi, Nigeria.
2 Department of Mathematics, Air Force Institute of Technology, Kaduna, Nigeria.
* Correspondence: opeyemioluwaoyewumi@gmail.com; Tel.: +2348154792760

Received: 19 August 2020; Accepted: 15 October 2020; Published: 7 November 2020.

Abstract

Let G be a simple and finite graph. A graph is said to be decomposed into subgraphs H_{1} and H_{2} which is denoted by $G=H_{1} \oplus H_{2}$, if G is the edge disjoint union of H_{1} and H_{2}. If $G=H_{1} \oplus H_{2} \oplus \cdots \oplus H_{k}$, where $H_{1}, H_{2}, \ldots, H_{k}$ are all isomorphic to H, then G is said to be H-decomposable. Furthermore, if H is a cycle of length m then we say that G is C_{m}-decomposable and this can be written as $C_{m} \mid G$. Where $G \times H$ denotes the tensor product of graphs G and H, in this paper, we prove that the necessary conditions for the existence of C_{6}-decomposition of $K_{m} \times K_{n}$ are sufficient. Using these conditions it can be shown that every even regular complete multipartite graph G is C_{6}-decomposable if the number of edges of G is divisible by 6 .

Keywords: Cycle decompositions, graph, tensor product.
MSC: 05C70.

1. Introduction

Let C_{m}, K_{m} and $K_{m}-I$ denote cycle of length m, complete graph on m vertices and complete graph on m vertices minus a 1-factor respectively. By an m-cycle we mean a cycle of length m. All graphs considered in this paper are simple and finite. A graph is said to be decomposed into subgraphs H_{1} and H_{2} which is denoted by $G=H_{1} \oplus H_{2}$, if G is the edge disjoint union of H_{1} and H_{2}. If $G=H_{1} \oplus H_{2} \oplus \cdots \oplus H_{k}$, where H_{1}, H_{2}, \ldots, H_{k} are all isomorphic to H, then G is said to be H-decomposable. Furthermore, if H is a cycle of length m then we say that G is C_{m}-decomposable and this can be written as $C_{m} \mid G$. A k-factor of G is a k-regular spanning subgraph. A k-factorization of a graph G is a partition of the edge set of G into k-factors. A C_{k}-factor of a graph is a 2 -factor in which each component is a cycle of length k. A resolvable k-cycle decomposition (for short k-RCD) of G denoted by $C_{k} \| G$, is a 2 -factorization of G in which each 2 -factor is a C_{k}-factor.

For two graphs G and H their tensor product $G \times H$ has vertex set $V(G) \times V(H)$ in which two vertices $\left(g_{1}, h_{1}\right)$ and $\left(g_{2}, h_{2}\right)$ are adjacent whenever $g_{1} g_{2} \in E(G)$ and $h_{1} h_{2} \in E(H)$. From this, note that the tensor product of graphs is distributive over edge disjoint union of graphs, that is if $G=H_{1} \oplus H_{2} \oplus \cdots \oplus H_{k}$, then $G \times H=\left(H_{1} \times H\right) \oplus\left(H_{2} \times H\right) \oplus \cdots \oplus\left(H_{k} \times H\right)$. Now, for $h \in V(H), V(G) \times h=\{(v, h) \mid v \in V(G)\}$ is called a column of vertices of $G \times H$ corresponding to h. Further, for $y \in V(G), y \times V(H)=\{(y, v) \mid v \in V(H)\}$ is called a layer of vertices of $G \times H$ corresponding to y.

In [1], Oyewumi et al., obtained an interesting result on the decompositions of certain graphs. The problem of finding C_{k}-decomposition of $K_{2 n+1}$ or $K_{2 n}-I$ where I is a 1-factor of $K_{2 n}$, is completely settled by Alspach, Gavlas and Sajna in two different papers (see [2,3]). A generalization to the above complete graph decomposition problem is to find a C_{k}-decomposition of $K_{m} * \bar{K}_{n}$, which is the complete m-partite graph in which each partite set has n vertices. The study of cycle decompositions of $K_{m} * \bar{K}_{n}$ was initiated by Hoffman et al., [4]. In the case when p is a prime, the necessary and sufficient conditions for the existence of C_{p}-decomposition of $K_{m} * \bar{K}_{n}, p \geq 5$ is obtained by Manikandan and Paulraja in [5-7]. Billington [8] studied the decomposition of complete tripartite graphs into cycles of length 3 and 4 . Furthermore, Cavenagh and Billington [9] studied 4-cycle, 6-cycle and 8-cycle decomposition of complete multipartite graphs.

Billington et al., [10] solved the problem of decomposing $\left(K_{m} * \bar{K}_{n}\right)$ into 5-cycles. Similarly, when $p \geq 3$ is a prime, the necessary and sufficient conditions for the existence of $C_{2 p}$-decomposition of $K_{m} * \bar{K}_{n}$ was obtained

Figure 1. The tensor product $C_{3} \times K_{6} . C_{3}$ and K_{6} are shown at the top of the product respectively.
by Smith (see [11]). For a prime $p \geq 3$, it was proved in [12] that $C_{3 p}$-decomposition of $K_{m} * \bar{K}_{n}$ exists if the obvious necessary conditions are satisfied. As the graph $K_{m} \times K_{n} \cong K_{m} * \bar{K}_{n}-E\left(n K_{m}\right)$ is a proper regular spanning subgraph of $K_{m} * \bar{K}_{n}$. It is natural to think about the cycle decomposition of $K_{m} \times K_{n}$.

The results in [5-7] also give necessary and sufficient conditions for the existence of a p-cycle decomposition, (where $p \geq 5$ is a prime number) of the graph $K_{m} \times K_{n}$. In [13] it was shown that the tensor product of two regular complete multipartite graph is Hamilton cycle decomposable. Muthusamy and Paulraja in [14] proved the existence of $C_{k n}$-factorization of the graph $C_{k} \times K_{m n}$, where $m n \neq 2(\bmod 4)$ and k is odd. While Paulraja and Kumar [15] showed that the necessary conditions for the existence of a resolvable k-cycle decomposition of tensor product of complete graphs are sufficient when k is even. Oyewumi and Akwu [16] proved that C_{4} decomposes the product $K_{m} \times K_{n}$, if and only if either $(1) n \equiv 0(\bmod 4)$ and m is odd, (2) $m \equiv 0(\bmod 4)$ and n is odd or $(3) m$ or $n \equiv 1(\bmod 4)$.

As a companion to the work in [16], i.e., to consider the decomposition of the tensor product of complete graphs into cycles of even length. This paper proves that the obvious necessary conditions for $K_{m} \times K_{n}, 2 \leq$ m, n, to have a C_{6}-decomposition are also sufficient. Among other results, here we prove the following main results.
It is not surprising that the conditions in Theorem 1 are "symmetric" with respect to m and n since $K_{m} \times K_{n} \cong$ $K_{n} \times K_{m}$.

Theorem 1. Let $2 \leq m, n$, then $C_{6} \mid K_{m} \times K_{n}$ if and only if $m \equiv 1$ or $3(\bmod 6)$ or $n \equiv 1$ or $3(\bmod 6)$.
Theorem 2. Let m be an even integer and $m \geq 6$, then $C_{6} \mid K_{m}-I \times K_{n}$ if and only if $m \equiv 0$ or $2(\bmod 6)$.
2. C_{6} decomposition of $C_{3} \times K_{n}$

Theorem 3. Let $n \in N$, then $C_{6} \mid C_{3} \times K_{n}$.
Proof. Following from the definition of tensor product of graphs, let $U^{1}=\left\{u_{1}, v_{1}, w_{1}\right\}, U^{2}=\left\{u_{2}, v_{2}, w_{2}\right\}, \ldots$, $U^{n}=\left\{u_{n}, v_{n}, w_{n}\right\}$ form the partite set of vertices in $C_{3} \times K_{n}$. Also, U^{i} and U^{j} has an edge in $C_{3} \times K_{n}$ for $1 \leq i, j \leq n$ and $i \neq j$ if the subgraph induce $K_{3,3}-I$, where I is a 1-factor of $K_{3,3}$. Now, each subgraph $U^{i} \cup U^{j}$ is isomorphic to $K_{3,3}-I$. But $K_{3,3}-I$ is a cycle of length six. Hence the proof.

Example 1. The graph $C_{3} \times K_{7}$ can be decomposed into cycles of length 6 .
Proof. Let the partite sets (layers) of the tripartite graph $C_{3} \times K_{7}$ be $U=\left\{u_{1}, u_{2}, \ldots, u_{7}\right\}, V=\left\{v_{1}, v_{2}, \ldots, v_{7}\right\}$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{7}\right\}$. We assume that the vertices of U, V and W having same subscripts are the corresponding
vertices of the partite sets. A 6-cycle decomposition of $C_{3} \times K_{7}$ is given below:

$$
\begin{aligned}
& \left\{u_{1}, v_{2}, w_{1}, u_{2}, v_{1}, w_{2}\right\},\left\{u_{1}, v_{3}, w_{1}, u_{3}, v_{1}, w_{3}\right\},\left\{u_{2}, v_{3}, w_{2}, u_{3}, v_{2}, w_{3}\right\}, \\
& \left\{u_{1}, v_{4}, w_{1}, u_{4}, v_{1}, w_{4}\right\},\left\{u_{2}, v_{4}, w_{2}, u_{4}, v_{2}, w_{4}\right\},\left\{u_{3}, v_{4}, w_{3}, u_{4}, v_{3}, w_{4}\right\}, \\
& \left\{u_{1}, v_{5}, w_{1}, u_{5}, v_{1}, w_{5}\right\},\left\{u_{2}, v_{5}, w_{2}, u_{5}, v_{2}, w_{5}\right\},\left\{u_{3}, v_{5}, w_{3}, u_{5}, v_{3}, w_{5}\right\}, \\
& \left\{u_{4}, v_{5}, w_{4}, u_{5}, v_{4}, w_{5}\right\},\left\{u_{1}, v_{6}, w_{1}, u_{6}, v_{1}, w_{6}\right\},\left\{u_{2}, v_{6}, w_{2}, u_{6}, v_{2}, w_{6}\right\}, \\
& \left\{u_{3}, v_{6}, w_{3}, u_{6}, v_{3}, w_{6}\right\},\left\{u_{4}, v_{6}, w_{4}, u_{6}, v_{4}, w_{6}\right\},\left\{u_{5}, v_{6}, w_{5}, u_{6}, v_{5}, w_{6}\right\}, \\
& \left\{u_{1}, v_{7}, w_{1}, u_{7}, v_{1}, w_{7}\right\},\left\{u_{2}, v_{7}, w_{2}, u_{7}, v_{2}, w_{7}\right\},\left\{u_{3}, v_{7}, w_{3}, u_{7}, v_{3}, w_{7}\right\}, \\
& \left\{u_{4}, v_{7}, w_{4}, u_{7}, v_{4}, w_{7}\right\},\left\{u_{5}, v_{7}, w_{5}, u_{7}, v_{5}, w_{7}\right\},\left\{u_{6}, v_{7}, w_{6}, u_{7}, v_{6}, w_{7}\right\} .
\end{aligned}
$$

Theorem 4. [17] Let m be an odd integer and $m \geq 3$. If $m \equiv 1$ or $3(\bmod 6)$ then $C_{3} \mid K_{m}$.
Theorem 5. [3] Let n be an even integer and m be an odd integer with $3 \leq m \leq n$. The graph $K_{n}-I$ can be decomposed into cycles of length m whenever m divides the number of edges in $K_{n}-I$.

3. C_{6} decomposition of $C_{6} \times K_{n}$

Theorem 6. [3] Let n be an odd integer and m be an even integer with $3 \leq m \leq n$. The graph K_{n} can be decomposed into cycles of length m whenever m divides the number of edges in K_{n}.

Lemma 1. $C_{6} \mid C_{6} \times K_{2}$.
Proof. Let the partite set of the bipartite graph $C_{6} \times K_{2}$ be $\left\{u_{1}, u_{2}, \ldots, u_{6}\right\},\left\{v_{1}, v_{2}, \ldots, v_{6}\right\}$. We assume that the vertices having the same subscripts are the corresponding vertices of the partite sets. Now $C_{6} \times K_{2}$ can be decomposed into 6-cycles which are $\left\{u_{1}, v_{2}, u_{3}, v_{4}, u_{5}, v_{6}\right\}$ and $\left\{v_{1}, u_{2}, v_{3}, u_{4}, v_{5}, u_{6}\right\}$.

Theorem 7. For all $n, C_{6} \mid C_{6} \times K_{n}$.
Proof. Let the partite set of the 6-partite graph $C_{6} \times K_{n}$ be $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}, V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, W=$ $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}, X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ and $Z=\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$, we assume that the vertices of U, V, W, X, Y and Z having the same subscripts are the corresponding vertices of the partite sets. Let $U^{1}=$ $\left\{u_{1}, v_{1}, w_{1}, x_{1}, y_{1}, z_{1}\right\}, U^{2}=\left\{u_{2}, v_{2}, w_{2}, x_{2}, y_{2}, z_{2}\right\}, \ldots, U^{n}=\left\{u_{n}, v_{n}, w_{n}, x_{n}, y_{n}, z_{n}\right\}$ be the sets of these vertices having the same subscripts. By the definition of the tensor product, each $U^{i}, 1 \leq i \leq n$ is an independent set and the subgraph induced by each $U^{i} \cup U^{j}, 1 \leq i, j \leq n$ and $i \neq j$ is isomorphic to $C_{6} \times K_{2}$. Now by Lemma 1 the graph $C_{6} \times K_{2}$ admits a 6-cycle decomposition. This completes the proof.

4. C_{6} decomposition of $K_{m} \times K_{n}$ [Proofs of main Theorems]

Proof of Theorem 1. Assume that $C_{6} \mid K_{m} \times K_{n}$ for some m and n with $2 \leq m, n$. Then every vertex of $K_{m} \times K_{n}$ has even degree and 6 divides in the number of edges of $K_{m} \times K_{n}$. These two conditions translate to ($m-$ 1) $(n-1)$ being even and $6 \mid m(m-1) n(n-1)$ respectively. Hence, by the first fact m or n has to be odd, i.e., has to be congruent to 1 or 3 or $5(\bmod 6)$. The second fact can now be used to show that they cannot both be congruent to $5(\bmod 6)$. It now follows that $m \equiv 1$ or $3(\bmod 6)$ or $n \equiv 1$ or $3(\bmod 6)$.

Conversely, let $m \equiv 1$ or $3(\bmod 6)$. By Theorem $4, C_{3} \mid K_{m}$ and hence $K_{m} \times K_{n}=\left(\left(C_{3} \times K_{n}\right) \oplus \cdots \oplus\left(C_{3} \times\right.\right.$ $\left.K_{n}\right)$). Since $C_{6} \mid C_{3} \times K_{n}$ by Theorem 3 .
Finally, if $n \equiv 1$ or $3(\bmod 6)$, the above argument can be repeated with the roles of m and n interchanged to show again that $C_{6} \mid K_{m} \times K_{n}$. This completes the proof.

Proof of Theorem 2. Assume that $C_{6} \mid K_{m}-I \times K_{n}, m \geq 6$. Certainly, $6 \mid m n(m-2)(n-1)$. But we know that if $6 \mid m(m-2)$ then $6 \mid m n(m-2)(n-1)$. But m is even therefore $m \equiv 0$ or $2(\bmod 6)$.

Conversely, let $m \equiv 0$ or $2(\bmod 6)$. Notice that for each $m, \frac{m(m-2)}{2}$ is a multiple of 3 . Thus by Theorem 5 $C_{3} \mid K_{m}-I$ and hence $K_{m}-I \times K_{n}=\left(\left(C_{3} \times K_{n}\right) \oplus \cdots \oplus\left(C_{3} \times K_{n}\right)\right)$. From Theorem 3, $C_{6} \mid C_{3} \times K_{n}$. The proof is complete.

5. Conclusion

In view of the results obtained in this paper we draw our conclusion by the following corollary.
Corollary 1. For any simple graph G. If

1. $C_{3} \mid G$ then $C_{6} \mid G \times K_{n}$, whenever $n \geq 2$.
2. $C_{6} \mid G$ then $C_{6} \mid G \times K_{n}$, whenever $n \geq 2$.

Proof. We only need to show that $C_{3} \mid G$. Applying Theorem 3 gives the result.

Acknowledgments: The authors would like to thank the referees for helpful suggestions which has improved the present form of this work.

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflicts of Interest: "The authors declare no conflict of interest."

References

[1] Oyewumi, O., Akwu, A. D. \& Azer, T. I. (2018). Path decomposition number of certain graphs. Open Journal of Discrete Applied Mathematics, 1(1), 26-32.
[2] Alspach, B. \& Gavlas, H. (2001). Cycle decompositions of K_{n} and $K_{n}-I$. Journal of Combinatorial Theory, Series B, 81, 77-99.
[3] Sajna, M. (2002). Cycle decompositions III: complete graphs and fixed length cycles. Journal of Combinatorial Designs, 10, 27-78.
[4] Hoffman, D. G., Linder, C. C. \& Rodger, C. A. (1989). On the construction of odd cycle systems. Journal of Graph Theory, 13, 417-426.
[5] Manikandan, R. S., \& Paulraja, P. (2006). (2006). C_{p}-decompositions of some regular graphs. Discrete Mathematics, 306(4), 429-451.
[6] Manikandan, R.S. \& Paulraja, P. (2007). C_{5}-decompositions of the tensor product of complete graphs. Australasian Journal of Combinatorics, 37, 285-293.
[7] Manikandan, R.S. \& Paulraja, P. (2017). C7-decompositions of the tensor product of complete graphs. Discussiones Mathematicae Graph Theory, 37(3), 523-535.
[8] Billington, E. J. (1999). Decomposing complete tripartite graphs into cycles of lengths 3 and 4. Discrete Mathematics, 197, 123-135.
[9] Cavenagh, N. J., \& Billington, E. J. (2000). Decompositions of complete multipartite graphs into cycles of even length. Graphs and Combinatorics, 16(1), 49-65.
[10] Billington, E. J., Hoffman, D. G., \& Maenhaut, B. H. (1999). Group divisible pentagon systems. Utilitas Mathematica, 55, 211-219.
[11] Smith, B. R. (2006). Decomposing complete equipartite graphs into cycles of lenght $2 p$. Journal of Combinatorial Designs, 16(3), 244-252.
[12] Smith, B. R. (2009). Complete equipartite 3p-cycle systems. Australasian Journal of Combinatorics, 45, 125-138.
[13] Manikandan, R. S., \& Paulraja, P. (2008). Hamilton cycle decompositions of the tensor product of complete multipartite graphs. Discrete mathematics, 308(16), 3586-3606.
[14] Muthusamy, A., \& Paulraja, P. (1995). Factorizations of product graphs into cycles of uniform length. Graphs and Combinatorics, 11(1), 69-90.
[15] Paulraja, P., \& Kumar, S. S. (2011). Resolvable even cycle decompositions of the tensor product of complete graphs. Discrete Mathematics, 311(16), 1841-1850.
[16] Oyewumi, O. \& Akwu, A. D. (2020). C 4_{4} decomposition of the tensor product of complete graphs. Electronic Journal of Graph Theory and Applications, 8(1), 9-15.
[17] Lindner, C.C. \& Rodger, C.A. (1997). Design Theory. CRC Press New York.
(c) 2020 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

