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Abstract: Let G be a simple and finite graph. A graph is said to be decomposed into subgraphs H1 and H2

which is denoted by G = H1 ⊕ H2, if G is the edge disjoint union of H1 and H2. If G = H1 ⊕ H2 ⊕ · · · ⊕ Hk,
where H1, H2, ..., Hk are all isomorphic to H, then G is said to be H-decomposable. Furthermore, if H is a
cycle of length m then we say that G is Cm-decomposable and this can be written as Cm|G. Where G × H
denotes the tensor product of graphs G and H, in this paper, we prove that the necessary conditions for the
existence of C6-decomposition of Km × Kn are sufficient. Using these conditions it can be shown that every
even regular complete multipartite graph G is C6-decomposable if the number of edges of G is divisible by 6.
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1. Introduction

L et Cm, Km and Km − I denote cycle of length m, complete graph on m vertices and complete graph on m
vertices minus a 1-factor respectively. By an m-cycle we mean a cycle of length m. All graphs considered

in this paper are simple and finite. A graph is said to be decomposed into subgraphs H1 and H2 which is denoted
by G = H1 ⊕ H2, if G is the edge disjoint union of H1 and H2. If G = H1 ⊕ H2 ⊕ · · · ⊕ Hk, where H1, H2, ...,
Hk are all isomorphic to H, then G is said to be H-decomposable. Furthermore, if H is a cycle of length m then
we say that G is Cm-decomposable and this can be written as Cm|G. A k-factor of G is a k-regular spanning
subgraph. A k-factorization of a graph G is a partition of the edge set of G into k-factors. A Ck-factor of a
graph is a 2-factor in which each component is a cycle of length k. A resolvable k-cycle decomposition (for short
k-RCD) of G denoted by Ck||G, is a 2-factorization of G in which each 2-factor is a Ck-factor.

For two graphs G and H their tensor product G × H has vertex set V(G)× V(H) in which two vertices
(g1, h1) and (g2, h2) are adjacent whenever g1g2 ∈ E(G) and h1h2 ∈ E(H). From this, note that the tensor
product of graphs is distributive over edge disjoint union of graphs, that is if G = H1 ⊕ H2 ⊕ · · · ⊕ Hk, then
G× H = (H1 × H)⊕ (H2 × H)⊕ · · · ⊕ (Hk × H). Now, for h ∈ V(H), V(G)× h = {(v, h)|v ∈ V(G)} is called
a column of vertices of G × H corresponding to h. Further, for y ∈ V(G), y× V(H) = {(y, v)|v ∈ V(H)} is
called a layer of vertices of G× H corresponding to y.

In [1], Oyewumi et al., obtained an interesting result on the decompositions of certain graphs. The
problem of finding Ck-decomposition of K2n+1 or K2n − I where I is a 1-factor of K2n, is completely settled
by Alspach, Gavlas and Sajna in two different papers (see [2,3]). A generalization to the above complete
graph decomposition problem is to find a Ck-decomposition of Km ∗ Kn, which is the complete m-partite
graph in which each partite set has n vertices. The study of cycle decompositions of Km ∗ Kn was initiated
by Hoffman et al., [4]. In the case when p is a prime, the necessary and sufficient conditions for the existence
of Cp-decomposition of Km ∗ Kn, p ≥ 5 is obtained by Manikandan and Paulraja in [5–7]. Billington [8] studied
the decomposition of complete tripartite graphs into cycles of length 3 and 4. Furthermore, Cavenagh and
Billington [9] studied 4-cycle, 6-cycle and 8-cycle decomposition of complete multipartite graphs.

Billington et al., [10] solved the problem of decomposing (Km ∗Kn) into 5-cycles. Similarly, when p ≥ 3 is a
prime, the necessary and sufficient conditions for the existence of C2p-decomposition of Km ∗ Kn was obtained
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Figure 1. The tensor product C3 × K6. C3 and K6 are shown at the top of the product respectively.

by Smith (see [11]). For a prime p ≥ 3, it was proved in [12] that C3p-decomposition of Km ∗ Kn exists if the
obvious necessary conditions are satisfied. As the graph Km × Kn ∼= Km ∗ Kn − E(nKm) is a proper regular
spanning subgraph of Km ∗ Kn. It is natural to think about the cycle decomposition of Km × Kn.

The results in [5–7] also give necessary and sufficient conditions for the existence of a p-cycle
decomposition, (where p ≥ 5 is a prime number) of the graph Km × Kn. In [13] it was shown that the
tensor product of two regular complete multipartite graph is Hamilton cycle decomposable. Muthusamy and
Paulraja in [14] proved the existence of Ckn-factorization of the graph Ck × Kmn, where mn 6= 2(mod 4) and k
is odd. While Paulraja and Kumar [15] showed that the necessary conditions for the existence of a resolvable
k-cycle decomposition of tensor product of complete graphs are sufficient when k is even. Oyewumi and Akwu
[16] proved that C4 decomposes the product Km × Kn, if and only if either (1) n ≡ 0 (mod 4) and m is odd, (2)
m ≡ 0 (mod 4) and n is odd or (3) m or n ≡ 1 (mod 4).

As a companion to the work in [16], i.e., to consider the decomposition of the tensor product of complete
graphs into cycles of even length. This paper proves that the obvious necessary conditions for Km × Kn, 2 ≤
m, n, to have a C6-decomposition are also sufficient. Among other results, here we prove the following main
results.
It is not surprising that the conditions in Theorem 1 are "symmetric" with respect to m and n since Km × Kn ∼=
Kn × Km.

Theorem 1. Let 2 ≤ m, n, then C6|Km × Kn if and only if m ≡ 1 or 3 (mod 6) or n ≡ 1 or 3 (mod 6).

Theorem 2. Let m be an even integer and m ≥ 6, then C6|Km − I × Kn if and only if m ≡ 0 or 2 (mod 6).

2. C6 decomposition of C3 × Kn

Theorem 3. Let n ∈ N, then C6|C3 × Kn.

Proof. Following from the definition of tensor product of graphs, let U1 = {u1, v1, w1}, U2 = {u2, v2, w2},...,
Un = {un, vn, wn} form the partite set of vertices in C3 × Kn. Also, Ui and U j has an edge in C3 × Kn for
1 ≤ i, j ≤ n and i 6= j if the subgraph induce K3,3 − I, where I is a 1-factor of K3,3. Now, each subgraph Ui ∪U j

is isomorphic to K3,3 − I. But K3,3 − I is a cycle of length six. Hence the proof.

Example 1. The graph C3 × K7 can be decomposed into cycles of length 6.

Proof. Let the partite sets (layers) of the tripartite graph C3×K7 be U = {u1, u2, ..., u7}, V = {v1, v2, ..., v7} and
W = {w1, w2, ..., w7}. We assume that the vertices of U, V and W having same subscripts are the corresponding
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vertices of the partite sets. A 6-cycle decomposition of C3 × K7 is given below:
{u1, v2, w1, u2, v1, w2},{u1, v3, w1, u3, v1, w3},{u2, v3, w2, u3, v2, w3},
{u1, v4, w1, u4, v1, w4},{u2, v4, w2, u4, v2, w4},{u3, v4, w3, u4, v3, w4},
{u1, v5, w1, u5, v1, w5},{u2, v5, w2, u5, v2, w5},{u3, v5, w3, u5, v3, w5},
{u4, v5, w4, u5, v4, w5},{u1, v6, w1, u6, v1, w6},{u2, v6, w2, u6, v2, w6},
{u3, v6, w3, u6, v3, w6},{u4, v6, w4, u6, v4, w6},{u5, v6, w5, u6, v5, w6},
{u1, v7, w1, u7, v1, w7},{u2, v7, w2, u7, v2, w7},{u3, v7, w3, u7, v3, w7},
{u4, v7, w4, u7, v4, w7},{u5, v7, w5, u7, v5, w7},{u6, v7, w6, u7, v6, w7}.

Theorem 4. [17] Let m be an odd integer and m ≥ 3. If m ≡ 1 or 3 (mod 6) then C3|Km.

Theorem 5. [3] Let n be an even integer and m be an odd integer with 3 ≤ m ≤ n. The graph Kn− I can be decomposed
into cycles of length m whenever m divides the number of edges in Kn − I.

3. C6 decomposition of C6 × Kn

Theorem 6. [3] Let n be an odd integer and m be an even integer with 3 ≤ m ≤ n. The graph Kn can be decomposed
into cycles of length m whenever m divides the number of edges in Kn.

Lemma 1. C6|C6 × K2.

Proof. Let the partite set of the bipartite graph C6 × K2 be {u1, u2, ..., u6}, {v1, v2, ..., v6}. We assume that the
vertices having the same subscripts are the corresponding vertices of the partite sets. Now C6 × K2 can be
decomposed into 6-cycles which are {u1, v2, u3, v4, u5, v6} and {v1, u2, v3, u4, v5, u6}.

Theorem 7. For all n, C6|C6 × Kn.

Proof. Let the partite set of the 6-partite graph C6 × Kn be U = {u1, u2, ..., un}, V = {v1, v2, ..., vn}, W =

{w1, w2, ..., wn}, X = {x1, x2, ..., xn}, Y = {y1, y2, ..., yn} and Z = {z1, z2, ..., zn}, we assume that the vertices of
U, V, W, X, Y and Z having the same subscripts are the corresponding vertices of the partite sets. Let U1 =

{u1, v1, w1, x1, y1, z1}, U2 = {u2, v2, w2, x2, y2, z2}, ..., Un = {un, vn, wn, xn, yn, zn} be the sets of these vertices
having the same subscripts. By the definition of the tensor product, each Ui, 1 ≤ i ≤ n is an independent set
and the subgraph induced by each Ui ∪U j, 1 ≤ i, j ≤ n and i 6= j is isomorphic to C6 × K2. Now by Lemma 1
the graph C6 × K2 admits a 6-cycle decomposition. This completes the proof.

4. C6 decomposition of Km × Kn[Proofs of main Theorems]

Proof of Theorem 1. Assume that C6|Km × Kn for some m and n with 2 ≤ m, n. Then every vertex of Km × Kn

has even degree and 6 divides in the number of edges of Km × Kn. These two conditions translate to (m −
1)(n− 1) being even and 6|m(m− 1)n(n− 1) respectively. Hence, by the first fact m or n has to be odd, i.e.,
has to be congruent to 1 or 3 or 5 (mod 6). The second fact can now be used to show that they cannot both be
congruent to 5 (mod 6). It now follows that m ≡ 1 or 3 (mod 6) or n ≡ 1 or 3 (mod 6).

Conversely, let m ≡ 1 or 3 (mod 6). By Theorem 4, C3|Km and hence Km × Kn = ((C3 × Kn)⊕ · · · ⊕ (C3 ×
Kn)). Since C6|C3 × Kn by Theorem 3.
Finally, if n ≡ 1 or 3 (mod 6), the above argument can be repeated with the roles of m and n interchanged to
show again that C6|Km × Kn. This completes the proof.

Proof of Theorem 2. Assume that C6|Km − I × Kn, m ≥ 6. Certainly, 6|mn(m− 2)(n− 1). But we know that if
6|m(m− 2) then 6|mn(m− 2)(n− 1). But m is even therefore m ≡ 0 or 2 (mod 6).

Conversely, let m ≡ 0 or 2 (mod 6). Notice that for each m, m(m−2)
2 is a multiple of 3. Thus by Theorem 5

C3|Km − I and hence Km − I × Kn = ((C3 × Kn)⊕ · · · ⊕ (C3 × Kn)). From Theorem 3, C6|C3 × Kn. The proof is
complete.
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5. Conclusion

In view of the results obtained in this paper we draw our conclusion by the following corollary.

Corollary 1. For any simple graph G. If

1. C3|G then C6|G× Kn, whenever n ≥ 2.
2. C6|G then C6|G× Kn, whenever n ≥ 2.

Proof. We only need to show that C3|G. Applying Theorem 3 gives the result.
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