Article

On parametric equivalence, isomorphism and uniqueness: Cycle related graphs

J. Kok ${ }^{1,2, *}$ and J. Shiny ${ }^{3}$
1 Independent Mathematics Researcher, City of Tshwane, South Africa.
2 Visiting Faculty at CHRIST (Deemed to be a University), Bangalore, India.
3 Mathematics Research Center, Mary Matha Arts and Science College, Kerala, India.
* Correspondence: jacotype@gmail.com; johan.kok@christuniversity.in; Tel.: +27646547285

Academic Editor: Aisha Javed
Received: 28 January 2021; Accepted: 15 April 2021; Published: 30 April 2021.

Abstract

This furthers the notions of parametric equivalence, isomorphism and uniqueness in graphs. Results for certain cycle related graphs are presented. Avenues for further research are also suggested.

Keywords: Parametric equivalence; Parametric isomorphism; Parametric uniqueness.
MSC: 05C12; 05C38; 05C69.

1. Introduction

Unless stated otherwise, graphs will be finite, undirected and connected simple graphs. A shortest path having end vertices u and v is denoted by, $u-v_{(i n G)}$. If $d_{G}(u, v) \geq 2$ then a vertex w on $u-v_{(i n G)}$, $w \neq u, w \neq v$ is called an internal vertex on $\left.u-v_{(i n} G\right)$. When the context is clear the notation such as $d_{G}(u, v)$, $\operatorname{deg}_{G}(v)$ can be abbreviated to $d(u, v), \operatorname{deg}(v)$ and so on. Good references to important concepts, notation and graph parameters can be found in [1-3].

The notions of parametric equivalence, isomorphism and uniqueness had been introduced in [4]. For ease of reference we recall from [4] as follows: Let ρ denote some minimum or maximum graph parameter related to subsets $V(G)$ of graph G. Vertex subsets X and Y is said to be parametric equivalent or ρ-equivalent if and only if both X, Y satisfy the parametric conditions of ρ. This relation is denoted by $X \equiv_{\rho} Y$. Furthermore, if $X \equiv \rho$ 和, the induced graphs $\langle V(G) \backslash X\rangle \cong\langle V(G) \backslash Y\rangle$ then X and Y are said to be parametric isomorphic. This isomorphic relation is denoted by $X \cong \rho$. Let all possible vertex subsets of graph G which satisfy ρ be $X_{1}, X_{2}, X_{3}, \ldots, X_{k}$. If $X_{1} \cong_{\rho} X_{2} \cong_{\rho} X_{3} \cong_{\rho} \cdots \cong_{\rho} X_{k}$ then $X_{i}, 1 \leq i \leq k$ are said to be parametric unique or ρ-unique. The graph G is said to have a parametric unique or ρ-unique solution (or parametric unique ρ-set). If G has a unique (exactly one) ρ-set X, then X is a parametric unique ρ-set.

This paper furthers the introductory research presented in [4].

2. Confluence in graphs

Shiny et al., [5] introduced the concept of a confluence set (a subset of vertices) of a graph G, also see [6] for results on certain derivative graphs. Recall that for a non-complete graph G, a non-empty subset $\mathcal{X} \subseteq V(G)$ is said to be a confluence set if for every unordered pair $\{u, v\}$ of distinct vertices (if such exist) in $V(G) \backslash \mathcal{X}$ for which $d_{G}(u, v) \geq 2$ there exists at least one $u-v_{(i n ~}()$ with at least one internal vertex, $w \in \mathcal{X}$. Also a vertex $u \in \mathcal{X}$ is called a confluence vertex of G. A minimal confluence set \mathcal{X} (also called a ζ-set) has no proper subset which is a confluence set of G. The cardinality of a minimum confluence set is called the confluence number of G and is denoted by $\zeta(G)$. A minimal confluence set is denoted by \mathcal{C}. To distinguish between different graphs the notation \mathcal{C}_{G} may be used for a minimum confluence set of G. We recall two important results from [4]. We remind that for a complete graph the confluence number is 0 hence, $\mathcal{C}_{K_{n}}=\varnothing, n \geq 1$.

Proposition 1. [4] A path P_{n} has a parametric unique ζ-set if and only if $n=1,2$ or $n=4+3 i$ or $n=5+3 i, i=0,1,2, \ldots$.

Proposition 2. [4] A cycle C_{n} has a parametric unique ζ-set if and only if $n=3,4$ or $n=5+3 i$ or $n=6+3 i$, $i=0,1,2, \ldots$.

2.1. Cycle related graphs

Henceforth, a cycle $C_{n}, n \geq 3$ of order n has the vertex set $V\left(C_{n}\right)=\left\{v_{i}: i=1,2,3, \ldots, n\right\}$.
(a) A wheel graph (simply, a wheel) W_{n} is obtained from a cycle $C_{n}, n \geq 3$ with an additional central vertex v_{0} and the additional edges $v_{0} v_{1}, 1 \leq i \leq n$. The cycle is called the rim and the edges $v_{0} v_{i}, 1 \leq i \leq n$ are called spokes. Alternatively, $W_{n}=C_{n}+K_{1}$ and $V\left(K_{1}\right)=\left\{v_{0}\right\}$.

Proposition 3. A wheel graph W_{n} has a parametric unique ζ-set.

Proof. Since W_{3} is complete the result is trivial. For $n \geq 4$ the distance $d\left(v_{i}, v_{j}\right) \leq 2$ for all distinct pairs. For $i, j \neq 0$ and v_{i} not adjacent to v_{j} there exists a 3-path (or 2-distance path) with v_{0} the internal vertex. Hence, the unique ζ-set is $\left\{v_{0}\right\}$, therefore parametric unique.
(b) A helm graph H_{n} is obtained from a wheel graph W_{n} by adding a pendent vertex (or leaf) u_{i} to each rim vertex v_{i}.

Proposition 4. (a) The helm graph H_{3} does not have a parametric unique ζ-set.
(b) A helm graph $H_{n}, n \geq 4$ has a parametric unique ζ-set.

Proof. (a) Consider H_{3}. Clearly and without loss of generality the sets $X_{1}=\left\{v_{0}, v_{1}, v_{2}\right\}, X_{2}=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $X_{3}=\left\{v_{1}, v_{2}, u_{3}\right\}$ are all minimal confluence sets. Hence $\zeta\left(H_{3}\right) \leq 3$. It is easy to verify that no 2-vertex subset is a confluence set. Thus, $\zeta\left(H_{3}\right)>2$. Also, $\left\langle V\left(H_{3}\right) \backslash X_{1}\right\rangle \not \approx\left\langle V\left(H_{3}\right) \backslash X_{2}\right\rangle$. Therefore H_{3} does not have a parametric unique ζ-set. The aforesaid follows in essence from the fact that H_{3} is complete. Therefore, it is not necessary for v_{0} to be in all ζ-sets.
(b) For $H_{n}, n \geq 4$ the distance $d\left(u_{i}, u_{i+1}\right)=3$ hence a rim vertex is required. The distance $d\left(u_{i}, u_{i+2}\right)=5$ hence the vertex v_{0} will suffice along the 5 -path $u_{i} v_{i} v_{0} v_{i+2} u_{i+2}$. By symmetry considerations and therefore up to isomorphism and without loss of generality we have two subcases.
Subcase 1. If n is even the set $X_{1}=\left\{v_{0}, v_{1}, v_{3}, v_{5}, \ldots, v_{n-1}\right\}$ is a ζ-set and clearly H_{n} has a parametric unique ζ-set.
Subcase 2. If n is odd the sets $X_{1}=\left\{v_{0}, v_{1}, v_{3}, v_{5}, \ldots, v_{n-1}\right\}$ and $X_{2}=\left\{v_{0}, v_{1}, v_{3}, v_{5}, \ldots, v_{n-2}, v_{n}\right\}$ are a ζ-sets. Clearly $\left\langle V\left(H_{n}\right) \backslash X_{1}\right\rangle \cong\left\langle V\left(H_{n}\right) \backslash X_{1}\right\rangle$. Thus H_{n} has a parametric unique ζ-set.

As a direct consequence of the proof of Proposition 4, we get the next corollary.
Corollary 1. A helm graph has $\zeta\left(H_{n}\right)=\left\lceil\frac{n}{2}\right\rceil+1$.
(c) A flower graph $F l_{n}$ is obtained from a helm graph H_{n} by adding the edges $v_{0} u_{i}, 1 \leq i \leq n$.

Proposition 5. A flower graph $F l_{n}$ has a parametric unique ζ-set.
Proof. The result follows by similar reasoning as in the proof of Proposition 3.
As a direct consequence of Proposition 5, we get the next corollary.
Corollary 2. A flower graph has $\zeta\left(F l_{n}\right)=1$.
(d) A closed helm graph H_{n}^{c} is obtained from a helm graph H_{n} by completing a cycle, $C_{n}^{\prime}=u_{1} u_{2} u_{3} \cdots u_{n} u_{1}$ on the leafs of H_{n}.

Proposition 6. (a) A closed helm graph H_{n}^{c} for $n=4$ or n is odd does not have a parametric unique ζ-set.
(b) A closed helm graph $H_{n}^{c}, n \geq 6$ and even, has a parametric unique ζ-set.

Proof. It is easy to verify that all distance paths such that $d\left(u_{i}, u_{j}\right) \leq 3$ are paths on C_{n}^{\prime}. Also, for $u_{i}, u_{j} \in \mathcal{C}_{C_{n}^{\prime}}$ we have $d\left(u_{i}, u_{j}\right) \leq 3$. It follows that $\mathcal{C}_{C_{n}^{\prime}} \subseteq \mathcal{C}_{H_{n}^{c}}$.
(a) By similar reasoning to that in the proof of Proposition 4(a) it follows that H_{3}^{c} and H_{4}^{c} do not have a unique ζ-set.
From the set $X_{1}=\left\{v_{i}: u_{i} \notin \mathcal{C}_{C_{n}^{\prime}}\right\} \cup\left\{v_{0}\right\}$ it is possible to select a minimum confluence set in respect of the spanning subgraph H_{n} say set X_{2}. The set $\mathcal{C}_{H_{n}^{c}}=\mathcal{C}_{C_{n}^{\prime}} \cup X_{2}$ is a minimum confluence set.
Subcase (a)(1). Since by symmetry the choice of say, X_{2} can be fixed, For $n \geq 5$ and odd, the choice of $\mathcal{C}_{C_{n}^{\prime}}$ can rotate such that $\left\langle V\left(H_{n}^{c}\right) \backslash \mathcal{C}_{H_{n}^{c}}\right\rangle$ does not remain isomorphic.
(b) By similar reasoning X_{2} can be fixed. However, for $n \geq 6$ and even and by symmetry properties of C_{n}^{\prime} all choices of $\mathcal{C}_{C_{n}^{\prime}}$ yield isomorphic $\left\langle V\left(H_{n}^{c}\right) \backslash \mathcal{C}_{H_{n}^{c}}\right\rangle$.

As a direct consequence of the proof of Proposition 6, we get the next corollary.
Corollary 3. A closed helm graph has $\zeta\left(H_{n}^{c}\right)=\left\lceil\frac{n}{2}\right\rceil+1$.
(e) A gear graph G_{n} is obtain from a wheel graph W_{n} by inserting a vertex u_{i} on the edge $v_{i} v_{i+1}$ and $n+1 \equiv 1$. Note that G_{n} has $2 n+1$ vertices and $3 n$ edges. The rim is now called a boundary cycle denoted by $C^{b}\left(G_{n}\right)$.

Proposition 7. (a) G_{3} has a parametric unique ζ-set.
(b) A gear graph G_{n} and $n \geq 5$ is odd does not have a parametric unique ζ-set.
(c) A gear graph G_{n} and $n \geq 4$ is even has a parametric unique ζ-set.

Proof. (a) For G_{3} it follows easily that up to isomorphism the ζ-set $\left\{u_{1}, v_{3}\right\}$ is unique.
(b) The inner-area enclosed by the cycle $C_{2 n}^{\prime}=v_{1} u_{1} v_{2} u_{2} \cdots v_{n} u_{n} v_{1}$ can be partitioned into n planar areas, each enclosed by a C_{4}. For all pairs v_{i}, v_{j} it is necessary and sufficient that $v_{0} \in \zeta$-set. Let $n \geq 5$ be odd. Without loss of generality, an optimal minimal confluence set is given by $X_{1}=\left\{v_{0}, u_{1}, u_{3}, \ldots, u_{n-2}, u_{n-1}\right\}$ or $X_{2}=$ $\left\{v_{0}, u_{1}, u_{3}, \ldots, u_{n-2}, v_{n}\right\}$ or $X_{3}=\left\{v_{0}, u_{1}, u_{3}, \ldots, u_{n-2}, u_{n}\right\}$. Hence, $\zeta\left(G_{n}\right) \leq\left\lceil\frac{2 n}{4}\right\rceil+1=\left\lceil\frac{n}{2}\right\rceil+1$. Because the boundary cycle $C^{b}\left(G_{n}\right)$ has $\zeta\left(C^{b}\left(G_{n}\right)\right)=\left\lceil\frac{2 n}{3}\right\rceil$ it follows that $\zeta\left(G_{n}\right) \geq\left\lceil\frac{2 n}{3}\right\rceil$. However for n is odd, $\left\lceil\frac{2 n}{3}\right\rceil=\left\lceil\frac{n}{2}\right\rceil+1$. Since,

$$
\left\langle V\left(G_{n}\right) \backslash X_{1}\right\rangle \not \approx\left\langle V\left(G_{n}\right) \backslash X_{2}\right\rangle .
$$

It follows that a gear graph G_{n} does not have a parametric unique ζ-set for n is odd.
(c) For $n \geq 4$ and even, reasoning similar to that in (b) show that up to isomorphism the ζ-set $X_{1}=$ $\left\{v_{0}, u_{1}, u_{3}, \ldots, u_{n-2}, u_{n-1}\right\}$ is unique. Reasoning in respect of bounds on $\zeta\left(G_{n}\right)$ similar to that in (a) settles the result.

As a direct consequence of the proof of Proposition 7, we get the next corollary.
Corollary 4. The gear graph G_{3} has $\zeta\left(G_{3}\right)=2$. A gear graph of order $n \geq 4$ has $\zeta\left(G_{n}\right)=\left\lceil\frac{n}{2}\right\rceil+1$.
(f) A sun graph $S_{n}^{\boxtimes}, n \geq 3$ is obtained by taking the complete graph K_{n} on the vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ together the isolated vertices $u_{i}, 1 \leq i \leq n$ and adding the edges $v_{i} u_{i}, u_{i} v_{i+1}$ and $n+1 \equiv 1$. The boundary cycle of a sun graph is the cycle $C^{b}\left(S_{n}^{\boxtimes}\right)=v_{1} u_{1} v_{2} u_{2} v_{3} u_{3} \cdots u_{n} v_{1}$.

Proposition 8. A sun graph $S_{n}^{\boxtimes}, n \geq 3$ has a parametric unique ζ-set if and only if $C^{b}\left(S_{n}^{\boxtimes}\right)$ is of order $n=3 i, i=$ 1,2,3,...

Proof. Since all pairs v_{i}, v_{j} are adjacent it suffices to only consider a ζ-set of $C^{b}\left(S_{n}^{\boxtimes}\right)$. Since $\operatorname{deg}\left(u_{i}\right)=2$ and $\operatorname{deg}\left(v_{j}\right)=3$ any ζ-set must be graphically symmetrical for a sun graph to have a parametric unique ζ-set. A graphically symmetrical ζ-set means that, measured along the boundary cycle, $\min \left\{d\left(v_{j}, u_{k}\right): v_{j}, u_{k} \in \zeta\right.$-set $\}=$ 3. It implies that $n=3 i, i=1,2,3, \ldots$.

The converse follows from the fact that sun graphs with $C^{b}\left(S_{n}^{\boxtimes}\right)$ of order $n \neq 3 i, i=1,2,3, \ldots$ do not have graphically symmetrical ζ-sets of even order.

Note that if a sun graph has a parametric unique ζ-set then $\zeta\left(S_{n}^{\boxtimes}\right)$ is even. Furthermore, as a direct consequence of the proof of Proposition 8, we get the next corollary.

Corollary 5. A sun graph has $\zeta\left(S_{n}^{\boxtimes}\right)=\left\lceil\frac{2 n}{3}\right\rceil$.
(g) A sunflower graph $S_{n}^{\otimes}, n \geq 3$ is obtained by taking the wheel graph W_{n} together the isolated vertices u_{i}, $1 \leq i \leq n$ and adding the edges $v_{i} u_{i}, u_{i} v_{i+1}$ and $n+1 \equiv 1$. The boundary cycle of a sun graph is the cycle $C^{b}\left(S_{n}^{\otimes}\right)=v_{1} u_{1} v_{2} u_{2} v_{3} u_{3} \cdots u_{n} v_{1}$.

Proposition 9. A sunflower graph $S_{n}^{\otimes}, n \geq 3$ does not have a parametric unique ζ-set.
Proof. For all pairs v_{i}, v_{j} it is sufficient that $v_{0} \in \zeta$-set. Thereafter any ζ-set X_{1} in respect of $C^{b}\left(S_{n}^{\otimes}\right)$ is required to obtain $\mathcal{C}_{S_{n}^{\circledast}}=X_{1} \cup\left\{v_{0}\right\}$. It implies that $\zeta\left(S_{n}^{\otimes}\right)=n$. In turn, the aforesaid confluence number permits that say, $X_{2}=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ or $X_{3}=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n-1}, u_{n-1}\right\}$ are ζ-sets. Since, $\left\langle V\left(S_{n}^{\otimes}\right) \backslash X_{1}\right\rangle \not \equiv\left\langle V\left(S_{n}^{\otimes}\right) \backslash X_{2}\right\rangle \not \approx$ $\left\langle V\left(S_{n}^{\otimes}\right) \backslash X_{3}\right\rangle$ the result follows.

As a direct consequence of the proof of Proposition 9, we get the next corollary.
Corollary 6. A sunflower graph has $\zeta\left(S_{n}^{\otimes}\right)=n$.
(h) A sunlet graph $S_{n}^{\ominus}, n \geq 3$ is obtained by taking cycle C_{n} together the isolated vertices $u_{i}, 1 \leq i \leq n$ and adding the pendent edges $v_{i} u_{i}$.

Proposition 10. A sunlet graph $S_{n}^{\ominus}, n \geq 3$ has a parametric unique ζ-set.
Proof. Case 1. Let $n \geq 3$ and odd. Without loss of generality and by isomorphism, it is easy to verify that the sets $X_{1}=\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{n}\right\}$ and $X_{2}=\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{n-2}, v_{n-1}\right\}$ are ζ-sets. Furthermore, up to isomorphism those are the only distinguishable ζ-sets. Since,

$$
\left\langle(V (S _ { n } ^ { \ominus }) \backslash X _ { 1 } \rangle \cong \left\langle\left(V\left(S_{n}^{\ominus}\right) \backslash X_{2}\right\rangle\right.\right.
$$

the result follows for $n \geq 3$ and odd.
Case 2. By similar reasoning as in Case 1 the result follows for $n \geq 4$ and even.
As a direct consequence of the proof of Proposition 10, we get the next corollary.
Corollary 7. A sunlet graph has $\zeta\left(S_{n}^{\ominus}\right)=\left\lceil\frac{n}{2}\right\rceil$.
(i) A circular ladder (or prism graph) $L_{n}^{\circ}, n \geq 3$ is obtained by taking two cycles of equal order n. Label as, $C_{n}^{1}=v_{1} v_{2} v_{3} \cdots v_{n} v_{1}$ and $C_{n}^{2}=u_{1} u_{2} u_{3} \cdots u_{n} u_{1}$. Add the edges $v_{i} u_{i}, 1 \leq i \leq n$. A circular ladder can be viewed as $H_{n}^{c}-v_{0}$.

Proposition 11. A circular ladder graph L_{n}° has a parametric unique ζ-set if and only if $n=4$ or $n=3$ i for $i=2,3,4, \ldots$.
Proof. Part 1. For $n=4, X_{i}=\left\{u_{i}, v_{j}\right\}, i=1,2,3,4, j \in\{1,2,3,4\}$ such that $d\left(u_{i}, v_{j}\right)=3$, are the minimum confluence sets for L_{4}°. Since $\left\langle V\left(L_{4}^{\circ}\right) \backslash X_{i}\right\rangle$ are C_{6} for $i=1,2,3,4$, we have the result for $n=4$.

In a circular ladder graph $L_{n}^{\circ}, n \neq 4$ there are n copies of $C_{4}=v_{i} u_{i} u_{i+1} v_{i+1}$. For each $C_{4}=v_{i} u_{i} u_{i+1} v_{i+1}$, at least one of the vertices $v_{i}, u_{i}, u_{i+1}, v_{i+1}$ belongs to every minimum confluence set of L_{n}°.
Part 2. For $n=3, X_{1}=\left\{v_{1}, v_{2}\right\}$ and $X_{2}=\left\{v_{1}, u_{2}\right\}$ are two minimum confluence set for L_{3}°. However, $\left\langle V\left(L_{3}^{\circ}\right) \backslash X_{1}\right\rangle$ and $\left\langle V\left(L_{3}^{\circ}\right) \backslash X_{2}\right\rangle$ are not isomorphic. Hence L_{3}° has no unique parametric set.
Part 3. For $n=3 i, i=2,3, .$. , let $\mathcal{C}_{C_{n}}\left(v_{i}\right)$ be a minimum confluence set of C_{n} starting from v_{i} and $C_{C_{n}^{\prime}}\left(u_{j}\right)$ be a minimum confluence set of C_{n}^{\prime} starting from u_{j}. Then for $i \neq j, X_{i j}=\mathcal{C}_{C_{n}}\left(v_{i}\right) \cup \mathcal{C}_{C_{n}^{\prime}}\left(u_{j}\right)$ is a minimum confluence
set for L_{n}° and $\left\langle V\left(L_{n}^{\circ}\right) \backslash X_{i j}\right\rangle$ consists of $\frac{n}{3}$ copies of P_{3}. Hence the result for $n=3 i, i=2,3, \ldots$
Part 4. If $n \equiv 2(\bmod 3)$. Let X_{1} be the minimum confluence set for L_{n}° such that $u_{i}, u_{i+2}, v_{i+1} \in X_{1}$ and let X_{2} be the minimum confluence set for L_{n}° such that $u_{i}, u_{i+2}, v_{i} \in X_{2}$. Then $\left\langle V\left(L_{n}^{\circ}\right) \backslash X_{1}\right\rangle$ and $\left\langle V\left(L_{n}^{\circ}\right) \backslash X_{2}\right\rangle$ are not isomorphic. Hence L_{n}° has no parametric unique set if $n_{\geq 5} \equiv 2(\bmod 3)$.

By a similar argument we have to prove that L_{n}° has no parametric unique set if $n_{\geq 7} \equiv 1(\bmod 3)$.
Since all $n \in \mathbb{N}_{\geq 3}$ have been accounted for the 'if' has been settled.
For all valid cases the converse, 'only if', follows through reasoning by contradiction.
Corollary 8. A circular ladder has,

$$
\zeta\left(L_{n}^{\circ}\right)= \begin{cases}2, & \text { if } n=4 \\ 2\left\lceil\frac{n}{3}\right\rceil, & \text { if } n=3 \text { or } n \geq 5\end{cases}
$$

Proof. The result is a consequence of the proof of Proposition 11. The exception lies in the fact that L_{4}° has $5=n_{=4}+1$ cycles C_{4} to account for. All other $L_{n_{* 4}}^{\circ}$ have n cycles C_{4} to account for.

Observe that the confluence number of a circular ladder is always even.
(j) A tadpole graph $T(m, n), m \geq 3, n \geq 1$ is obtained from a cycle $C_{m}=v_{1} v_{2} v_{3} \cdots v_{m} v_{1}$ and a path $P_{n}=$ $u_{1} u_{2} u_{3} \cdots u_{n}$ by adding an edge between an end-vertex of P_{n} and a vertex of C_{m}. The new edge is also called a bridge.

Proposition 12. A tadpole graph $T(m, n), m \geq 3, n \geq 1$:
(a) Tadpole graphs $T(3, n), n \geq 1$ have a parametric unique ζ-set if and only if $n=3 i, i=1,2,3, \ldots$.
(b) Tadpole graphs $T(4,1), T(4,2)$ have a parametric unique ζ-sets.
(c) Tadpole graphs $T(5,1)$ does not have a parametric unique ζ-set and $T(5,2)$ has.
(d) Tadpole graphs $T(m, 1), T(m, 2), m \geq 6$ have a parametric unique ζ-set if and only if $m=6+3 i, i=0,1,2, \ldots$
(e) Tadpole graphs $T(m, n), m \geq 4$ and $n \geq 3$ have a parametric unique ζ-set if and only if both the cycle C_{m} and the path P_{n} have parametric unique ζ-sets.
(f) All other tadpole graphs as excluded through (a) to (f) do not have a parametric unique ζ-set.

Proof. (a) The tadpole graphs $T(3, n), n \geq 1$ does not have a parametric unique ζ-set for P_{1}, P_{2} (straightforward).
Subcase (a)(1). For $n+2=5+3 i, i=0,1,2, \ldots$ the ζ-set of P_{n+2} is unique hence, $T(3, n)$ has a parametric unique ζ-set.
Subcase (a)(2). For $n+2=6+3 i, i=0,1,2, \ldots$ the ζ-set of P_{n+2} is not parametric unique hence, $T(3, n)$ does not have a parametric unique ζ-set.
Subcase (a)(3). For $n+2=7+3 i, i=0,1,2, \ldots$ the ζ-set of P_{n+2} is parametric unique. However, since some ζ-sets may contain vertex v_{j} of the bridge the tadpole $T(3, n)$ does not have a parametric unique ζ-set.
All tadpoles $T(3, n), n \geq 1$ have been accounted for because,

$$
\mathbb{N}=\{1,2\} \cup\{3+3 i: i=0,1,2, \ldots\} \cup\{4+3 i: i=0,1,2, \ldots\} \cup\{5+3 i: i=0,1,2, \ldots\} .
$$

(b) The tadpole graphs $T(4, n), n \geq 1$ have a parametric unique ζ-set for P_{1}, P_{2}. It follows from the fact that a bridge vertex say, v_{i} has to be in any ζ-set.
Subcases $n+2=5+3 i, n+2=6+3 i$ and $n+2=7+3 i, i=0,1,2, \ldots$ will be settled in (d) and (e) below.
(c) The tadpole graphs $T(5, n), n \geq 1$ does not have a parametric unique ζ-set for P_{1} bacause it is easy to verify that an end-vertex of the bridge need not be in all ζ-sets. However for P_{2} the tadpole has a parametric unique ζ-set. It follows from the fact that a bridge vertex say, v_{i} has to be in any ζ-set.
Subcases $n+2=5+3 i, n+2=6+3 i$ and $n+2=7+3 i, i=0,1,2, \ldots$ will be settled in (d) and (e) below.
(d) The tadpoles $T(m, 1), T(m, 2), m \geq 6$ do not require that vertices u_{1} and/or u_{2} to necessarily be in a ζ-set. Hence, all ζ-sets of cycle C_{m} which contain a vertex of the bridge suffice to be ζ-sets of the tadpoles. Therefore has a parametric unique ζ-set if and only if C_{m} has a unique ζ-set. Therefore, if and only if $m=6+3 i, i=0,1,2, \ldots$ The converse follows easily by contradiction.
(e) Finally, for a tadpole $T(m, n), m \geq 4$ and $n \geq 3$ and both the cycle C_{m} and the path P_{n} have parametric unique ζ-sets, it is easy to verify that the ζ-sets of the tadpole all contain a vertex v_{j} of the bridge. Therefore the tadpole has a parametric ζ-set. Else, it is always possible to find a ζ-set of the tadpole which contains a vertex v_{j} which is on the bridge and another ζ-set which does not. Therefore, such tadpoles do not have a parametric unique ζ-set. Hence, the tadpoles $T(m, n), m \geq 4$ and $n \geq 3$ have a parametric unique ζ-set if and only if both C_{m} and P_{n} have parametric unique ζ-sets.
(f) All other tadpole graphs which were excluded through reasoning of proof, (a) to (e) do not have a parametric unique ζ-set.
(k) A lollipop graph $L^{\boxtimes}(m, n), m \geq 3, n \geq 1$ is obtained from a complete graph K_{m} and a path P_{n} by adding a bridge between an end-vertex of P_{n} and a vertex of C_{m}.

Proposition 13. A lollipop graph $L^{\boxtimes}(m, n), m \geq 3, n \geq 1$ has a parametric unique ζ-set if and only if $n=3 i, i=$ 1,2,3,....

Proof. The proof follows directly from the proof of Proposition 12(a).
(l) A generalized barbell graph $B(n, m), n, m \geq 3$ is obtained from two complete graph K_{n}, K_{m} and adding a bridge.

Proposition 14. A generalized barbell graph $B(n, m), n, m \geq 3$ has a parametric unique ζ-set if and only if $n=m$.
Proof. Let K_{n} be on vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ and K_{m} on vertices $u_{1}, u_{2}, u_{3}, \ldots, u_{m}$. For any pair $v_{i} u_{j}$ and edge $v_{i} u_{j}$ not the bridge, the distance $d\left(v_{i}, u_{j}\right)=2$ or 3 . Therefore any vertex of the bridge yields a ζ-set. Without loss of generality let the ζ-set be $\left\{v_{k}\right\}$. It follows that $\left\langle V(B(n, m)) \backslash\left\{v_{k}\right\}\right\rangle \cong K_{n-1} \cup K_{m}$. Hence, $B(n, m)$ has a parametric unique ζ-set if and only if $n=m$.

3. Conclusion

The study of cycle related graphs has not exhausted. Note that for those cycle related graphs which do not have a parametric unique ζ-set the proof by contradiction can be utilized well.

The idea of combined parametric conditions remains open. Note that the parametric conditions will be ordered pairs. For example, the path $P_{3}=v_{1} v_{2} v_{3}$ has a unique minimum dominating set i.e. the γ-set $X_{1}=\left\{v_{2}\right\}$. Since X_{1} is also a ζ-set of P_{3} the set is said to be a parametric unique (γ, ζ)-set. However, since X_{1} per se is not a parametric unique ζ-set, it cannot be said to be a parametric unique (ζ, γ)-set. On the other hand for a star $S_{1, n}, n \geq 3$ the set $X_{1}=\left\{v_{0}\right\}$ is both a parametric (γ, ζ)-set and a parametric unique (ζ, γ)-set. Studying such parametric combinations for say parameters $\rho_{1}(G)$ and $\rho_{2}(G)$ requires that, $\rho_{1}(G)=\rho_{2}(G)$.

Conjecture 1. If graph G has a pendent vertex then G has a unique ζ-set if and only no ζ-set exists which contains a pendent vertex.

A strict proof of Corollary 8 through mathematical induction is an interesting exercise for the reader.
Acknowledgments: The authors would like to thank the anonymous referees for their constructive comments, which helped to improve on the elegance of this paper.
Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Conflicts of Interest: "The authors declare no conflict of interest."

References

[1] Bondy, J.A., \& Murty, U.S.R. (1976). Graph Theory with Applications. Macmillan Press, London.
[2] Harary, F. (1969). Graph Theory. Addison-Wesley, Reading MA.
[3] West, B. (1996). Introduction to Graph Theory. Prentice-Hall, Upper Saddle River.
[4] Kok, J.,\& Shiny, J. (2021). On parametric equivalent, isomorphic and unique sets. Open Journal of Discrete Applied Mathematics, 4(1), 19-24.
[5] Shiny, J., Kok, J., \& Ajitha, V. Confluence number of graphs. Communicated.
[6] Kok, J., \& Shiny, J. Confluence number of certain derivative graphs. Communicated.
© 2021 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

