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1. Introduction

I n this work, we investigate the existence of global, decay and finite time blow up of solutions for the
parabolic type Kirchhoff equation with logarithmic source term

ut −M(‖∇u‖2)∆u− ∆ut = uk−1 ln |u| −
∮

Ω uk−1 ln |u| dx, x ∈ Ω, t > 0,
u(x, t) = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), x ∈ Ω,

(1)

where Ω is a bound domain in Rn(n ≥ 1) with smooth boundary ∂Ω. Also, M(s) = 1+ sγ, (γ > 0) ,
∮

Ω u0dx =
1
|Ω|
∫

Ω u0dx = 0 and {
2γ + 2 ≤ k ≤ +∞, n = 1, 2,

2γ + 2 ≤ k ≤ 2n
n−2 , n ≥ 3.

Many other authors studied the problem (1) in a more general form
ut − ∆u = f (u)−

∮
Ω f (u)dx, x ∈ Ω, t > 0,

∂u(x,t)
∂η = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

where Ω is a bound domain in Rn (n ≥ 1) with |Ω| denoting its Lebesgue measure, the function f (u) is usually
taken to be a power of u, and n is the outer normal vector of ∂Ω. Studies of logarithmic nonlinearity have a
long history in physics as it occurs naturally in different areas of physics such as supersymmetric field theories,
optics, quantum mechanics and inflationary cosmology [1,2]. When M ≡ 1 and k = 2, (1) become semilinear
pseudo-parabolic equation as follow

ut − ∆u− ∆ut = u log |u| . (2)

Chen and Tian [3] obtained the global existence, behavior of vacuum isolation and blow-up of solutions
at +∞ of the Equation (2). Without ∆u, (2) become the following semilinear parabolic equation

ut − ∆ut = u log |u| . (3)
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Chen et al., [4] studied the global existence, decay and blow-up at +∞ of solutions of the Equation (3).
Yan and Yang [5] studied nonlocal parabolic equation with logarithmic nonlinearity

ut − ∆ut = u log |u| −
∮

Ω
u log |u| dx.

Recently, they obtained the results under appropriate conditions on blow-up and existion of the solutions.
Toualbia et al., [6] studied the initial boundary value problem of a nonlocal parabolic equation with logarithmic
nonlinearity

ut − div(|∇u|p−2∇u) = |u|p−2 u log |u| −
∮

Ω
|u|p−2 u log |u| dx.

They obtained the decay, blow up and nonextinction of solutions under appropriate condition. Also, recently
some authors studied the parabolic and hyperbolic type equation with logarithmic source term (see [7–15]).

The organization of the remaining part of this paper is as follows: In the next Section 2, we introduce
some lemmas which will be needed later. In Section 3, under some conditions, we get the unique global weak
solution of the problem (1). Moreover, we find that the decay of solutions. In the lastly, we get the blow up
theorem.

2. Preliminaries

Throughout this work, we adopt the following abbreviations

‖u‖s = ‖u‖Ls(Ω) , ‖u‖H1
0 (Ω) =

(
‖∇u‖2 + ‖u‖2

) 1
2 ,

for 1 < s < ∞.
The energy functional J and Nehari functional I defined on H1

0(Ω)\{0} as follow

J(u) =
1
2
‖∇u‖2 +

1
2 (γ + 1)

‖∇u‖2(γ+1) − 1
k

∫
Ω
|u|k ln |u| dx +

1
k2

∫
Ω
|u|k dx, (4)

and
I(u) = ‖∇u‖2 + ‖∇u‖2(γ+1) −

∫
Ω
|u|k ln |u| dx. (5)

By (4) and (5), we obtain

J(u) =
1
k

I(u) +
k− 2

2k
‖∇u‖2 +

k− 2γ− 2
2k (γ + 1)

‖∇u‖2(γ+1) +
1
k2

∫
Ω
|u|k dx. (6)

Let
N = {u ∈ H1

0(Ω)\{0} : I(u) = 0},

be the Nehari manifold. Thus, we may define

d = inf
u∈N

J(u), (7)

d is positive and is obtained by some u ∈ N .

Lemma 1. Let u ∈ H1
0(Ω)\{0}, we consider the function j : λ→ J(λu) for λ > 0. Then we possess

(i) limλ→0+ j(λ) = 0 and limλ→+∞ j(λ) = −∞;
(ii) there is a unique λ∗ > 0 such that j′(λ∗) = 0;

(iii) j(λ) is strictly increasing on (0, λ∗), strictly decreasing on (λ∗,+∞) and takes the maximum at λ∗; I(λu) =

λj′(λ) and

I(λu)


> 0, 0 < λ < λ∗,
= 0, λ = λ∗,
< 0, λ∗ < λ < +∞.
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Proof. For u ∈ H1
0(Ω)\{0}, by the definition of j, we get

j(λ) =
1
2
‖∇ (λu)‖2 +

1
2 (γ + 1)

‖∇ (λu)‖2(γ+1) − 1
k

∫
Ω
|λu|k ln |λu| dx +

1
k2

∫
Ω
|λu|k dx

=
λ2

2
‖∇u‖2 +

λ2(γ+1)

2 (γ + 1)
‖∇u‖2(γ+1) − λk

k

∫
Ω
|u|k ln |u| dx− λk

k

∫
Ω
|u|k ln λdx +

λk

k2

∫
Ω
|u|k dx. (8)

It is clear that (i) holds due to
∫

Ω |u|
k dx 6= 0. We get

d
dλ

j(λ) =λ ‖∇u‖2 + λ2γ+1 ‖∇u‖2(γ+1) − λk−1
∫

Ω
|u|k ln |u| dx

− λk−1 ln λ
∫

Ω
|u|k dx− λk−1

k

∫
Ω
|u|k dx +

λk−1

k

∫
Ω
|u|k dx

=λ ‖∇u‖2 + λ2γ+1 ‖∇u‖2(γ+1) − λk−1
∫

Ω
|u|k ln |u| dx− λk−1 ln λ

∫
Ω
|u|k dx

=λ

(
‖∇u‖2 + λ2γ ‖∇u‖2(γ+1) − λk−2

∫
Ω
|u|k ln |u| dx− λk−2 ln λ

∫
Ω
|u|k dx

)
.

Let
ϕ (λ) := λ2γ ‖∇u‖2(γ+1) − λk−2

∫
Ω
|u|k ln |u| dx− λk−2 ln λ

∫
Ω
|u|k dx.

Then from 2γ + 2 ≤ k we can conclude that limλ→∞ ϕ (λ) = −∞, ϕ (λ) is monotone decreasing when λ > λ∗

and there exists a unique λ∗ such that ϕ (λ) |λ=λ∗=0. Hence, we obtain there is a λ∗ > 0 such that ‖∇u‖2 +

ϕ (λ) = 0, which means d
dλ J (λu) |λ=λ∗=0. The conclusion (iii) directly follows from the proof of the conclusion

(ii) and

I(λu) = ‖∇(λu)‖2 + ‖∇(λu)‖2(γ+1) −
∫

Ω
|λu|k ln |λu| dx

=λ2 ‖∇u‖2 + λ2(γ+1) ‖∇u‖2(γ+1) − λk
∫

Ω
|u|k ln |u| dx− λk

∫
Ω
|u|k ln λdx

=λ2 ‖∇u‖2 + λ2(γ+1) ‖∇u‖2(γ+1) − λk
∫

Ω
|u|k ln |u| dx− λk ln λ

∫
Ω
|u|k dx

=λ

(
λ ‖∇u‖2 + λ2γ+1 ‖∇u‖2(γ+1) − λk−1

∫
Ω
|u|k ln |u| dx− λk−1 ln λ

∫
Ω
|u|k dx

)
=λj′(λ).

Thus, I(λu) > 0 for 0 < λ < λ∗, I(λu) < 0 for λ∗ < λ < +∞ and I(λ∗u) = 0. The proof is complete.

Lemma 2. [16]

a) For any function u ∈ W1,p
0 (Ω) such that ‖u‖q ≤ Bq,p ‖∇u‖p, for all 1 ≤ q ≤ p∗ where p∗ = np

n−p if n > p and
p∗ = ∞ if n ≤ p. The best constant Bq,p depends only on Ω, n, p and q. We will denote the constant Bp,p by Bp.

b) For any u ∈W1,p
0 (Ω), p ≥ 1, and r ≥ 1, the inequality

‖u‖q ≤ C ‖∇u‖θ
p ‖u‖

1−θ
r ,

is valid, where θ =
(

1
r −

1
q

) (
1
n −

1
p + 1

r

)−1
and for p ≥ n = 1, r ≤ q ≤ ∞; for n > 1 and p < n, q ∈ [r, p∗] if

r < p∗ and q ∈ [p∗, r] if r ≥ p∗ for p = n > 1, r ≤ q ≤ ∞; for p > n > 1, r ≤ q ≤ ∞.

Here, the constant C depends on n, p, q and r.

Lemma 3. [17] Assume that f : R+ → R+ be a nonincreasing function and σ is a nonnegative constant such that∫ +∞

t
f 1+σ(s)ds ≤ 1

ω
f σ(0) f (t), ∀t ≥ 0.

Hence
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(a) f (t) ≤ f (0)e1−ωt, ∀t ≥ 0, whenever σ = 0;

(b) f (t) ≤ f (0)
(

1+σ
1+ωσt

) 1
σ , ∀t ≥ 0, whenever σ > 0.

3. Main results

Now as in [18], we introduce the follows sets:

W1 = {u ∈ H1
0(Ω)\{0} : J(u) < d},

W2 = {u ∈ H1
0(Ω)\{0} : J(u) = d},

W =W1 ∪W2,

W+
1 = {u ∈ W1 : I(u) > 0},
W+

2 = {u ∈ W2 : I(u) > 0},
W+ =W+

1 ∪W
+
2 ,

W−1 = {u ∈ W1 : I(u) < 0},
W−2 = {u ∈ W2 : I(u) < 0},
W− =W−1 ∪W

−
2 .

Definition 4. (Maximal existence time). Assume that u be weak solutions of problem (1). We define the
maximal existence time Tmax as follows

Tmax = sup{T > 0 : u(t) exists on [0, T]}.

Then

(i) If Tmax < ∞, we see that u blows up in finite time and Tmax is the blow-up time;
(ii) If Tmax = ∞, we see that u is global.

Definition 5. (Weak solution). We define a function u ∈ L∞(0, T; H1
0(Ω)) with ut ∈ L2(0, T; H1

0(Ω)) to be a
weak solution of problem (1) over [0, T], if it satisfies the initial condition u(0) = u0 ∈ H1

0(Ω)\{0}, and

< ut, w > + < ∇u,∇w > + < ‖∇u‖2γ∇u,∇w > + < ∇ut,∇w >

=
∫

Ω
uk−1 ln |u|wdx−

∫
Ω

∮
Ω

uk−1 ln |u|wdsdx,

for all w ∈ H1
0(Ω), and for a.e. t ∈ [0, T].

Theorem 6. (Global existence). Let u0 ∈ W+, 0 < J(u0) < d and I(u) > 0. Hence, there is a unique global weak
solution u of (1) satisfying u(0) = u0. We obtain u(t) ∈ W+ holds for all 0 ≤ t < +∞, and the energy estimate

∫ t

0
‖us(s)‖2

H1
0 (Ω) ds + J(u(t)) ≤ J(u0), 0 ≤ t ≤ +∞.

Also, the solution decay exponentially provided u0 ∈ W+
1 .

Proof. (Global existence) In the space H1
0(Ω), we take a Galerkin bases {wj}∞

j=1 and define the finite
dimensional space

Vm = span{w1, w2, ..., wm}.

Let u0m be an element of Vm such that

u0m =
m

∑
j=1

amjwj → u0 strongly in H1
0(Ω), (9)
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as m→ ∞. We can find the approximate solution um(x, t) of the problem (1) in the form

um(x, t) =
m

∑
j=1

amj(t)wj(x), (10)

where the coefficients amj (1 ≤ j ≤ m) satisfy the ordinary differential equations∫
Ω

umtwidx +
∫

Ω
∇um∇widx +

∫
Ω
‖∇um‖2γ∇um∇widx +

∫
Ω
∇umt∇widx

=
∫

Ω
|um|k−1 ln |um|widx−

∫
Ω

∮
Ω
|um|k−1 ln |um|)widsdx, (11)

for i ∈ {1, 2, ..., m}, with the initial condition

amj(0) = amj, j ∈ {1, 2, ..., m}. (12)

Now, multiplying (11) by a′mi, summing over i from 1 to m and integrating with related to time variable on
[0, t], we obtain ∫ t

0
‖ums(s)‖2

H1
0 (Ω) ds + J(um(t)) ≤ J(u0m), 0 ≤ t ≤ Tmax, (13)

where Tmax is the maximal existence time of solution um(t). By (9), (13) and the continuity of J that

J(um(0))→ J(u0m), as m→ ∞, (14)

with J(u0) < d and the continuity of functional J, by (14), we have

J(u0m) < d, for sufficiently large m.

And therefore, from (13), we obtain∫ t

0
‖ums(s)‖2

H1
0 (Ω) ds + J(um(t)) < d, 0 ≤ t ≤ Tmax, (15)

for sufficiently large m. Next, we will show that

um(t) ∈ W+
1 , t ∈ [0, Tmax), (16)

for sufficiently large m. We suppose that (16) does not hold and think that there exists a smallest time t0 such
that um(t0) /∈ W+

1 . Then, by continuity of um(t0) ∈ ∂W+
1 . So, we obtain

J(um(t0)) = d, (17)

and
I(um(t0)) = 0. (18)

It is clear that (17) could not occur by (15) while if (18) holds then, by definition of d, we get

J(um(t0)) ≥ inf
u∈N

J(u) = d,

which contradicts with (15). Thus, we get (16), i.e., J(um(t)) < d and I(um(t)) > 0, for any t ∈ [0, Tmax), for
sufficiently large m. Hence, by (6), we get

d > J(um(t))

=
1
k

I(um(t)) +
k− 2

2k
‖∇um(t)‖2 +

k− 2γ− 2
2k(γ + 1)

‖∇um(t)‖2(γ+1) +
1
k2

∫
Ω
|u|k dx

≥ k− 2
2k
‖∇um(t)‖2 +

γ

2(γ + 1)
‖∇um(t)‖2(γ+1) +

1
k2

∫
Ω
|u|k dx ≥ k− 2

2k
‖∇um(t)‖2 .



Open J. Discret. Appl. Math. 2021, 4(2), 1-10 6

And therefore, we deduce from (15) that∫ t

0
‖ums(s)‖2

H1
0 (Ω) ds +

k− 2
2k
‖∇um(t)‖2 < d.

This inequality implies Tmax = +∞. Further, by the logarithmic inequality, we get

‖∇um(t)‖2 =2J(um(t)) +
2
k

∫
Ω
|um(t)|k ln |um(t)| dx− 2

k2 ‖um(t)‖2 − 1
(γ + 1)

‖∇um(t)‖2(γ+1)

≤2J(um(0)) +
2
k

∫
Ω
|um(t)|k ln |um(t)| dx.

This implies that

‖∇um(t)‖2 ≤ 2J(um(0)) +
2
k

∫
Ω
|um(t)|k ln |um(t)| dx.

We deduce that
‖∇um(t)‖2 ≤ Cd, ∀t ∈ [0, Tmax).

(Decay estimates) Thanks to u0 ∈ W+
1 , we deduce from (6) that

J(u0) > J(u(t))

=
1
k

I(u(t)) +
k− 2

2k
‖∇u(t)‖2 +

k− 2γ− 2
2k (γ + 1)

‖∇u(t)‖2(γ+1) +
1
k2

∫
Ω
|u|k dx,

≥ k− 2
2k
‖∇u(t)‖2 +

k− 2γ− 2
2k (γ + 1)

‖∇u(t)‖2(γ+1) +
1
k2

∫
Ω
|u|k dx. (19)

By I(u(t)) > 0, (7) and Lemma 1, there exists a λ∗ > 1 such that I(λ∗u(t)) = 0. We have

d ≤ J(λ∗u(t))

=
1
k

I(λ∗u(t)) +
k− 2

2k
‖∇ (λ∗u(t))‖2 +

k− 2γ− 2
2k (γ + 1)

‖∇ (λ∗u(t))‖2(γ+1) +
1
k2

∫
Ω
|λ∗u (t)|k dx

=
k− 2

2k
‖∇ (λ∗u(t))‖2 +

k− 2γ− 2
2k (γ + 1)

‖∇ (λ∗u(t))‖2(γ+1) +
1
k2

∫
Ω
|λ∗u (t)|k dx

= (λ∗)2
(

k− 2
2k

)
‖∇u(t)‖2 + (λ∗)2(γ+1)

(
k− 2γ− 2
2k (γ + 1)

)
‖∇u(t)‖2(γ+1) + (λ∗)k

(
1
k2

) ∫
Ω
|u (t)|k dx

≤ (λ∗)k
(

k− 2
2k
‖∇u(t)‖2 +

k− 2γ− 2
2k (γ + 1)

‖∇u(t)‖2(γ+1) +
1
k2

∫
Ω
|u (t)|k dx

)
. (20)

Using (19) and (20), we have d ≤ (λ∗)k J(u0), which implies that

λ∗ ≥
(

d
J(u0)

) 1
k

. (21)

By (5), we get

0 =I(λ∗u(t)) = ‖∇(λ∗u(t))‖2 + ‖∇(λ∗u(t))‖2(γ+1) −
∫

Ω
|λ∗u(t)|k ln |λ∗u(t)| dx

=(λ∗)2 ‖∇u(t)‖2 + (λ∗)2(γ+1) ‖∇u(t)‖2(γ+1) − (λ∗)k
∫

Ω
|u(t)|k ln |u(t)| dx− (λ∗)k ln(λ∗)

∫
Ω
|u (t)|k dx

=(λ∗)k I(u(t)) + (λ∗)2 ‖∇u(t)‖2 + (λ∗)2(γ+1) ‖∇u(t)‖2(γ+1)

− (λ∗)k ‖∇u(t)‖2 − (λ∗)k ‖∇u(t)‖2(γ+1) − (λ∗)k ln(λ∗)
∫

Ω
|u (t)|k dx

=(λ∗)k I(u(t)) +
[
(λ∗)2 − (λ∗)k

]
‖∇u(t)‖2

+
[
(λ∗)2(γ+1) − (λ∗)k

]
‖∇u(t)‖2(γ+1) − (λ∗)k ln(λ∗)

∫
Ω
|u (t)|k dx. (22)
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Using (21) and (22), we have

(λ∗)k I(u(t)) =
[
(λ∗)k − (λ∗)2

]
‖∇u(t)‖2 +

[
(λ∗)k − (λ∗)2(γ+1)

]
‖∇u(t)‖2(γ+1) + (λ∗)k ln(λ∗)

∫
Ω
|u (t)|k dx

≥
[
(λ∗)k − (λ∗)2

] ∫
Ω
|u (t)|k dx,

which implies that
I(u(t)) ≥

[
1− (λ∗)2−k

]
‖∇u(t)‖2 . (23)

It follows from (21) and (23) that

I(u(t)) ≥
[
1− (λ∗)2−k

]
‖∇u(t)‖2

≥
[

1−
(

d
J(u0)

) 2−k
k
]
‖∇u(t)‖2

≥C

[
1−

(
d

J(u0)

) 2−k
k
]
‖u(t)‖2 , (24)

where C is constant. Hence, by (24), we get

I(u(t)) ≥1
2

[
1−

(
d

J(u0)

) 2−k
k
]
‖∇u(t)‖2 +

C
2

[
1−

(
d

J(u0)

) 2−k
k
]
‖u(t)‖2

≥C1

(
‖∇u(t)‖2 + ‖u(t)‖2

)
=C1 ‖u(t)‖2

H1
0 (Ω) , (25)

where

C1 = max

{
1
2

[
1−

(
d

J(u0)

) 2−k
k
]

,
C
2

[
1−

(
d

J(u0)

) 2−k
k
]}

.

Integrating the I(u(s)) with respect to s over (t, T), we get

∫ T

t
I(u(s))ds =−

∫ T

t

∫
Ω

us(s)u(s)dxds−
∫ T

t

∫
Ω
∇us(s)∇u(s)dxds

=
1
2
‖u(t)‖2

H1
0 (Ω) −

1
2
‖u(T)‖2

H1
0 (Ω)

≤1
2
‖u(t)‖2

H1
0 (Ω) . (26)

From (25) and (26), we have∫ T

t
C1 ‖u(t)‖2

H1
0 (Ω) ds ≤ 1

2
‖u(t)‖2

H1
0 (Ω) for all t ∈ [0, T]. (27)

Let T → +∞ in (27), we can have ∫ ∞

t
‖u(t)‖2

H1
0 (Ω) ds ≤ 1

2C1
‖u(t)‖2

H1
0 (Ω) .

From Lemma 3, we get
‖u(t)‖2

H1
0 (Ω) ≤ ‖u(0)‖

2
H1

0 (Ω) e1−2C1t.

The above inequality satisfies that the solution u decays exponentially.
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Theorem 7. (Blow up). Let u0 ∈ W−1 and assume that u(t) be a unique weak solution to the problem (1). Then u(t)
blows up in finite time, that is, there exists T∗ > 0 such that

lim
t→T∗
‖u(t)‖2

H1
0 (Ω) = ∞.

Proof. We show that u(t) blows up at a finite time. Using contradiction, we suppose that u(t) is global. We
contract a function φ : [0, ∞)→ R+, and

φ(t) =
∫ t

0
‖u(s)‖2

H1
0 (Ω) ds. (28)

Then, thorough direct calculation, we have

φ′(t) = ‖u(s)‖2
H1

0 (Ω) = 2
∫ t

0

∫
Ω
(usu +∇us∇u) dxds. (29)

By (5) and (29), we have

φ′′(t) = 2
∫

Ω
(usu +∇us∇u) dx

= 2
∫

Ω
u (us − ∆us) dx

= 2
∫

Ω
|u|k ln |u| dx + 2

∫
Ω

M(‖∇u‖2)u∆udx

= 2
∫

Ω
|u|k ln |u| dx− 2

∫
Ω
(1 + ‖∇u‖2γ)(∇u)2dx

= −2I(u). (30)

By (30) and I(u) < 0, we get φ′′(t) > 0, hence

φ′(t) > φ′(0) = ‖u0‖2
H1

0 (Ω) > 0. (31)

From the Hölder inequality and combining (30), we get

1
4
(
φ′(t)− φ′(0)

)2
=

1
4

(∫ t

0
φ′′(s)ds

)2

=

(∫ t

0

∫
Ω
(usu +∇us∇u) dxds

)2

≤
∫ t

0
‖u(s)‖2

H1
0 (Ω) ds

∫ t

0
‖us‖2

H1
0 (Ω) ds. (32)

It follows from (6) and (30) that

φ′′(t) = −2I(u) = −2kJ(u) + (k− 2) ‖∇u‖2 +
k− 2γ− 2

γ + 1
‖∇u‖2(γ+1) +

2
k
‖u‖k

k

≥ −2kJ(u0) + 2k
∫ t

0
‖us(s)‖2

H1
0 (Ω) ds + (k− 2) ‖∇u‖2 +

k− 2γ− 2
γ + 1

‖∇u‖2(γ+1) +
2
k
‖u‖k

k

≥ 2k (d− J(u0)) + 2k
∫ t

0
‖us(s)‖2

H1
0 (Ω) ds. (33)

Using (28), (32) and (33), we get

φ(t)φ′′(t) ≥ 2k
∫ t

0
‖u(s)‖2

H1
0 (Ω) ds

∫ t

0
‖us(s)‖2

H1
0 (Ω) ds + 2k (d− J(u0)) φ(t)

≥ 2k (d− J(u0)) φ(t) +
k
2
(
φ′(t)− φ′(0)

)2 . (34)



Open J. Discret. Appl. Math. 2021, 4(2), 1-10 9

By (34), we get

φ(t)φ′′(t)− k
2
(
φ′(t)− φ′(0)

)2 ≥ 2k(d− J(u0)) ‖u0‖2
H1

0 (Ω) t0 > 0. (35)

Choose T > t0 sufficiently large and let

ψ(t) = φ(t) + (T − t) ‖u0‖2
H1

0 (Ω) t0, ∀t ∈ [0, T].

Hence, µ(t) ≥ φ(t) > 0, µ′(t) = φ′(t)− φ′(0) and µ′′(t) = φ′′(t) > 0, so (35) implies

µ(t)µ′′(t)− k
2

µ′(t)2 ≥ 2k (d− J(u0)) ‖u0‖2
H1

0 (Ω) t0 > 0, for all t ∈ [t0, T]. (36)

Let ψ(t) = µ(t)−
k−2

2 . Thus,

ψ′(t) = − k− 2
2

µ(t)−
k
2 µ′(t). (37)

From (36) and (37), we get

ψ′′(t) =
k− 2

2
µ(t)−

k+2
2

[
k
2

µ′(t)2 − µ(t)µ′′(t)
]
< 0, for all t ∈ [t0, T].

Therefore, for any sufficiently large T > t0, ψ(t) is a concave function in [t0, T]. Since ψ(t0) > 0 and ψ′(t0) < 0,
there exists a finite time T∗ such that

lim
t→T−∗

ψ(t) = 0.

Consequently,
lim

t→T−∗
µ(t) = ∞,

which satisfies

lim
t→T−∗

∫ t

0
‖u(s)‖2

H1
0 (Ω) ds = ∞,

therefore, we have
lim

t→T−∗
‖u(s)‖2

H1
0 (Ω) = ∞.

This contradicts with u(t) being a global solution.
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