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Abstract: This note presents the characterization of the families of star, helm, flower and complete graphs
by total vertex stress. The note does not present results for many families of graphs but, it highlights
important philosophical (math. phil.) aspects for further research. In particular the novelty concepts of forgiven
contradictions denoted by, iff f as well as iffness and f -statements are introduced. The author suggests that the
characterization of other families of graphs by total vertex stress is possible.
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1. Introduction

O nly, finite, undirected and connected simple graphs are considered. It is assumed that the reader is
familiar with the basic notions and notation of graph theory. However, useful definitions will be

recalled as is necessary. Unless stated otherwise, reference to vertices u, v ∈ V(G) will mean that u and v are
distinct vertices. When required, the vertices of a graph G of order n ∈ N will be label as vi, 1 ≤ i ≤ n. For clarity
with regards to notation or undefined concepts in graph theory the reader is referred to [1].

The notion of vertex stress in a graph G denoted by, SG(v), v ∈ V(G) was introduced by the researcher
Alfonso Shimbel [2]. The vertex stress of vertex v ∈ V(G) is the number of times v is contained as an
internal vertex in all shortest paths between all pairs of distinct vertices in V(G)/{v}. Formally stated,
SG(v) = ∑

u≠w≠v≠u
σ(v) with σ(v) the number of shortest paths between vertices u, w which contain v as an

internal vertex. Such a shortest uw-path is also called a uw-distance path, see [2,3]. The total vertex stress of G
is given by S(G) = ∑

v∈V(G)

SG(v), [4]. Suggested reading which is strongly related to total vertex stress can be

found in [3,5,6].
Certain graphs are often grouped as a family of graphs. A family of graphs is defined as those graphs

which share a well-defined structural property or a parameter property or other. It is permissible to establish
a family of graphs such that, all graphs in the family share a combination of structural and parameter (or
invariant) or other properties. For example, all trees are a family of graphs. The structural properties which
define this family are: a tree is an undirected graph in which each pair of vertices is connected by exactly one
path. However, the family of trees of order n ≥ 2 is also a proper subfamily (also referred to as a subset) of the
family of 2-colorable graphs. Furthermore, the reader might be familiar with subfamilies (families in their own
right). For example, the family of paths and the family of stars are subfamilies of trees. The cycle C3 belongs
to the family of complete graphs and it belongs to the family of cycles and to the family of 3-colorable graphs
and to the family of geodetic graphs and others. On the other hand the cycle C5 does not belong to the family
of complete graphs but it belongs to the family of cycles and the family of 3-colorable graphs and the family of
geodetic graphs.

Consider two families of graphs denoted by F1 and F2. Assume an invariant of graphs say, σ(G) is
expressed as closed formula in respect of the order n of the graphs in a specific family of graphs. Let σ(G) =
f1(n), ∀n ∈ N, G ∈ F1 and σ(H) = f2(n), ∀n ∈ N, H ∈ F2. It is possible that some graphs of specific order (not
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all) belong to both F1 and F2. This means that for specific order i.e. n for which f1(n) = f2(n). For the purpose
of characterization the observation that F1 ∩F2 ≠ ∅ could be viewed as contradiction of proof.

If σ(G) = f1(n), ∀n ∈ N, G ∈ F1 is unique to F1 on the strict requirement: "for all n" and σ(H) = f2(n), ∀n ∈

N, H ∈ F2 is unique to F2 on the strict requirement: "for all n" then the cases where f1(n) = f2(n) are said to be
forgiven contradictions. Hence, if σ(G) = f1(n), ∀n ∈ N is the closed formula for the family of graphs F1 on the
strict requirement: "for all n" then the statement:

G ∈ F1 iff f σ(G) = f1(n), ∀n ∈ N,

is valid. Note that iff f denotes that forgiven contradictions may exist. We state an important lemma;

Lemma 1. For any connected graph G of order n, a connected predecessor graph H of order n − 1 exists from which G
can be obtained by adding 1 vertex say, vn with an appropriate number of well-defined edges with each edge having the
vertex vn as an end-vertex.

Proof. It is known that a connected graph has at least two vertices which are not cut-vertices, see [1]. Without
loss of generality let vertices u, v be such vertices in a connected graph G. Then graph G − u or G − v suffices to
be a connected predecessor graph (for brevity, predecessor graph) of G.

2. Characterization of star graphs by total vertex stress

A star graph (for brevity, a star) is a tree which has a central vertex v0 with m ≥ 0 pendent vertices (or
leafs) attached to v0. The star is denoted by S1,m and let the family of stars be F1. Therefore, S1,0 ≅ K1 ≅ P1. The
star S1,1 ≅ K2 ≅ P2 and S1,2 ≅ P3. It is known that S(S1,m) =

m(m−1)
2 , ∀m ∈ N0.

Theorem 1. A tree T ∈ F1 (or T ≅ S1,m) for some m ∈ N0 iff f S(T) =
(n−1)(n−2)

2 , n = m + 1.

Proof. It is known that in terms of the order n = m + 1 of a star, S(S1,m) =
(n−1)(n−2)

2 , ∀m ∈ N0. We only have to
proof the converse.

It is known that S(K1) = 0 =
(1−1)(1−2)

2 and K1 ≅ S1,0. All connected graphs of order 1 are accounted for. It

is known that S(P2) = 0 =
(2−1)(2−2)

2 and P2 ≅ S1,1. All connected graphs of order 2 are accounted for. Let G =

S1,1 be the predecessor graph from which all possible connected graphs of order 3 can be obtained by adding
one vertex with appropriate edges. Also minimize the number of such graphs of order 3 by isomorphism.
Hence, the graphs S1,2 or C3 can be obtained. It is known that S(S1,2) = 1 =

(3−1)(3−2)
2 and S(C3) = 0 ≠

(3−1)(3−2)
2 , C3 ≇ S1,2. Furthermore, C3 is not a tree. All connected graphs of order 3 are accounted for. There

are six connected graphs of order 4. From the source graphclasses.org/smallgraphs.html#4nodes we consider
each graph.

(i) The complete graph K4 has S(K4) = 0 ≠
(4−1)(4−2)

2 , K4 ≇ S1,3. Also, the predecessor graph is cycle C3.
Furthermore, K4 is not a tree.

(ii) The diamond D has S(D) = 2 ≠
(4−1)(4−2)

2 , D ≇ S1,3. Also, the predecessor graph is either S1,2 or C3.
Furthermore, D is not a tree.

(iii) The paw (or pan) G has S(G) = 2 ≠
(4−1)(4−2)

2 , G ≇ S1,3. Also, the predecessor graph is either S1,2 or C3.
Furthermore, a paw G is not a tree.

(iv) The cycle C4 has S(C4) = 4 ≠
(4−1)(4−2)

2 , C4 ≇ S1,3. Also, the predecessor graph is S1,2. Furthermore, C4 is
not a tree.

(v) The path P4 has S(P4) = 4 ≠
(4−1)(4−2)

2 , P4 ≇ S1,3. Also, the predecessor graph is S1,2.
(vi) The star S1,3 has S(S1,3) = 3 =

(4−1)(4−2)
2 . Also, the predecessor graph is S1,2.

For a star S1,n the predecessor graph is uniquely the star S1,n−1. Clearly the result holds for all trees of order 1,
2, 3 and 4. Assume that the result that, for the family of trees of order k it holds true that if S(T) = (k−1)(k−2)

2
then T ≅ S1,k−1. Consider a tree T of order k + 1 which by Lemma 1 is obtained from a predecessor graph of
order k. Since,

[(k+1)−1][(k+1)−2]
2 −

(k−1)(k−2)
2 = k − 1
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it implies that each shortest path from say, vk to vertices vi, i = 1, 2, 3, . . . , k − 1 accounts for vertex stress equal
to 1 and for a neighbor say, v0 of vk the vertex stress count is 0. This is only possible if T ≅ S1,k. It is known
from [4] that for paths S(Pn) =

n(n−1)(n−2)
6 . Utilizing forgiven contradictions for n = 1, 2, 3 to meet the strict

requirement: "for all n" the result

T ∈ F1 (or T ≅ S1,m) for some m ∈ N0 iff f S(T) =
(n−1)(n−2)

2 , n = m + 1,

is settled through induction.

Observe that the forgiven contradictions related to Theorem 1 stem from the fact that:
Case 1: Let F1 = {stars} and F2 = {paths}. Then;

F1 ∩F2 ≠ ∅ and neither F1 ⊂ F2 nor F2 ⊂ F1. However; f1 = f2 for some n.

Furthermore, Theorem 1 is valid for trees of order greater or equal to 1. It is known from [4] that for the family
of wheels Wn, n ≥ 4 obtained from cycles Cn, n ≥ 4 hence, for wheels of order greater or equal to 5, the total
vertex stress is given by S(Wn) =

n(n−1)
2 . It implies that if connected graphs in general are considered then

infinitely many forgiven contradictions exist for Theorem 1 to be viewed valid. The forgiven contradictions
stem from the fact that:
Case 2: Let F1 = {stars} and F2 = {wheels, n ≥ 4}. Then;

F1 ∩F2 = ∅ and; f1 = f2 ∀n ≥ 4.

Herein lies the subtlety of the notion of iff f . Eliminating the infinitely forgiven contradictions can be achieved
by an alternative formulation of Theorem 1.

Theorem 2. (Alternative) For a connected graph G it follows that, G ≅ S1,m or Wm≥4 for some m ∈ N0 iff f S(G) =
(n−1)(n−2)

2 , n = m + 1.

The proof of Theorem 2 is straight foreword is left for the reader.
In some instances the definition of a graphical structure for conditional n ∈ N say, n ≥ k (or similar), has

the inherent property of ambiguousity. It implies that certain graphs may belong to more than one family of
graphs. An example is that the path P3 is also a tree and a star namely, S1,2. On the other hand some definitions
of graphical structure has the provisional property of iffness. Iffness means that if the definition is applied, a
graph within a specific family is obtained and vice versa. However, iffness is not necessarily absolute and
is measured against all known families of graphs. An example of such family of graphs is the helm graphs.
Recall that a helm graph (or helm for brevity) is obtained from a wheel by attaching a leaf (pendent vertex)
to each rim vertex. Note that a helm graph denoted by Hn is defined for n ≥ 3. The claim is that, measured
against all known families of graphs a connected graph G obtained from the definition of a helm graph as
stated, yields a and only a helm graph. Therefore G ≅ Hn for some n ≥ 3 and vice versa. For n ≥ 4 the result from
[4] is that S(Hn) = n(4n + 1). Since, another unknown family of graphs might be defined in future such that
total vertex stress equals n(4n + 1), only an f -proposition is permissible. Therefore, a f -statement is stronger
than a conjecture in that, it relies on a provisional property. Specialization of a f -statement might be required
in future as was the case with Theorems 1 and 2.

f-Proposition 1. For a connected graph G of order n ≥ 4 it follows that, G ≅ Hn iff f S(G) = n(4n + 1).

Proof. From [4] it is known that S(H3) = 15. Since the vertex stress value 15 is not unique it will be excluded.
For n ≥ 4 the result from [4] is that S(Hn) = n(4n + 1). The converse follows from the proof of the result in
[4]. Because the proof is strictly dependent on a structural analysis of a helm graph, it follows that the result
S(Hn) = n(4n + 1) is strictly structural dependent. Because the definition yields a and only a helm graph, the
result follows from a and only a helm graph. This settles the proof.

By the formal definition of the family of flower graphs (see [4]) it can simply be said that a flower
graph Fln, n ≥ 4 is obtained by adding an edge between each pendent vertex and the central vertex of the
corresponding helm graph. An immediate corollary follows;
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f-Corollary 1. For a connected graph G of order n ≥ 4 it follows that, G ≅ Fln iff f S(G) = 2n2.

Proof. The result follows by similar reasoning to that in the proof of f-Proposition 1.

In some instances characterization can be stated stronger than an f -statement despite forgiven
contradictions.

Theorem 3. For a connected graph G of order n ≥ 1 it follows that G ≅ Kn iff f S(G) = 0.

Proof. It is known that S(Kn) = 0, n ≥ 1. The inverse follows from the fact that if S(G) = 0 then, either no
shortest path exists or each shortest path is only an edge in G. Hence, G must be complete.

Forgiven contradictions stem from the fact that K1 also represents the singleton family (set) containing the
trivial graph. The paths P1 and P2 serve to show that, {complete graphs}∩ {paths} ≠ ∅.

Theorem 4. (Thole’s theorem)1 For n ≥ 3, let F2 be the family of Kn − e, (e any edge) and F3 be the family of Kn−1(vi)⊸

vn where⊸ vn denotes a single pendent vertex attached to Kn−1, (attached to vi). It follows that,

S(Kn − e) = S(Kn−1 ⊸ vn) = n − 2 ≤ S(G),

where G is a non-complete, connected graph of order n.

Proof. Since G is connected there exist at least (n2) shortest vivj-paths in G with vi, vj ∈ V(G) = {vk ∶ 1 ≤ k ≤ n}.
The minimum number of shortest vivj-paths is exactly (n2). Since G is non-complete it follows that S(G) > 0,
(or put differently, S(G) ≥ 1). Hence, minimization of total stress requires to have only n − 2 shortest paths in
G, each of which induces vertex stress of 1. All other shortest paths must be edges in G. It is trivial to state that
the only families of graphical embodiments which meet the requirements are F2 and F3. From the definition
of total vertex stress it follows that, S(Kn − e) = S(Kn−1 ⊸ vn) = n − 2. Finally, since total vertex stress for
non-complete, connected graphs has been minimized it follows that S(G) ≥ n − 2.

3. Conclusion

This note introduced the notions of forgiven contradictions, iffness and f -statements to characterize the
family of star, helm, flower and complete graphs by total vertex stress. The concept of iffness is used as
a (perhaps vague) qualitative property of graph theoretical definitions and requires deeper debate amongst
scholars. Similarly, a deeper understanding of the idea of f -statements is needed.

Closed formula for the total vertex stress for a number of families of graphs are known, see [3–6].
Therefore, a wide scope for research exists to characterize other families of graphs by total vertex stress.
Furthermore, numerous graph parameters have been studied. The characterization technique can be
researched for other graph parameters. Such research could pave the way for parametric characterization of
graphs.

3.1. Example: Chromatic characterization

Let F4 be the family of complete graphs. With regards to the chromatic number of complete graphs the
next chromatic characterization is presented.

Theorem 5. A graph G of order n has χ(G) = n iff f G ∈ F4, (or G ≅ Kn).

Proof. It is known that χ(Kn) = n. We only proof the converse.
Let G be of order n ∈ N and let χ(G) = n. Let c(vi) = ck, k ∈ {1, 2, 3, . . . , n}. From the definition of a proper

coloring it follows that since c(vi) = ck, a vertex vj ∈ NG(vi) has c(vj) ≠ ck. Moreover, since c(vi) cannot be

1 Named after Mr Nelson Thole who was confirmed as author’s professional successor at the City of Tshwane Metropolitan
Municipality.
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recolored cs, s ∈ {c1, c2, . . . , ck−1, ck+1, . . . , cn} (else, χ(G) ≤ n − 1) it implies that, degG(vi) = n − 1. Therefore,
degG(vt) = n − 1, ∀ vt ∈ V(G). That settles the result, G ∈ F4, (or G ≅ Kn).

With regards to Theorem 5 another subtlety exists i.e. that no forgiven contradictions exist. Hence, "iff f "
is as strict as the conventional "iff". Therefore, Theorem 5 is equivalent to the statement: A graph G of order n
has χ(G) = n iff G ≅ Kn.

Acknowledgments: The author would like to thank the anonymous referees for their constructive comments, which
helped to improve on the elegance of this paper.

Conflicts of Interest: “The author declares no conflict of interest.”

References

[1] Bondy, J. A., & Murty, U. S. R. (1976). Graph Theory with Applications. Macmillan Press, London.
[2] Shimbel, A. (1953). Structural parameters of communication networks, The Bulletin of Mathematical Biophysics, 15(4),

501-507.
[3] Shiny, J., & Ajitha, V. (2020). Stress regular graphs, Malaya Journal of Matematik, 8(3), 1152-1154.
[4] Kok, J., Shiny, J., & Ajitha, V. (2020). Total vertex stress alteration in cycle related graphs, Matematichki Bilten, 44(LXX)2,

149-162.
[5] Shiny, J. (2021). Induced stress of some graph operations, Malaya Journal of Matematik, 9(1), 259-261.
[6] Shiny, J., Kok, J., & Ajitha, V. (2021). Total induced vertex stress in barbell-like graphs, Journal of the Indonesian

Mathematical Society, 27(2), 150-157.

© 2021 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Characterization of star graphs by total vertex stress
	Conclusion
	Example: Chromatic characterization


