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1. Introduction

T hroughout the article, G is a simple undirected connected graph with vertex set V (G) and edge set
E (G). The number of vertices and edges of G is called order and size, respectively. If the vertices u and

v are adjacent, then we write u ∼ v. For v ∈ V (G), dv = dG (v) denotes the degree of vertex v in G. Denote by
Pn and K1, n−1 the path and star with n vertices, respectively.

Cheminformatics is a new interdiscipline composed of chemistry, mathematics and information science,
which contributes a major role in the field of chemical sciences by implementing graph theory to mathematical
modeling of chemical occurrence. In cheminformatics, the topological indices play a significant role in
predicting the biological activities and properties of chemical compounds due to the fact that the numerical
characteristics of topological indices reflect certain physico-chemical properties of chemical compounds, such
as boiling point, stability, strain energy etc. A large number of topological indices have been studied in the
models of Quantitative structure-activity relationships (QSAR) and structure-property relationships (QSPR),
such as Wiener index, Randić index, Zagreb index, ABC index and so on.

The study on degree-based topological indices has been one of the hotspots in cheminformatics [1]. Let
K = {(i, j) ∈ N×N ∶ 1 ≤ i ≤ j ≤ n − 1} and mi, j = mi, j (G) be the number of edges in G joining vertices of degree i
and j. For any set of numbers {ϕi, j}(i, j)∈K, the general formula of degree-based topological indices is

DTI (G) = ∑
(i, j)∈K

mi, j (G) ϕi, j.

In particular, we obtain the first Zagreb index and the second Zagreb index when ϕi, j = i + j and ϕi, j = ij,
respectively.

In 1998, the general Randić index of a graph G, introduced by Bollobás and Erdős [2], is defined as

Rt = Rt (G) = ∑
vivj∈E(G)

(didj)
t
, t ∈ R.

Clearly, we have that R0 is the number of edges, R−
1
2 is the Randić index [3], R−1 is the modified second

Zagreb index [3], R
1
2 is the reciprocal Randić index [4], R2 is the second Hyper-Zagreb index [4], R1 is the

second Zagreb index [5], etc.
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In 2005, the first general Zagreb index of a graph G was introduced by Li and Zheng [6] and is defined as

Zt = Zt (G) = ∑
vi∈V(G)

dt
i = ∑

vivj∈E(G)
(dt−1

i + dt−1
j ) , t ∈ R.

It is easy to see that Z0 is the number of vertices, Z1 is twice the number of edges, Z2 is the first Zagreb index
[5], Z3 is the forgotten topological index [7], etc.

In 2010, Zhou and Trinajstić [8] proposed the general sum-connectivity index of a graph G as follows:

χt = χt (G) = ∑
vivj∈E(G)

(di + dj)
t
, t ∈ R.

It is not difficult to find that 2χ−1 is the harmonic index [9], χ−
1
2 is the sum-connectivity index [10], χ

1
2 is the

reciprocal sum-connectivity index [11], etc.
The product graphs are useful in constructing many important structural models with regularities

[12], especially the following four standard product graphs which are widely used in network design [13],
multiprocessor system [14], automata theory [15] and other fields. Let G1 and G2 be two graphs with disjoint
vertex sets {u1, . . . , um} and {v1, . . . , vn}, respectively. The Cartesian product of G1 and G2, denoted by G1 ◻G2

is the graph, where (ui, vj) ∼ (ur, vs) if either (ui = ur and vj ∼ vs in G2) or (ui ∼ ur in G1 and vj = vs). The direct
product or Kronecker product of G1 and G2, denoted by G1 ⊗G2, is the graph where (ui, vj) ∼ (ur, vs) if ui ∼ ur

in G1 and vj ∼ vs in G2. The strong product of G1 and G2, denoted by G1 ⊠G2, is graph where (ui, uj) ∼ (ur, us)
if either (ui = ur and uj ∼ us in G2) or (ui ∼ ur in G1 and uj = us) or (ui ∼ ur in G1 and uj ∼ us in G2). The
lexicographic product of G1 and G2, denoted by G1[G2], is the graph where (ui, vj) ∼ (ur, vs) if either (ui ∼ ur

in G1) or (ui = ur and vj ∼ vs in G2).
In this paper, we give a unified approach to solve the computational problems of degree-based topological

indices of standard product graphs for the path and regular graphs, which is generalization of many specific
degree-based topological indices. As applications, the corresponding calculation formulas of the general
Randić index, the first general Zagreb index and the general sum-connectivity index are obtained.

2. Cartesian product

Theorem 1. Let Pn1 and Pn2 be two path graphs of order n1 and n2, respectively. Then

DTI (Pn1 ◻ Pn2) = 8ϕ2,3 + 2 (n1 + n2 − 6) ϕ3,3 + 2 (n1 + n2 − 4) ϕ3,4 + (2n1n2 − 5n1 − 5n2 + 12) ϕ4,4

for n1 ≥ n2 ≥ 3.

Proof. By the definition of Cartesian product, we obtain the basic information on Pn1 ◻ Pn2 in the Table 1.

Table 1. The basic information on Pn1 ◻ Pn2 .

m2,3 m3,3 m3,4 m4,4
8 2 (n1 + n2 − 6) 2 (n1 + n2 − 4) 2n1n2 − 5n1 − 5n2 + 12

Thus we have

DTI (Pn1 ◻ Pn2) = ∑
(i, j)∈K

mi, j (G) ϕi, j = 8ϕ2,3+2 (n1 + n2 − 6) ϕ3,3+2 (n1 + n2 − 4) ϕ3,4+(2n1n2 − 5n1 − 5n2 + 12) ϕ4,4.

This completes the proof.

Corollary 1. Let Pn1 and Pn2 be two path graphs of order n1 and n2, respectively. Then

Rt (Pn1 ◻ Pn2) = 8 ⋅ 6t + 2 ⋅ 9t (n1 + n2 − 6)+ 2 ⋅ 12t (n1 + n2 − 4)+ 16t (2n1n2 − 5n1 − 5n2 + 12) ,

Zt (Pn1 ◻ Pn2) = 8 (2t−1 + 3t−1)+ 4 ⋅ 3t−1 (n1 + n2 − 6)+ 2 (n1 + n2 − 4) (3t−1 + 4t−1)+ 2 ⋅ 4t−1 (2n1n2 − 5n1 − 5n2 + 12) ,
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χt (Pn1 ◻ Pn2) = 8 ⋅ 5t + 2 ⋅ 6t (n1 + n2 − 6)+ 2 ⋅ 7t (n1 + n2 − 4)+ 8t (2n1n2 − 5n1 − 5n2 + 12)

for n1 ≥ n2 ≥ 3.

Theorem 2. Let Pn1 and Gr be a path and a r-regular graph of order n1 and n2, respectively. Then

DTI (Pn1 ◻Gr) = rn2 ϕr+1,r+1 + 2n2 ϕr+1,r+2 +
1
2
[rn2 (n1 − 2)+ 2n1n2 − 6n2]ϕr+2,r+2

for n1 ≥ n2 ≥ 2.

Proof. By the definition of Cartesian product, we obtain the basic information on Pn1 ◻ Gr in the following
Table 2.

Table 2. The basic information on Pn1 ◻Gr.

mr+1,r+1 mr+1,r+2 mr+2,r+2

rn2 2n2
rn2 (n1 − 2)

2
+ n1n2 − 3n2

Thus we have

DTI (Pn1 ◻Gr) = ∑
(i, j)∈K

mi, j (G) ϕi, j = rn2 ϕr+1,r+1 + 2n2 ϕr+1,r+2 +
1
2
[rn2 (n1 − 2)+ 2n1n2 − 6n2]ϕr+2,r+2.

This completes the proof.

Corollary 2. Let Pn1 and Gr be a path and a r-regular graph of order n1 and n2, respectively. Then

Rt (Pn1 ◻Gr) = rn2 (r + 1)2t + 2n2 (r + 1)t (r + 2)t + [ rn2 (n1 − 2)
2

+ n2 (n1 − 3)] (r + 2)2t ,

Zt (Pn1 ◻Gr) = 2rn2 (r + 1)t−1 + 2n2 [(r + 1)t−1 + (r + 2)t−1]+ 2 (r + 2)t−1 [ rn2 (n1 − 2)
2

+ n2 (n1 − 3)] ,

χt (Pn1 ◻Gr) = 2trn2 (r + 1)t + 2n2 (2r + 3)t + 2t (r + 2)t [ rn2 (n1 − 2)
2

+ n2 (n1 − 3)]

for n1 ≥ n2 ≥ 2.

Theorem 3. Let Gr and Pn2 be a r-regular and a path of order n1 and n2, respectively. Then

DTI (Gr ◻ Pn2) = rn1 ϕr+1,r+1 + 2n1 ϕr+1,r+2 +
1
2
[rn1 (n2 − 2)+ 2n1n2 − 6n1] ϕr+2,r+2

for n1 ≥ n2 ≥ 2.

Proof. By the definition of Cartesian product, we obtain the basic information on Gr ◻ Pn2 in the following
Table 3.

Table 3. The basic information on Gr ◻ Pn2 .

mr+1,r+1 mr+1,r+2 mr+2,r+2

rn1 2n1
rn1 (n2 − 2)

2
+ n1n2 − 3n1

Thus we have

DTI (Gr ◻ Pn2) = ∑
(i, j)∈K

mi, j (G) ϕi, j = rn1 ϕr+1,r+1 + 2n1 ϕr+1,r+2 +
1
2
[rn1 (n2 − 2)+ 2n1n2 − 6n1] ϕr+2,r+2.
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This completes the proof.

Corollary 3. Let Gr and Pn2 be a r-regular and a path of order n1 and n2, respectively. Then

Rt (Gr ◻ Pn2) = rn1 (r + 1)2t + 2n1 (r + 1)t (r + 2)t + [ rn1 (n2 − 2)
2

+ n1 (n2 − 3)] (r + 2)2t ,

Zt (Gr ◻ Pn2) = 2rn1 (r + 1)t−1 + 2n1 [(r + 1)t−1 + (r + 2)t−1]+ 2 (r + 2)t−1 [ rn1 (n2 − 2)
2

+ n1 (n2 − 3)] ,

χt (Gr ◻ Pn2) = 2trn1 (r + 1)t + 2n1 (2r + 3)t + 2t (r + 2)t [ rn1 (n2 − 2)
2

+ n1 (n2 − 3)]

for n1 ≥ n2 ≥ 2.

Theorem 4. Let G1 and G2 be a r1-regular graph and a r2-regular graph with order n1 and n2, respectively. Then

DTI (G1 ◻G2) =
n1n2 (r1 + r2)

2
ϕr1+r2,r1+r2

for n1 ≥ n2 ≥ 2.

Proof. By the definition of Cartesian product, we have G1 ◻ G2 is a (r1 + r2)-regular graph with n1n2(r1+r2)
2

edges. Thus

DTI (G1 ◻G2) = ∑
(i, j)∈K

mi, j (G) ϕi, j =
n1n2 (r1 + r2)

2
ϕr1+r2,r1+r2 .

This completes the proof.

Corollary 4. Let G1 and G2 be a r1-regular graph and a r2-regular graph with order n1 and n2, respectively. Then

Rt (G1 ◻G2) =
n1n2 (r1 + r2)2t+1

2
,

Zt (G1 ◻G2) = n1n2 (r1 + r2)t ,

χt (G1 ◻G2) = 2t−1n1n2 (r1 + r2)t+1

for n1 ≥ n2 ≥ 2.

3. Direct product

Theorem 5. Let Pn1 and Pn2 be two path graphs of order n1 and n2, respectively. Then

DTI (Pn1 ⊗ Pn2) = 4ϕ1,4 + 4ϕ2,2 + 4 (n1 + n2 − 6) ϕ2,4 + 2 (n1 − 3) (n2 − 3) ϕ4,4

for n1 ≥ n2 ≥ 3.

Proof. By the definition of direct product, we obtain the basic information on Pn1 ⊗ Pn2 in the following Table
4.

Table 4. The basic information on Pn1 ⊗ Pn2 .

m1,4 m2,2 m2,4 m4,4
4 4 4 (n1 + n2 − 6) 2 (n1 − 3) (n2 − 3)

Thus we have

DTI (Pn1 ⊗ Pn2) = ∑
(i, j)∈K

mi, j (G) ϕi, j = 4ϕ1,4 + 4ϕ2,2 + 4 (n1 + n2 − 6) ϕ2,4 + 2 (n1 − 3) (n2 − 3) ϕ4,4.
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This completes the proof.

Corollary 5. Let Pn1 and Pn2 be two path graphs of order n1 and n2, respectively. Then

Rt (Pn1 ⊗ Pn2) =8 ⋅ 4t + 2 ⋅ 8t (n1n2 − n1 − n2 − 3) ,

Zt (Pn1 ⊗ Pn2) =4 [1+ 2t + (n1 + n2 − 6) (2t−1 + 4t−1)]+ 4t [1+ (n1 − 3) (n2 − 3)] ,

χt (Pn1 ⊗ Pn2) =4 [4t + 5t + 6t (n1 + n2 − 6)]+ 23t+1 (n1 − 3) (n2 − 3)

for n1 ≥ n2 ≥ 3.

Theorem 6. Let Pn1 and Gr be a path and a r-regular of order n1 and n2, respectively. Then

DTI (Pn1 ⊗Gr) =2rn2 ϕr,2r + rn2 (n1 − 3) ϕ2r,2r

for n1 ≥ n2 ≥ 3.

Proof. By the definition of direct product, we obtain the basic information on Pn1 ⊗Gr in the following Table
5.

Table 5. The basic information on Pn1 ⊗Gr.

mr,2r m2r,2r
2rn2 rn2 (n1 − 3)

Thus we have
DTI (Pn1 ⊗Gr) = ∑

(i, j)∈K
mi, j (G) ϕi, j = 2rn2 ϕr,2r + rn2 (n1 − 3) ϕ2r,2r.

This completes the proof.

Corollary 6. Let Pn1 and Gr be a path and a r-regular of order n1 and n2, respectively. Then

Rt (Pn1 ⊗Gr) =2t+1r2t+1n2 + 22tr2t+1n2 (n1 − 3) ,

Zt (Pn1 ⊗Gr) = (2+ 2t) rtn2 + 2trtn2 (n1 − 3) ,

χt (Pn1 ⊗Gr) =2n2 ⋅ 3t ⋅ rt+1 + 4trt+1n2 (n1 − 3)

for n1 ≥ n2 ≥ 3.

Theorem 7. Let Gr and Pn2 be a r-regular and a path of order n1 and n2, respectively. Then

DTI (Gr ⊗ Pn2) = 2rn1 ϕr,2r + rn1 (n2 − 3) ϕ2r,2r

for n1 ≥ n2 ≥ 3.

Proof. By the definition of direct product, we obtain the basic information on Gr ⊗ Pn2 in the following Table
6.

Table 6. The basic information on Gr ⊗ Pn2 .

mr,2r m2r,2r
2rn1 rn1 (n2 − 3)

Thus we have
DTI (Gr ⊗ Pn2) = ∑

(i, j)∈K
mi, j (G) ϕi, j = 2rn1 ϕr,2r + rn1 (n2 − 3) ϕ2r,2r.

This completes the proof.
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Corollary 7. Let Gr and Pn2 be a r-regular and a path of order n1 and n2, respectively. Then

Rt (Gr ⊗ Pn2) =2t+1r2t+1n1 + 22tr2t+1n1 (n2 − 3) ,

Zt (Gr ⊗ Pn2) =rtn1 (2+ 2t)+ 2trtn1 (n2 − 3) ,

χt (Gr ⊗ Pn2) =2 ⋅ 3t ⋅ rt+1n1 + 4trt+1n1 (n2 − 3)

for n1 ≥ n2 ≥ 3.

Theorem 8. Let G1 and G2 be a r1-regular graph and a r2-regular graph with order n1 and n2, respectively. Then

DTI (G1 ⊗G2) =
r1r2n1n2

2
ϕr1r2,r1r2

for n1 ≥ n2 ≥ 2.

Proof. By the definition of direct product, we have G1 ⊗G2 is a r1r2-regular graph with r1r2n1n2
2 edges. Thus

DTI (G1 ⊗G2) = ∑
(i, j)∈K

mi, j (G) ϕi, j =
r1r2n1n2

2
ϕr1r2,r1r2 .

This completes the proof.

Corollary 8. Let G1 and G2 be a r1-regular graph and a r2-regular graph with order n1 and n2, respectively. Then

Rt (G1 ⊗G2) =
n1n2 (r1r2)2t+1

2
,

Zt (G1 ⊗G2) =n1n2 (r1r2)t ,

χt (G1 ⊗G2) =2t−1n1n2 (r1r2)t+1

for n1 ≥ n2 ≥ 2.

4. Strong product

Theorem 9. Let Pn1 and Pn2 be two path graphs of order n1 and n2, respectively. Then

DTI (Pn1 ⊠ Pn2) = 8ϕ3,5 + 4ϕ3,8 + 2 (n1 + n2 − 4) ϕ5,5 + (6n1 + 6n2 − 32) ϕ5,8 + [4n1n2 − 11 (n1 + n2)+ 30]ϕ8,8

for n1 ≥ n2 ≥ 3.

Proof. By the definition of strong product, we obtain the basic information on Pn1 ⊠ Pn2 in the following Table
7.

Table 7. The basic information on Pn1 ⊠ Pn2 .

m3,5 m3,8 m5,5 m5,8 m8,8
8 4 2 (n1 + n2)− 8 6 (n1 + n2)− 32 4n1n2 − 11 (n1 + n2)+ 30

Thus we have

DTI (Pn1 ⊠ Pn2) = ∑
(i, j)∈K

mi, j (G) ϕi, j

=8ϕ3,5 + 4ϕ3,8 + 2 (n1 + n2 − 4) ϕ5,5 + (6n1 + 6n2 − 32) ϕ5,8 + [4n1n2 − 11 (n1 + n2)+ 30]ϕ8,8.

This completes the proof.



Open J. Discret. Appl. Math. 2021, 4(3), 60-71 66

Corollary 9. Let Pn1 and Pn2 be two path graphs of order n1 and n2, respectively. Then

Rt (Pn1 ⊠ Pn2) =8 ⋅ 15t + 4 ⋅ 24t + 25t ⋅ [2 (n1 + n2 − 4)]+ 40t ⋅ (6n1 + 6n2 − 32)
+ 64t ⋅ [4n1n2 − 11 (n1 + n2)+ 30],

Zt (Pn1 ⊠ Pn2) =8 ⋅ (3t−1 + 5t−1)+ 4 ⋅ (3t−1 + 8t−1)+ 4 ⋅ 5t−1[(n1 + n2)− 4]
+ (6n1 + 6n2 − 32) ⋅ (5t−1 + 8t−1)+ 2 ⋅ 8t−1[4n1n2 − 11 (n1 + n2)+ 30],

χt (Pn1 ⊠ Pn2) =8t+1 + 4 ⋅ 11t + 10t ⋅ [2 (n1 + n2)− 8]+ 13t ⋅ (6n1 + 6n2 − 32)
+ 16t ⋅ [4n1n2 − 11 (n1 + n2)+ 30]

for n1 ≥ n2 ≥ 3.

Theorem 10. Let Pn1 and Gr be a path and a r-regular of order n1 and n2, respectively. Then

DTI (Pn1 ⊠Gr) = rn2 ϕ2r+1,2r+1 + 2 (r + 1)n2 ϕ2r+1,3r+2 +
1
2
[n1n2 (3r + 2)− 2n2 (4r + 3)] ϕ3r+2,3r+2

for n1 > n2 ≥ 2.

Proof. By the definition of strong product, we obtain the basic information on Pn1 ⊠Gr in the following Table
8.

Table 8. The basic information on Pn1 ⊠Gr.

m2r+1,2r+1 m2r+1,3r+2 m3r+2,3r+2
rn2 2 (r + 1)n2 n1n2 ( 3r

2 + 1)− n2 (4r + 3)

Thus we have

DTI (Pn1 ⊠Gr) = ∑
(i, j)∈K

mi, j (G) ϕi, j

=rn2 ϕ2r+1,2r+1 + 2 (r + 1)n2 ϕ2r+1,3r+2 +
1
2
[n1n2 (3r + 2)− 2n2 (4r + 3)] ϕ3r+2,3r+2.

This completes the proof.

Corollary 10. Let Pn1 and Gr be a path and a r-regular of order n1 and n2, respectively. Then

Rt (Pn1 ⊠Gr) =rn2 (2r + 1)2t + 2n2 (r + 1) (2r + 1)t (3r + 2)t + [n1n2 (
3r
2
+ 1)− n2 (4r + 3)] (3r + 2)2t ,

Zt (Pn1 ⊠Gr) =2rn2 (2r + 1)t−1 + 2n2 (r + 1) [(2r + 1)t−1 + (3r + 2)t−1]+ 2 (3r + 2)t−1 [n1n2 (
3r
2
+ 1)− n2 (4r + 3)] ,

χt (Pn1 ⊠Gr) =2trn2 (2r + 1)t + 2n2 (r + 1) (5r + 3)t + 2t (3r + 2)t [n1n2 (
3r
2
+ 1)− n2 (4r + 3)]

for n1 > n2 ≥ 2.

Theorem 11. Let Gr and Pn2 be a r-regular and a path of order n1 and n2, respectively. Then

DTI (Gr ⊠ Pn2) = rn1 ϕ2r+1,2r+1 + 2 (r + 1)n1 ϕ2r+1,3r+2 +
1
2
[n1n2 (3r + 2)− 2n1 (4r + 3)] ϕ3r+2,3r+2

for n1 ≥ n2 ≥ 3.

Proof. By the definition of strong product, we obtain the basic information on Gr ⊠ Pn2 in the following Table
9.
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Table 9. The basic information on Gr ⊠ Pn2 .

m2r+1,2r+1 m2r+1,3r+2 m3r+2,3r+2
rn1 2 (r + 1)n1 n1n2 ( 3r

2 + 1)− n1 (4r + 3)

Thus we have

DTI (Gr ⊠ Pn2) = ∑
(i, j)∈K

mi, j (G) ϕi, j

= rn1 ϕ2r+1,2r+1 + 2 (r + 1)n1 ϕ2r+1,3r+2 +
1
2
[n1n2 (3r + 2)− 2n1 (4r + 3)] ϕ3r+2,3r+2.

This completes the proof.

Corollary 11. Let Gr and Pn2 be a r-regular and a path of order n1 and n2, respectively. Then

Rt (Gr ⊠ Pn2) =rn1 (2r + 1)2t + 2n1 (r + 1) (2r + 1)t (3r + 2)t + (3r + 2)2t [n1n2 (
3r
2
+ 1)− n1 (4r + 3)] ,

Zt (Gr ⊠ Pn2) =2rn1 (2r + 1)t−1 + 2n1 (r + 1) [(2r + 1)t−1 + (3r + 2)t−1]+ 2 (3r + 2)t−1 [n1n2 (
3r
2
+ 1)− n1 (4r + 3)] ,

χt (Gr ⊠ Pn2) =2trn1 (2r + 1)t + 2n1 (r + 1) (5r + 3)t + 2t (3r + 2)t [n1n2 (
3r
2
+ 1)− n1 (4r + 3)]

for n1 ≥ n2 ≥ 3.

Theorem 12. Let G1 and G2 be a r1-regular graph and a r2-regular graph with order n1 and n2, respectively. Then

DTI (G1 ⊠G2) =
n1n2 (r1r2 + r1 + r2)

2
ϕr1r2+r1+r2,r1r2+r1+r2

for n1 ≥ n2 ≥ 2.

Proof. By the definition of strong product, we have G1 ⊠ G2 is a (r1r2 + r1 + r2)-regular graph with
n1n2(r1r2+r1+r2)

2 edges. Thus

DTI (G1 ⊠G2) = ∑
(i, j)∈K

mi, j (G) ϕi, j =
n1n2 (r1r2 + r1 + r2)

2
ϕr1r2+r1+r2,r1r2+r1+r2 .

This completes the proof.

Corollary 12. Let G1 and G2 be a r1-regular graph and a r2-regular graph with order n1 and n2, respectively. Then

Rt (G1 ⊠G2) =
n1n2 (r1r2 + r1 + r2)2t+1

2
,

Zt (G1 ⊠G2) =n1n2 (r1r2 + r1 + r2)t ,

χt (G1 ⊠G2) =2t−1n1n2 (r1r2 + r1 + r2)t+1

for n1 ≥ n2 ≥ 2.

5. Lexicographic product

Theorem 13. Let Pn1 and Pn2 be two path graphs of order n1 and n2, respectively. Then

DTI (Pn1[Pn2]) = 4ϕn2+1,n2+2 + 8ϕn2+1,2n2+1 + 4 (n2 − 2) ϕn2+1,2n2+2 + 2 (n2 − 3) ϕn2+2,n2+2 + 4 (n2 − 2) ϕn2+2,2n2+1

+ 2 (n2 − 2)2 ϕn2+2,2n2+2 + 4 (n1 − 3) ϕ2n2+1,2n2+1 + [2 (n1 − 2)+ 4 (n1 − 3) (n2 − 2)]ϕ2n2+1,2n2+2

+ [(n1 − 2) (n2 − 3)+ (n1 − 3) (n2 − 2)2]ϕ2n2+2,2n2+2
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for n1 ≥ n2 ≥ 3.

Proof. By the definition of lexicographic product, we obtain the basic information on Pn1[Pn2] in the following
Table 10.

Table 10. The basic information on Pn1[Pn2].

mn2+1,n2+2 4
mn2+1,2n2+1 8
mn2+1,2n2+2 4 (n2 − 2)
mn2+2,n2+2 2 (n2 − 3)
mn2+2,2n2+1 4 (n2 − 2)
mn2+2,2n2+2 2 (n2 − 2)2

m2n2+1,2n2+1 4 (n1 − 3)
m2n2+1,2n2+2 2 (n1 − 2)+ 4 (n1 − 3) (n2 − 2)
m2n2+2,2n2+2 (n1 − 2) (n2 − 3)+ (n1 − 3) (n2 − 2)2

Thus we have

DTI (Pn1[Pn2]) = ∑
(i, j)∈K

mi, j (G) ϕi, j

=4ϕn2+1,n2+2 + 8ϕn2+1,2n2+1 + 4 (n2 − 2) ϕn2+1,2n2+2

+ 2 (n2 − 3) ϕn2+2,n2+2 + 4 (n2 − 2) ϕn2+2,2n2+1 + 2 (n2 − 2)2 ϕn2+2,2n2+2

+ 4 (n1 − 3) ϕ2n2+1,2n2+1 + [2 (n1 − 2)+ 4 (n1 − 3) (n2 − 2)]ϕ2n2+1,2n2+2

+ [(n1 − 2) (n2 − 3)+ (n1 − 3) (n2 − 2)2]ϕ2n2+2,2n2+2.

This completes the proof.

Corollary 13. Let Pn1 and Pn2 be two path graphs of order n1 and n2, respectively. Then

Rt (Pn1[Pn2]) =4[(n2 + 1) (n2 + 2)]t + 8[(n2 + 1) (2n2 + 1)]t + 4 (n2 − 2) [(n2 + 1) (2n2 + 2)]t

+ 2 (n2 − 3) (n2 + 2)2t + 4 (n2 − 2) [(n2 + 2) (2n2 + 1)]t

+ 2 (n2 − 2)2 [(n2 + 2) (2n2 + 2)]t + 4 (n1 − 3) (2n2 + 1)2t

+ [2 (n1 − 2)+ 4 (n1 − 3) (n2 − 2)][(2n2 + 1) (2n2 + 2)]t

+ [(n1 − 2) (n2 − 3)+ (n1 − 3) (n2 − 2)2] (2n2 + 2)2t ,

Zt (Pn1[Pn2]) =4[(n2 + 1)t−1 + (n2 + 2)t−1]+ 8[(n2 + 1)t−1 + (2n2 + 1)t−1]

+ 4 (n2 − 2) [(n2 + 1)t−1 + (2n2 + 2)t−1]+ 4 (n2 − 3) (n2 + 2)t−1

+ 4 (n2 − 2) [(n2 + 2)t−1 + (2n2 + 1)t−1]+ 2 (n2 − 2)2 [(n2 + 2)t−1

+ (2n2 + 2)t−1]+ 8 (n1 − 3) (2n2 + 1)t−1

+ [2 (n1 − 2)+ 4 (n1 − 3) (n2 − 2)][(2n2 + 1)t−1 + (2n2 + 2)t−1]

+ 2 (2n2 + 2)t−1 [(n1 − 2) (n2 − 3)+ (n1 − 3) (n2 − 2)2],
χt (Pn1[Pn2]) =4 (2n2 + 3)t + 8 (3n2 + 2)t + 8 ⋅ 3t ⋅ (n2 − 2) (n2 + 1)t + 2 (n2 − 3) (2n2 + 4)t

+ 2 (n2 − 2)2 (3n2 + 4)t + 4 (n1 − 3) (4n2 + 2)t

+ [2 (n1 − 2)+ 4 (n1 − 3) (n2 − 2)] (4n2 + 3)t

+ 4t (n2 + 1)t [(n1 − 2) (n2 − 3)+ (n1 − 3) (n2 − 2)2]

for n1 ≥ n2 ≥ 3.



Open J. Discret. Appl. Math. 2021, 4(3), 60-71 69

Table 12. The basic information on Gr[Pn2].

mrn2+1,rn2+1 mrn2+1,rn2+2 mrn2+2,rn2+2

2rn1 2n1[1+ r (n2 − 2)] n1 (n2 − 3)+ rn1(n2−2)2

2

Theorem 14. Let Pn1 and Gr be a path and a r-regular of order n1 and n2, respectively. Then

DTI (Pn1 [Gr]) = rn2 ϕr+n2,r+n2 + 2n2
2 ϕr+n2,2n2+r +

1
2
[rn2 (n1 − 2)+ 2 (n1 − 3)n2

2] ϕ2n2+r,2n2+r

for n1 > n2 ≥ 2.

Proof. By the definition of lexicographic product, we obtain the basic information on Pn1[Gr] in the following
Table 11.

Table 11. The basic information on Pn1[Gr].

mr+n2,r+n2 mr+n2,2n2+r m2n2+r,2n2+r

rn2 2n2
2

rn2 (n1 − 2)
2

+ n2
2 (n1 − 3)

Thus we have

DTI (Pn1 [Gr]) = ∑
(i, j)∈K

mi, j (G) ϕi, j

=rn2 ϕr+n2,r+n2 + 2n2
2 ϕr+n2,2n2+r +

1
2
[rn2 (n1 − 2)+ 2 (n1 − 3)n2

2] ϕ2n2+r,2n2+r.

This completes the proof.

Corollary 14. Let Pn1 and Gr be a path and a r-regular of order n1 and n2, respectively. Then

Rt (Pn1 [Gr]) =rn2 (r + n2)2t + 2n2
2 (r + n2)t (2n2 + r)t + [ rn2 (n1 − 2)

2
+ (n1 − 3)n2

2] (2n2 + r)2t ,

Zt (Pn1 [Gr]) =2rn2 (r + n2)t−1 + 2n2
2 [(r + n2)t−1 + (2n2 + r)t−1]+ [rn2 (n1 − 2)+ 2 (n1 − 3)n2

2] (2n2 + r)t−1 ,

χt (Pn1 [Gr]) =2trn2 (r + n2)t + 2n2
2 (2r + 3n2)t + 2t [ rn2 (n1 − 2)

2
+ (n1 − 3)n2

2] (2n2 + r)t

for n1 > n2 ≥ 2.

Theorem 15. Let Gr and Pn2 be a r-regular and a path of order n1 and n2, respectively. Then

DTI (Gr[Pn2]) = 2rn1 ϕrn2+1,rn2+1 + 2n1 [1+ r (n2 − 2)] ϕrn2+1,rn2+2 +
1
2
[2n1 (n2 − 3)+ rn1 (n2 − 2)2] ϕrn2+2,rn2+2

for n1 ≥ n2 ≥ 3.

Proof. By the definition of lexicographic product, we obtain the basic information on Gr[Pn2] in the following
Table 12. Thus we have

DTI (Gr[Pn2]) = ∑
(i, j)∈K

mi, j (G) ϕi, j

=2rn1 ϕrn2+1,rn2+1 + 2n1 [1+ r (n2 − 2)] ϕrn2+1,rn2+2 +
1
2
[2n1 (n2 − 3)+ rn1 (n2 − 2)2] ϕrn2+2,rn2+2.

This completes the proof.
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Corollary 15. Let Gr and Pn2 be a r-regular and a path of order n1 and n2, respectively. Then

Rt (Gr [Pn2]) =2rn1 (rn2 + 1)2t + 2n1 [1+ r (n2 − 2)] [(rn2 + 1) (rn2 + 2)]t

+
⎡⎢⎢⎢⎣

n1 (n2 − 3)+ rn1 (n2 − 2)2

2

⎤⎥⎥⎥⎦
(rn2 + 2)2t ,

Zt (Gr [Pn2]) =4rn1 (rn2 + 1)t−1 + 2n1 [1+ r (n2 − 2)] [(rn2 + 1)t−1 + (rn2 + 2)t−1]

+ [2n1 (n2 − 3)+ rn1 (n2 − 2)2] (rn2 + 2)t−1 ,

χt (Gr [Pn2]) =2t+1rn1 (rn2 + 1)t + 2n1 [1+ r (n2 − 2)] (2rn2 + 3)t

+ 2t
⎡⎢⎢⎢⎣

n1 (n2 − 3)+ rn1 (n2 − 2)2

2

⎤⎥⎥⎥⎦
(rn2 + 2)t

for n1 ≥ n2 ≥ 3.

Theorem 16. Let G1 and G2 be a r1-regular graph and a r2-regular graph with order n1 and n2, respectively. Then

DTI (G1[G2]) =
1
2

n1n2 (r2 + r1n2) ϕr1n2+r2,r1n2+r2

for n1 ≥ n2 ≥ 2.

Proof. By the definition of lexicographic product, we have G1[G2] is a (r1n2 + r2)-regular graph. Thus

DTI (G1[G2]) = ∑
(i, j)∈K

mi, j (G) ϕi, j =
1
2

n1n2 (r2 + r1n2) ϕr1n2+r2,r1n2+r2 .

This completes the proof.

Corollary 16. Let G1 and G2 be a r1-regular graph and a r2-regular graph with order n1 and n2, respectively. Then

Rt (G1[G2]) =
n1n2 (r2 + r1n2)2t+1

2
,

Zt (G1[G2]) =n1n2 (r2 + r1n2)t ,

χt (G1[G2]) =2t−1n1n2 (r2 + r1n2)t+1

for n1 ≥ n2 ≥ 2.

6. Conclusion

In this paper, we give a unified approach to solve the computational problems of degree-based topological
indices of standard product graphs for the path, star and regular graphs. It is imaginable to use other graph
operations to calculate degree-based topological indices uniformly in the future.
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