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Abstract: Let G be a simple graph with vertex set V = {v1,v,...,v,}, and let d; be the degree of the vertex v;.
The Sombor matrix of G is the square matrix Agp of order n, whose (i, j)-element is dlz +d? if v; and v;j are
adjacent, and zero otherwise. We study the characteristic polynomial, spectrum, and energy of Agp. A few
results for the coefficients of the characteristic polynomial, and bounds for the energy of Agp are established.
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1. Introduction

T he Sombor index SO is a recently introduced vertex-degree-based topological index [1]. It promptly
attracted much attention and its mathematical properties and chemical applications became a topic of

a remarkably large number of studies, e.g., [2-9]. Also promptly, the concept of Sombor index was extended to
linear algebra, by defining the Sombor matrix, which then led to the investigation of its spectrum and various
spectrum-based properties [10-14]. In particular, the energy of the Sombor matrix was much examined [11-14].
In the present paper we report a few additional results on this matter, with emphasis on the characteristic
polynomial and energy.

In this paper, we considered simple, finite, undirected, and connected graphs. Let G be such a graph, with
vertex set V(G) and edge set E(G). If two vertices have a common edge then they are said to be adjacent. If the
vertices u and v are adjacent, then the edge connecting them is denoted by uv. The number of edges incident
to a vertex v is called the degree of that vertex v, and is denoted by .

In the mathematical and chemical literature, a great number of vertex-degree-based graph invariants of
the form

TI=TI(G)= ) ¢(dudv) M
uveE(G)

have been considered, where ¢ is a suitably chosen function, with property ¢(x,y) = ¢(y, x). These invariants
are usually referred to as topological indices. Among them are the forgotten topological index [15]

F(G)= Y (di+d3)= Y d,

uveE(G) ueV(G)
the Sombor index [1]
SO(G) = Z \/d2 +d3,
uveE(G)

and many other [16,17].
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The adjacency matrix A(G) = (ai]-)nxn of the graph G with vertex set V(G) = {v1,vp,...,0,}, is the
symmetric matrix of order n, whose elements are defined as [18]:

1 if v;v; € E(G)
Ell']' = 0 if UiU]' ¢ E(G) (2)
0 ifi=].

The characteristic polynomial of A(G) is ¢(G, A) = det[A L, — A(G)], where I,, is the unit matrix of order 1 [18].
The eigenvalues A, Ay, ..., A, of A(G) form the spectrum of the graph G [18]. Recall that these eigenvalues
coincide with the zeros of ¢(G, A).

The energy of the graph G is defined as [19]:

En(G) - ém.

The theory of graph spectra, including the theory of graph energy, is nowadays a well elaborated part
of discrete mathematics. In parallel with the above specified graph-spectral concepts, we now introduce their
Sombor-index-related counterparts. The following definition is an application to the Sombor index of the
general spectral theory of matrices associated with vertex-degree-based topological indices of the form (1)
[20-22].

Definition 1. (1) The Sombor matrix Aso(G) = (s0jj)uxn Of the graph G with vertex set V(G) =
{v1,v2,...,04}, is the symmetric matrix of order n, whose elements are

/43, +d%], if v;v; € E(G)
S0 = 0 if v;vj ¢ E(G) ®3)
0 ifi=j.

(2) The Sombor characteristic polynomial of the graph G is ¢50(G, A) = det [)\ I,-Aso (G)] We will write it
in the form

$s0(G,A) = > 50(G, k) A" F.
k>0

(8) The eigenvalues 01,0y, ...,0, of the Sombor matrix Ago(G) form the Sombor spectrum of the graph G.
(4) The Sombor energy of the graph G is

Engo(G) = ;|‘7i|- 4)

Since Asp(G) is a real symmetric matrix, all its eigenvalues, i.e., all roots of ¢so(G,A) = 0, are real. Thus,
they can be arranged as o7 > 0 > -+ > 0y,.

Remark 1. Comparing Equations (2) and (3), we see that the Sombor matrix can be viewed as the ordinary
adjacency matrix of a graph with weighted edges, such that the weight of the edge v;v; is [d3, + d%j. This
observation allows us to apply to the Sombor matrix and its spectrum the standard methods ot graph spectral
theory [18], in particular the Sachs coefficient theorem [23].

2. Preliminaries

The following elementary spectral properties of the Sombor matrix were recognized in several earlier
studies [10-14].

Lemma 1. Let G be a graph with Sombor eigenvalues 01,09, ..., 0. Then

n
ZU’Z' =0,
i=1
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n

> 0'1-2 =2F(G), ©)
i=1

n

Sop=6Y [1 Vdi+d3, ©)
i=1 A uveE(A)

ot, equivalently,
s0(G,1) =0,

so(G,2) =-F(G),

s0(G,3)=-2% [] Vda+d3,

A uveE(A)

where Y. o indicates summation over all triangles contained in the graph G.
Formula (6) can be generalized as follows:

Lemma 2. Let p be the size of smallest odd cycle contained in the graph G, and let ¢, indicate summation over all
cycles of size p contained in G. Then forq=1,3,...,p-2,

3 q
o/ =0 )
i=1
whereas ;
o =2p% 1 di+ds
i=1 Cp uveE(Cp)

or, equivalently,

so(Gp)=-2> TI dz+d?.
Cp uveE(Cp)

If G does not possess odd cycles, i.e., if G is bipartite, then relations (7) and so(G, q) = 0 hold for all odd values of q.
Proof. Take into account Remark 1, and use the analogous result for ordinary graphs [18]. O

Lemma 3. [24,25] Suppose that a; and b; are non negative real numbers for 1 <i <n. Then,

2 2
n n 1 M; M. my m (" )
2 2 [Mi My [mymy
a; by )<= + a;b;
(; ’)(; Z) 4( my 1y Mle) ; o

where M1 = maxa; , My = maxb;, mq = min a;, and mp = min b; .
1<i<n 1<i<n 1<i<n 1<i<n

Lemma 4. [24,25] Using the same notation as in Lemma 3,

n n n 2 2
(Z“zz) (szz) - (Z a bz‘) < T (My My —mymy)? .
i=1 i=1 i=1 4

3. New bounds for Sombor energy

Various lower and upper bounds for Sombor energy were already reported in [10-13]. In this section we
establish a few more.

We first recall a result by Lin and Miao [13], that can be stated in terms of traces of the Sombor matrix.
It should be compared with the below Theorem 2. The upper bound was obtained also in [12]. Note that
tr(Aso(G)?) = 2F(G) follows from Equation (5).
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Theorem 1. [13] Denote the trace of a square matrix M by tr(M). Let G be a graph on n vertices. Then

V1r(Aso(G)?) < Engo(G) <y/ntr(Aso(G)?)
V2F(G) < Engo(G) < \/2n F(G).

Theorem 2. Let G be a non-trivial graph. Then

[tr(Aso(G)))]'
Frote) ZJ (Aso(G))

ie.,

Proof. By the Holder inequality,
n n p s n 1/g
ZﬂibiS(Zﬂf) (Zb?)
i=1 i=1 i=1

where, a;,b; e R*, (i=1,2,3...,n). Setting a; = |ai|2/3, b; = |¢71-|4/3, p=3/2,and q = 3, we get

n ) n 2/3 / . 1/3
o s(z(m) (zw)
i=1 i=1 i=1

which by Equation (4), and bearing in mind that since G is not an empty graph and thus Y., |o;|* # 0, yields

Theorem 2. O

Theorem 3. If oy is the greatest Sombor eigenvalue, then Engo(G) < 20y. For connected graphs, equality holds if and
only if G is a complete bipartite graph.

Proof. Bearing in mind Equation (4),
n

Enso(G) =lo|+ ) loil > o | +
i=2

n

ol .

i=2

On the other hand,

n
Y>0i=0 = o01=-),0; andso |o|=
i=2

n

ZO’Z' .

i=2

Equality holds if 07 and oy, are the only non-zero eigenvalues. In view of Remark 1, this happens only if
G is a complete bipartite graph. O

Theorem 4. Let G be a graph with n vertices. If no Sombor eigenvalue of G is equal to zero, then

8n F(G)oy0s

Enso(G) 2
|| + ||

where, |oy| and |os| are, respectively, the largest and smallest absolute values of the eigenvalues in the Sombor spectrum
of G. Of course, |oy| = 0y.

Proof. Setting in Lemma 3, 4; = |0;] and b; =1 for 1 < i < n, we get

(2e) (3 i(@ @) i)
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where |0y = max{\c71|} and |os| = 1min{|c7i|}. Then
<i<n

2F(G)n < (\W \IE) lel

and thus a4 o4
o)+ |os
8nF(G) <| —=—— | Enso(G
VBTG < (12 Engo )
which straightforwardly leads to Theorem 4. O

Theorem 5. Let G be a connected graph with n vertices, and oy, s same as in Theorem 4. Then

)
Enso(G) > \/2” F(G)- Z(W' = los])

Proof. Setting in Lemma 4, a; = |0;] and b; =1 for 1 < i < n, we get

(1) (331) - (Se) < -t

i=1

implying

N

2F(G)n - Enso(G) < - (lot] = [ex))”.

Theorem 5 follows. O

4. On Sombor energy of trees

In this section we focus our attention to trees. Let T be a tree on n vertices, n > 2. The main result in the
spectral theory of trees is the formula [18,26,27]

O(T,A) = A"+ 3 (1) m(T, k) A" (8)
k>1

where m(T, k) stands for the number of k-matchings (= selections of k mutually independent edges) in the tree
T. By definition, m(T,1) =n-1.

As explained in Remark 1, the matrix Aso(G) can be viewed as the adjacency matrix of a graph with
weighted edges. This, of course, applies also to trees.

According to the Sachs coefficient theorem [18,23], for the Sombor characteristic polynomial of a tree T,
an expression analogous to Equation (8) would hold, namely

pso(T,A) = A"+ kZ(—l)k mso(T,k) A"~ )
>1

The coefficient mgso (T, k) is equal to the sum of weights coming from all k-matchings of T. Each particular
k-matching contributes to mso(T,k) by the product of the squares of the terms \/d2 +d3, pertaining to the
edges contained in that matching [23]. Thus, let M be a distinct k-matching of T, and let M (k) be the set of all
such k-matchings. Then for k > 1, M (k) consists of m(T, k) elements, i.e., M (k)| = m(T, k).

The weight of a single matching M is equal to [] (d2 +d3) and therefore
uveM

mso(T,k) = 3. I (dy+d) (10)
MeM (k) uveM
provided M(k) # @. If, on the other hand, M(k) = @, then mgo(T, k) = 0.
We thus see that the coefficients mgo (T, k) are positive if m(T,k) > 0 and are equal to zero if m(T, k) = 0.
This implies:
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Theorem 6. The inertia of the Sombor matrix and of the ordinary adjacency matrix of any tree coincide.

The energy of a tree can be computed from its matching polynomial as [28]:

En(T) = 2 / ax ln[l + 3 m(T, k) ka]dx. (11)
Tt x k>1
O <=
The analogous expression for the Sombor energy is
Enso(T) = = f d—f ln[l +3 mso(T, k) x2k:| dx (12)
T 0 x k>1

and can be obtained in the exactly same manner as Equation (11) [28,29].

Since, evidently, mgo (T, k) > m(T, k) holds whenever the tree T has at least one k-matching, by comparing

Equations (11) and (12), we immediately arrive at:

Theorem 7. For any tree T, Enso(T) > En(T).
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