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On characteristic polynomial and energy of Sombor matrix

Gowtham Kalkere Jayanna1 and Ivan Gutman2,∗

1 Department of Mathematics, University College of Science, Tumkur University, Tumakuru, India.
2 Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia.
* Correspondence: gutman@kg.ac.rs

Academic Editor: Aisha Javed
Received: 1 October 2021; Accepted: 25 October 2021; Published: 31 October 2021.

Abstract: Let G be a simple graph with vertex set V = {v1, v2, . . . , vn}, and let di be the degree of the vertex vi.
The Sombor matrix of G is the square matrix ASO of order n, whose (i, j)-element is

√
d2

i + d2
j if vi and vj are

adjacent, and zero otherwise. We study the characteristic polynomial, spectrum, and energy of ASO. A few
results for the coefficients of the characteristic polynomial, and bounds for the energy of ASO are established.
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1. Introduction

T he Sombor index SO is a recently introduced vertex-degree-based topological index [1]. It promptly
attracted much attention and its mathematical properties and chemical applications became a topic of

a remarkably large number of studies, e.g., [2–9]. Also promptly, the concept of Sombor index was extended to
linear algebra, by defining the Sombor matrix, which then led to the investigation of its spectrum and various
spectrum–based properties [10–14]. In particular, the energy of the Sombor matrix was much examined [11–14].
In the present paper we report a few additional results on this matter, with emphasis on the characteristic
polynomial and energy.

In this paper, we considered simple, finite, undirected, and connected graphs. Let G be such a graph, with
vertex set V(G) and edge set E(G). If two vertices have a common edge then they are said to be adjacent. If the
vertices u and v are adjacent, then the edge connecting them is denoted by uv. The number of edges incident
to a vertex v is called the degree of that vertex v, and is denoted by dv.

In the mathematical and chemical literature, a great number of vertex-degree-based graph invariants of
the form

TI = TI(G) = ∑
uv∈E(G)

ϕ(du, dv) (1)

have been considered, where ϕ is a suitably chosen function, with property ϕ(x, y) = ϕ(y, x). These invariants
are usually referred to as topological indices. Among them are the forgotten topological index [15]

F(G) = ∑
uv∈E(G)

(d2
u + d2

v) = ∑
u∈V(G)

d3
u,

the Sombor index [1]

SO(G) = ∑
uv∈E(G)

√
d2

u + d2
v,

and many other [16,17].
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The adjacency matrix A(G) = (aij)n×n of the graph G with vertex set V(G) = {v1, v2, . . . , vn}, is the
symmetric matrix of order n, whose elements are defined as [18]:

aij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if vivj ∈ E(G)
0 if vivj /∈ E(G)
0 if i = j .

(2)

The characteristic polynomial of A(G) is φ(G, λ) = det [λ In −A(G)], where In is the unit matrix of order n [18].
The eigenvalues λ1, λ2, . . . , λn of A(G) form the spectrum of the graph G [18]. Recall that these eigenvalues
coincide with the zeros of φ(G, λ).

The energy of the graph G is defined as [19]:

En(G) =
n
∑
i=1

∣λi∣ .

The theory of graph spectra, including the theory of graph energy, is nowadays a well elaborated part
of discrete mathematics. In parallel with the above specified graph-spectral concepts, we now introduce their
Sombor-index-related counterparts. The following definition is an application to the Sombor index of the
general spectral theory of matrices associated with vertex-degree-based topological indices of the form (1)
[20–22].

Definition 1. (1) The Sombor matrix ASO(G) = (soij)n×n of the graph G with vertex set V(G) =
{v1, v2, . . . , vn}, is the symmetric matrix of order n, whose elements are

soij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
d2

vi
+ d2

vj
if vivj ∈ E(G)

0 if vivj /∈ E(G)
0 if i = j .

(3)

(2) The Sombor characteristic polynomial of the graph G is φSO(G, λ) = det [λ In −ASO(G)]. We will write it
in the form

φSO(G, λ) =∑
k≥0

so(G, k)λn−k .

(3) The eigenvalues σ1, σ2, . . . , σn of the Sombor matrix ASO(G) form the Sombor spectrum of the graph G.
(4) The Sombor energy of the graph G is

EnSO(G) =
n
∑
i=1

∣σi∣ . (4)

Since ASO(G) is a real symmetric matrix, all its eigenvalues, i.e., all roots of φSO(G, λ) = 0, are real. Thus,
they can be arranged as σ1 ≥ σ2 ≥ ⋯ ≥ σn.

Remark 1. Comparing Equations (2) and (3), we see that the Sombor matrix can be viewed as the ordinary
adjacency matrix of a graph with weighted edges, such that the weight of the edge vivj is

√
d2

vi
+ d2

vj
. This

observation allows us to apply to the Sombor matrix and its spectrum the standard methods of graph spectral
theory [18], in particular the Sachs coefficient theorem [23].

2. Preliminaries

The following elementary spectral properties of the Sombor matrix were recognized in several earlier
studies [10–14].

Lemma 1. Let G be a graph with Sombor eigenvalues σ1, σ2, . . . , σn. Then

n
∑
i=1

σi =0,



Open J. Discret. Appl. Math. 2021, 4(3), 29-35 31

n
∑
i=1

σ2
i =2F(G), (5)

n
∑
i=1

σ3
i =6∑

∆
∏

uv∈E(∆)

√
d2

u + d2
v, (6)

or, equivalently,

so(G, 1) = 0,

so(G, 2) = −F(G),

so(G, 3) = −2∑
∆
∏

uv∈E(∆)

√
d2

u + d2
v,

where ∑∆ indicates summation over all triangles contained in the graph G.

Formula (6) can be generalized as follows:

Lemma 2. Let p be the size of smallest odd cycle contained in the graph G, and let ∑Cp indicate summation over all
cycles of size p contained in G. Then for q = 1, 3, . . . , p − 2,

n
∑
i=1

σ
q
i = 0 (7)

whereas
n
∑
i=1

σ
p
i = 2p∑

Cp

∏
uv∈E(Cp)

√
d2

u + d2
v

or, equivalently,

so(G, p) = −2∑
Cp

∏
uv∈E(Cp)

√
d2

u + d2
v .

If G does not possess odd cycles, i.e., if G is bipartite, then relations (7) and so(G, q) = 0 hold for all odd values of q.

Proof. Take into account Remark 1, and use the analogous result for ordinary graphs [18].

Lemma 3. [24,25] Suppose that ai and bi are non negative real numbers for 1 ≤ i ≤ n. Then,

(
n
∑
i=1

a2
i )(

n
∑
i=1

b2
i ) ≤ 1

4
⎛
⎝

√
M1 M2

m1 m2
+
√

m1 m2

M1 M2

⎞
⎠

2

(
n
∑
i=1

ai bi)
2

where M1 = max
1≤i≤n

ai , M2 = max
1≤i≤n

bi , m1 = min
1≤i≤n

ai , and m2 = min
1≤i≤n

bi .

Lemma 4. [24,25] Using the same notation as in Lemma 3,

(
n
∑
i=1

a2
i )(

n
∑
i=1

b2
i )− (

n
∑
i=1

ai bi)
2

≤ n2

4
(M1 M2 −m1 m2)2 .

3. New bounds for Sombor energy

Various lower and upper bounds for Sombor energy were already reported in [10–13]. In this section we
establish a few more.

We first recall a result by Lin and Miao [13], that can be stated in terms of traces of the Sombor matrix.
It should be compared with the below Theorem 2. The upper bound was obtained also in [12]. Note that
tr(ASO(G)2) = 2F(G) follows from Equation (5).
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Theorem 1. [13] Denote the trace of a square matrix M by tr(M). Let G be a graph on n vertices. Then

√
tr(ASO(G)2) ≤ EnSO(G) ≤

√
n tr(ASO(G)2)

i.e., √
2F(G) ≤ EnSO(G) ≤

√
2n F(G) .

Theorem 2. Let G be a non-trivial graph. Then

EnSO(G) ≥

¿
ÁÁÁÀ[tr(ASO(G)2)]3

tr(ASO(G)4)
.

Proof. By the Hölder inequality,
n
∑
i=1

ai bi ≤ (
n
∑
i=1

ap
i )

1/p
(

n
∑
i=1

bq
i )

1/q

where, ai, bi ∈ R+, (i = 1, 2, 3 . . . , n). Setting ai = ∣σi∣2/3, bi = ∣σi∣4/3, p = 3/2, and q = 3, we get

n
∑
i=1

∣σi∣2 ≤ (
n
∑
i=1

∣σi∣)
2/3

(
n
∑
i=1

∣σi∣4)
1/3

which by Equation (4), and bearing in mind that since G is not an empty graph and thus ∑n
i=1 ∣σi∣4 ≠ 0, yields

Theorem 2.

Theorem 3. If σ1 is the greatest Sombor eigenvalue, then EnSO(G) ≤ 2σ1. For connected graphs, equality holds if and
only if G is a complete bipartite graph.

Proof. Bearing in mind Equation (4),

EnSO(G) = ∣σ1∣+
n
∑
i=2

∣σi∣ ≥ ∣σ1∣+ ∣
n
∑
i=2

σi∣ .

On the other hand,
n
∑
i=1

σi = 0 Ô⇒ σ1 = −
n
∑
i=2

σi and so ∣σ1∣ = ∣
n
∑
i=2

σi∣ .

Equality holds if σ1 and σn are the only non-zero eigenvalues. In view of Remark 1, this happens only if
G is a complete bipartite graph.

Theorem 4. Let G be a graph with n vertices. If no Sombor eigenvalue of G is equal to zero, then

EnSO(G) ≥

¿
ÁÁÀ8n F(G)σ` σs

∣σ`∣+ ∣σs∣

where, ∣σ`∣ and ∣σs∣ are, respectively, the largest and smallest absolute values of the eigenvalues in the Sombor spectrum
of G. Of course, ∣σ`∣ = σ1.

Proof. Setting in Lemma 3, ai = ∣σi∣ and bi = 1 for 1 ≤ i ≤ n, we get

(
n
∑
i=1

∣σi∣2)(
n
∑
i=1

1) ≤ 1
4

⎛
⎜
⎝

¿
ÁÁÀ∣σ`∣

∣σs∣
+

¿
ÁÁÀ∣σs∣

∣σ`∣

⎞
⎟
⎠

2

(
n
∑
i=1

∣σi∣)
2

,
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where ∣σ`∣ = max
1≤i≤n

{∣σi∣} and ∣σs∣ = min
1≤i≤n

{∣σi∣}. Then

2F(G)n ≤ 1
4

⎛
⎜
⎝

¿
ÁÁÀ∣σ`∣

∣σs∣
+

¿
ÁÁÀ∣σs∣

∣σ`∣

⎞
⎟
⎠

2

(
n
∑
i=1

∣σi∣)
2

and thus
√

8n F(G) ≤ ( ∣σ`∣+ ∣σs∣√
σ` σs

) EnSO(G)

which straightforwardly leads to Theorem 4.

Theorem 5. Let G be a connected graph with n vertices, and σ` , σs same as in Theorem 4. Then

EnSO(G) ≥

√

2n F(G)− n2

4
(∣σ`∣− ∣σs∣)

Proof. Setting in Lemma 4, ai = ∣σi∣ and bi = 1 for 1 ≤ i ≤ n, we get

(
n
∑
i=1

∣σi∣2)(
n
∑
i=1

1)− (
n
∑
i=1

∣σi∣)
2

≤ n2

4
(∣σ`∣− ∣σs∣)2 ,

implying

2F(G)n − EnSO(G)2 ≤ n2

4
(∣σ`∣− ∣σs∣)2 .

Theorem 5 follows.

4. On Sombor energy of trees

In this section we focus our attention to trees. Let T be a tree on n vertices, n ≥ 2. The main result in the
spectral theory of trees is the formula [18,26,27]

φ(T, λ) = λn +∑
k≥1

(−1)k m(T, k)λn−2k (8)

where m(T, k) stands for the number of k-matchings (= selections of k mutually independent edges) in the tree
T. By definition, m(T, 1) = n − 1.

As explained in Remark 1, the matrix ASO(G) can be viewed as the adjacency matrix of a graph with
weighted edges. This, of course, applies also to trees.

According to the Sachs coefficient theorem [18,23], for the Sombor characteristic polynomial of a tree T,
an expression analogous to Equation (8) would hold, namely

φSO(T, λ) = λn +∑
k≥1

(−1)k mSO(T, k)λn−2k . (9)

The coefficient mSO(T, k) is equal to the sum of weights coming from all k-matchings of T. Each particular
k-matching contributes to mSO(T, k) by the product of the squares of the terms

√
d2

u + d2
v, pertaining to the

edges contained in that matching [23]. Thus, let M be a distinct k-matching of T, and letM(k) be the set of all
such k-matchings. Then for k ≥ 1, M(k) consists of m(T, k) elements, i.e., ∣M(k)∣ = m(T, k).

The weight of a single matching M is equal to ∏
uv∈M

(d2
u + d2

v) and therefore

mSO(T, k) = ∑
M∈M(k)

∏
uv∈M

(d2
u + d2

v) (10)

providedM(k) ≠ ∅. If, on the other hand,M(k) = ∅, then mSO(T, k) = 0.
We thus see that the coefficients mSO(T, k) are positive if m(T, k) > 0 and are equal to zero if m(T, k) = 0.

This implies:
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Theorem 6. The inertia of the Sombor matrix and of the ordinary adjacency matrix of any tree coincide.

The energy of a tree can be computed from its matching polynomial as [28]:

En(T) = 2
π

∞

∫
0

dx
x2 ln

⎡⎢⎢⎢⎣
1+∑

k≥1
m(T, k) x2k

⎤⎥⎥⎥⎦
dx . (11)

The analogous expression for the Sombor energy is

EnSO(T) = 2
π

∞

∫
0

dx
x2 ln

⎡⎢⎢⎢⎣
1+∑

k≥1
mSO(T, k) x2k

⎤⎥⎥⎥⎦
dx (12)

and can be obtained in the exactly same manner as Equation (11) [28,29].
Since, evidently, mSO(T, k) > m(T, k) holds whenever the tree T has at least one k-matching, by comparing

Equations (11) and (12), we immediately arrive at:

Theorem 7. For any tree T, EnSO(T) > En(T).
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[17] Vukičević, D., & Gašperov, M. (2010). Bond additive modeling 1. Adriatic indices. Croatica Chemica Acta, 83, 243–260.
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