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Abstract: The temporal dynamics of games have been studied widely in evolutionary spatial game theory
using simulation. Each player is usually represented by a vertex of a graph and plays a particular game
against every adjacent player independently. These games result in payoffs to the players which affect
their relative fitness. The fitness of a player, in turn, affects its ability to reproduce. In this paper, we
analyse the temporal dynamics of the evolutionary 2-person, 2-strategy snowdrift game in which players
are arranged along a cycle of arbitrary length. In this game, each player has the option of adopting one of
two strategies, namely cooperation or defection, during each game round. We compute the probability of
retaining persistent cooperation over time from a random initial assignment of strategies to players. We also
establish bounds on the probability that a small number of players of a particular mutant strategy introduced
randomly into a cycle of players which have established the opposite strategy leads to the situation where
all players eventually adopt the mutant strategy. We adopt an analytic approach throughout as opposed to
a simulation approach clarifying the underlying dynamics intrinsic to the entire class of evolutionary spatial
snowdrift games.
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1. Introduction

T he snowdrift game (also known as the hawk-dove game) is attributed to Maynard Smith [1]. This game
may be described as a contest between two motorists stuck in a snowdrift. Each individual may choose

to exit her or his vehicle and shovel snow (cooperate) or a remain warm inside their car (defect). Assuming
that being able to continue home is valued above having to shovel snow, the outcomes of the game are: Two
cooperating individuals each shovel half the snow and continue on their way home, and so obtain the reward
for mutual cooperation R. A cooperating individual facing a defecting individual shovels all of the snow (but
still gets to continue at least) and so obtains the sucker’s payoff S, while the defecting individual shovels no
snow and may continue on her or his way; the temptation to defect T. Finally, two defecting individuals stay
put in their vehicles but cannot continue on their way home, and thus receive the punishment for mutual
defection P. These payoffs satisfy the inequality chain

T > R > S > P. (1)

The evolution of cooperation in the context of a competitive environment has been studied in the fields
of evolutionary dynamics, economics, ecology and game theory for many years. In 1984, Axelrod [2] hosted
two computer tournaments in which game theorists and enthusiasts could submit strategy schemes which
were to compete against one another in the setting of the iterated prisoner’s dilemma. The prisoner’s dilemma
is a 2-person, 2-strategy game with the same strategies as those described above, but with payoffs satisfying
the inequality chain T > R > P > S. The results of the tournaments were analysed by Axelrod in the hope
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of identifying characteristics of successful strategies. He found that “nice" strategies (strategies which do not
defect unless provoked) outperform strictly competitive strategies. This has since led to a large body of work
aimed at determining, within a variety of biological or economic systems, what gives rise to the evolution of
cooperation. Other noteworthy work in the field of evolutionary game theory is concerned with the notion of
an evolutionary stable strategy, introduced by Maynard Smith and Price [3]. Such a strategy is robust against
invasion of other strategies in the context of an entire population playing it. For an overview of work in
evolutionary game theory the interested reader may consult [4,5].

Introducing game theory into the realm of temporal evolutionary dynamics provided a mechanism for
modelling a population of individuals competing with one another for opportunities to replicate themselves
as offspring. Traditionally, their chance of replicating their genetic material into future generations depends
on their fitness. Depending on the nature of the selection dynamics, their fitness is either slightly or largely
influenced by their relative performance in the game. Strong selection refers to the situation in which
an individual’s fitness is mainly determined by its performance in the game while weak selection assigns
individuals a standard fitness that is slightly perturbed based on the individual’s performance in the game.
Furthermore, the selection dynamics may be global in the sense that all individuals compete during every
game round or local, in which case a specific individual is selected for replication according to a probability
proportional to its fitness.

A spatial extension to evolutionary games was pioneered by Nowak and May [6] who argued that
in natural settings players do not frequently interact with all other members of the population, but rather
experience frequent local interactions with a few individuals. They therefore positioned players at the vertices
of a grid graph allowing for local interaction with their neighbours only. A game round consisted of each player
playing the game against each of its neighbours (in pairs) and updating its strategy in order to “copy" the
strategy of its best performing neighbour. The game was simulated from various initial conditions until steady
states were reached and the results showed that in the prisoner’s dilemma, a spatial extension is beneficial to
the evolution of cooperation as it allows for clusters of cooperation to withstand the pressure of surrounding
defectors.

Spatial extensions to the snowdrift game have, however, yielded mixed results, in some cases aiding and
in others hindering the evolution of cooperation [7,8]. Roca et al., [8] discussed the considerable dependence of
this facilitation and hindrance of cooperation on the clustering of the spatial structure as well as the relevant
strategy update rule. This indicates that further investigations into the nature of the spatial snowdrift game
might be of interest in a variety of settings. In this paper we adopt an analytic approach towards studying
the long-term strategy behaviour of players in a deterministic version of the evolutionary spatial snowdrift game
(ESSG), arranged along a cycle. More specifically, we determine the probability of retaining some form of
cooperation over game rounds and also establish bounds on the probability that a small number of players
of a particular mutant strategy introduced randomly into a cycle of players who adopt the opposite strategy
leads to a situation where all players eventually adopt the mutant strategy.

The remainder of this paper is organised as follows: Pertinent related literature is highlighted in §2. In §3,
the dynamics of the game investigated are presented along with nomenclature pertaining to the representation
of the game. We present the body of our investigation in §4, §5, and §6, each in the context of one of three
regions of interest in the parameter phase plane of the game. Finally, a number of conclusions are presented in
§7.

2. Related literature

Academic interest in games played on cycle graphs has varied over time, starting with the paper by
Eshel et al., [9], in which a version of the prisoner’s dilemma, which carefully selected parameter values was
considered, allowing for a representation of the payoffs parameterised by only one parameter, namely C, as
T = 1+C/2, R = 1, P = C/2, and S = 0, with the restriction that 0 < C < 1/2. The update rule employed resulted
in an individual adopting the strategy which yielded the largest average payoff to players in their closed
neighbourhoods. The analysis included a characterisation of states that lead to persistent cooperation, as well
as an implicit calculation of the probability of persistent cooperation in the limit as the population grows large.
Moreover, the existence of groups of defectors was established which alternate between having length d = 1
and length d = 3. They also analysed mutation dynamics according to which each player mutates (switches its
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strategy) with constant probability λ. The deterministic update model was morphed into a probabilistic model
analysed using methods from the realm of Markov processes. The results showed that pockets of cooperators
can grow amidst a sea of defectors while the reverse is not true.

There has since been recent interest in evolutionary games played on cycle graphs [10–12]. These graphs
may be considered one-dimensional lattice structures and therefore represent a simplification of larger grid
structures, allowing for analytical investigations instead of analyses based on simulation studies. The objective
in such investigations is to gain insight into the intrinsic nature of potential strategy interactions in more
general graph structures.

The first of these investigations was carried out by Ohtsuki and Nowak [10] and pertained to 2-person,
2-strategy games played on cycle graphs in the context of three different update rules, namely birth-death,
death-birth, and imitation. According to all three rules, a singular player is selected randomly during each game
round whose strategy is to be updated. The investigation of Ohtsuki and Nowak related to the notion of
fixation probabilities. A fixation probability is the probability of a player playing strategy A, introduced into
a population of players all playing strategy B, resulting in the entire population adopting strategy A during a
future generation.

Burger et al., [11] studied an evolutionary version of the prisoner’s dilemma on a cycle in which the
payoffs were normalised to T > 1 > P > 0, having set R = 1 and S = 0. The update rule was deterministic and
synchronous in nature, meaning that each player would update its strategy during every round to the strategy
of the best-performing player in its closed neighbourhood, and keeping it unaltered in the case of a tie between
two strategies. One of the main results of the investigation was a quantification of the probability of achieving
persistent cooperation (i.e. the strategy of cooperation occurring in a steady state of the game) from a random
initial assignment of strategies to the players on the cycle. While pockets of adjacent cooperation could not
grow in this game, as the payoff of a cooperator adjacent to a defector would never exceed that of the defectors,
it was shown that the aforementioned probability of persistent cooperation nevertheless tends to unity as the
order of the cycle increases. Initial states of the game that lead to a steady state containing cooperation were
also characterised. As found in [6], structures that lead to persistent cooperation involve clusters of cooperators
surrounded by clusters of defectors. The reason for this finding is that interior cooperators may achieve
a larger payoff than that of the first defector adjacent to the cluster of cooperators and so the cooperators
on the boundaries of same-strategy clusters retain their strategies. The steady states of the game were also
enumerated in terms of the order of the underlying cycle.

Finally, Laird [12] conducted an investigation into standoffs between cooperators and defectors in the
ESSG. These standoff structures are only attainable when the payoff obtained by cooperators and defectors can
be equal, leading to a situation where ties can occur on the boundaries between clusters of cooperators and
clusters of defectors. The game under investigation was, however, semi-stochastic in the sense that a single
player is chosen during each round and its payoff is compared with the payoffs obtained by its neighbours,
upon which the player probabilistically changes its strategy to that of one of its neighbours strategies if these
achieve larger payoffs than its own. This game dynamic allows for various game rounds during which no
changes occur in the distribution of player strategies, even if adjacent players’ payoffs are indeed distinct at
the boundary between two clusters of differing strategies. Standoffs were found to occur for payoff parameters
for which the equalities T = 2S and T = S + 1 hold, upon normalisation so that P = 0 and R = 1.

3. Problem and nomenclature

The game considered in this paper is the (deterministic) ESSG, with players arranged along a cycle of
order n and with payoff parameters normalised as described in the previous section so that T > 1 > S > 0. A
game state is an allocation of strategies to the players in the population during any game round. Such a game
state is represented succinctly by a binary string W of characters W1W2⋯Wn in which Wx ∈ {C, D} for each
x ∈ {1, 2, . . . , n}, depending on the strategy (cooperation, denoted by C, or defection, denoted by D) of player
x. The players are numbered so that player x is adjacent to players x ± 1 (mod n), forming the underlying
population structure of a cycle. A run is a maximal (contiguous) substring of W representing players playing
the same strategy. A game state may be represented graphically by a two-colouring of the vertices of the
underlying cycle graph in which the two colours represent the two strategies. This representation may be
abbreviated by representing the player strategies in the form of a linear array of coloured vertices, with
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wrapping of is extremal vertices. Consider, as an example, the state CCCDCD of the ESSG on a cycle of
order 6 depicted graphically in Figure 1. The convention adopted in the graphical representation is that a
solid vertex represents a player playing the strategy of cooperation, while an open vertex represents a player
playing the strategy of defection.
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6

(a) Cycle

1 2 3 4 5 6

(b)
Linear
array

Figure 1. (a) A graphical representation of the game state CCCDCD in the ESSG on a cycle of order 6, and (b)
the corresponding, more concise, linear array representation in which the adjacency of the first and last vertices
is omitted from the representation. A solid vertex represents a player playing the strategy of cooperation, while
an open vertex represents a player playing the strategy of defection.

An automorphism is a mapping f ∶ W1 ↦ W2 from one game state W1 to another state W2 (called
automorphic states) in which adjacency of players as well as strategy allocation is preserved (i.e. players x and y
playing strategies W1

x and W1
y , respectively, in W1 are adjacent in the cycle if and only if players f (x) and f (y)

play the strategies W2
f(x) and W2

f(y), respectively, in W2). An automorphism class is a maximal subset of game
states that are pairwise automorphic. An (automorphism) class leader is the lexicographically smallest member
W of the particular automorphism class, taking C < D in the string W . For the special case where n = 5, for
example, the automorphism classes and their leaders are shown in Table 1.

Table 1. The eight automorphism classes of the ESSG on a 5-cycle in linear array representation format. Class
leaders are depicted in black and white, while the remaining class members are depicted in grey-scale. A solid
vertex represents a player playing the strategy of cooperation, while an open vertex represents a player playing
the strategy of defection.

Leader Other members of automorphism class Size

1

5

5

5

5

5

5

1

Total: 8 Total: 25 = 32

During every round of the ESSG on a cycle, each player plays the snowdrift game, adopting its chosen
strategy, against both of its neighbours in the underlying cycle and sums the payoffs thus obtained. Each
player then compares its own total payoff with those of its two neighbours, adopting the strategy of the
best-performing neighbour during the following round. The game dynamics are succinctly summarised in
the form of a state graph, as defined in [13]. The state graph of the ESSG is a directed graph in which each
vertex represents a game state, and in which a directed edge of the form (W1, W2) indicates that the state W1

transitions to the state W2 during a single round of the game. Only automorphism class leaders appear in the
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state graph, however, each representing its entire class. Since the ESSG is deterministic, each vertex of its state
graph has an outdegree of 1 (possibly forming a loop).

Because the state graph of the ESSG on a cycle of order n is finite (its order is at most 2n), the (infinite)
sequence W1, W2, W3, . . . of states in any ESSG instance necessarily ends in an infinite tail of repetition in
one of two fundamentally different forms. The first is a limit cycle, which is represented by a directed cycle
of length at least 2 in the state graph of the ESS. Note, therefore, that the states in a limit cycle are pairwise
non-automorphic. The other fundamental form of repetition in which the sequence of game states can end
is represented by a loop (a directed cycle of length 1) in the state graph. A distinction is made between two
different incarnations of the latter form of repetition. The first incarnation occurs if a game state W∗ is reached
during some round t∗ upon which the state of the game during round t remains equal to W∗ for all t ≥ t∗. In
this case, the game state W∗ is called a steady state. The second incarnation occurs if a game state W is reached
(for the first time) during some round t upon which the state of the game during round t is automorphic (but
not necessarily identically equal) to W for all t > t. In this case, the game state W and all its subsequent states
are collectively called a set of transient states. The union of the set of all steady states, the collection of all states
appearing in sets of transient states and the set of all states appearing in limit cycles is referred to as the set of
end states. Every component of the state graph of the ESSG therefore contains at least one end state.

Our objective in this paper is to elucidate the nature of end states of the ESSG and to characterise game
states that lead asymptotically to end states containing the strategy of cooperation, referred to as the situation
of persistent cooperation (i.e. game states from which the strategy of cooperation is not completely eradicated).
The asymptotic game behaviour, however, depends fundamentally on the relationship between the payoff
parameters S and T employed in the game. The isoclines in the (S, T)-phase plane, indicated as dotted lines
in Figure 2, are obtained by setting the payoffs obtainable by players adjacent to the boundaries between runs
of different strategies in a game state equal to one another, i.e. T = S + 1 and T = 2S. The payoff 2T received by
a defector playing against two cooperators is not considered for isocline purposes as this is by definition the
largest payoff attainable and should always win. The opposite is true for the payoff 0, obtained by a defector
playing against two defectors. As a result, the phase plane consists of three regions (denoted by A, B and C) in
which differing game dynamics are anticipated. This anticipation is confirmed by the state graphs of the ESSG
on a cycle of order 7 for Regions A, B and C of the (S, T)-phase plane, shown in Figure 3. The remainder of the
material in this paper is partitioned into sections according to the three phase plane regions.

T
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T < 2S, T < 1 + S, T < 2

T > 2S, T < 1 + S, T < 2

T > 2S, T > 1 + S, T < 2
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T = 2S

A

B C
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Figure 2. The (S, T)-phase plane of the ESSG on a cycle.

4. Game analysis in Region A

In Region A of the (S, T)-phase plane in Figure 2, the payoffs of players adhere to the inequality chain
0 < 2S < S + 1 < T < 2 < 2T. In this region, the only payoffs obtainable by cooperators that beat payoffs of
defectors, are S + 1 > 2S > 0, which is better than the payoff of a defector adjacent to two defectors, and 2 > T
obtained by a cooperator adjacent to two cooperators. A cooperator adjacent to a defector receives a smaller
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(a) Region A (5 state graph components)

(b) Region B (3 state graph components)

(c) Region C (4 state graph components)

Figure 3. State graphs for the ESSG on a cycle of order 7 for (a) Region A, (b) Region B and (c) Region C of the
(S, T)-phase plane depicted in Figure 2. A solid vertex represents a player playing the strategy of cooperation,
while an open vertex represents a player playing the strategy of defection.

payoff than the defector because the smallest payoff of a defector adjacent to a cooperator is T, while the
largest payoff of a cooperator adjacent to a defector is S + 1. This means that there can be no growth in length
of a cooperation run from one state of the ESSG in Region A to the next. There may, however, be stationary
cooperation runs that allow for cooperators to coexist together with defectors indefinitely.

Note that the point in Region A where S = 0 lies on the boundary of the region and only violates the
inequality 2S > 0, which is a comparison of the payoffs of a defector adjacent to two defectors and of a
cooperator adjacent to two defectors. Such a comparison is only realised in the partial state DDDCD and
the violated inequality plays no role as the third defector obtains a payoff of T while the cooperator obtains
a payoff of 2S < T. All defectors therefore retain their strategy and the cooperator adopts the strategy of
defection during the following round of the game.

Moreover, the study of the evolutionary spatial prisonerâĂŹs dilemma on a cycle in [11] is applicable
to the ESSG in Region A. That study took place in a region of a (P, T)-phase plane in which T + P ≤ 2, with
1 < T < 2 and 0 < P < 1, and so setting P = 0 would not alter their game either as the only requirement for the
region in question was that T + P < 2, which still holds if P = 0. The dynamics of the two games are equivalent
in the regions cited because their update rules are identical and their payoff matrices can both be reduced to
the form

Π = [

C D

C 1 0
D T 0

]. (2)

The results of [11] therefore also hold for Region A of the ESSG on a cycle. For the sake of completeness,
the characterisation of steady states, and the probability of persistent cooperation resulting from a randomly
generated initial game state are recounted from Burger et al., [11] in the remainder of this section. Bounds
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on the previously unstudied notion of a fixation probability in the context of the ESSG on a cycle are finally
established.

4.1. The probability of persistent cooperation in Region A

The following characterisation of game states that lead to some form of persistent cooperation is due to
Burger et al., [11].

Theorem 1 (Requirements for persistent cooperation, restated from [11]). In the ESSG on a cycle of order n ≥ 5
with the payoff values satisfying 2S < S + 1 < T < 2, a game state leads to persistent cooperation if and only if it contains
at least one of the substates CCCCC, DDCCCDD, or DDCCCCD.

Burger et al., [11] used the result of Theorem 1 to establish the probability of persistent cooperation
resulting from a randomly generated game state, as follows.

Theorem 2 (Probability of persistent cooperation, restated from [11]). In the ESSG on a cycle of order n with
payoff parameters S and T, satisfying 2S < S + 1 < T, the probability that a random distribution of strategies will lead to
persistent cooperation is given by

PA(n) = 1− an

2n , (3)

where the value of an is defined by the recurrence relation

an = an−1 + an−2 + an−3 + an−4 − an−6 − an−7 (4)

with seed values a∗1 = 1, a∗2 = 3, a∗3 = 7, a∗4 = 15, a∗5 = 26, a∗6 = 45, and a∗7 = 99.

The values of an and 2n are tabulated in Table 2 for n ∈ {8, . . . , 16} and the probability of persistent
cooperation PA(n) is illustrated graphically in Figure 4 for n ∈ {8, . . . , 30}. Closer inspection of the sequence

Table 2. Values of an in (4) and 2n for n ∈ {8, . . . , 16} used to compute the probability PA(n) = 1 − an/2n of
persistent cooperation resulting from a randomly generated initial game state for the ESSG on a cycle of order
n, with payoff parameter values satisfying 2S < S + 1 < T.

n 8 9 10 11 12 13 14 15 16
an 183 349 668 1 288 2 469 4 720 9 061 17 372 33 303
2n 256 512 1 024 2 048 4 096 8 192 16 348 32 768 65 536

10 15 20 25 30

0.3

0.4

0.5

0.6

0.7

n

P A
(n

)

Figure 4. The probability PA(n) = 1− an/2n of persistent cooperation in the ESSG on a cycle of order n in Region
A of the (S, T)-phase plane, as a function of n.

(an)n=8,9,10,... and the recurrence relation which defines it, as well as a comparison thereof with the sequence
(2n)n=8,9,10,... yields the final result recounted in this section — the limit of the probability of persistent
cooperation as the order of the underlying cycle grows.
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Theorem 3 (Limiting probability of persistent cooperation, restated from [11]). In the ESSG on a cycle of order
n with payoff parameters S and T, satisfying 2S < S + 1 < T, the probability PA(n) of persistent cooperation satisfies
limn→∞ PA(n) = 1.

Although the extent of a cooperation run cannot grow in Region A of the (S, T)-phase plane, the strategy
of cooperation would seem to be somewhat resilient in view of the above result.

4.2. Fixation probabilities in Region A

The traditional notion of a fixation probability in the deterministic setting of the ESSG on a cycle, as
considered in this paper, is augmented by the requirements of both establishment and growth of the mutant
strategy. A subpopulation of mutant cooperators can never fix an entire population of defectors because of the
growth requirement (recall that there are no instances in which a defector adopts the strategy of cooperation
in parameter Region A). This fact is formalised in the following observation.

Observation 1 (Fixation probability of the strategy of cooperation). In the ESSG on a cycle of order n with payoff
parameters S and T, satisfying 2S < S+1 < T, the fixation probability FC

A(n, k) of a subpopulation of k mutant cooperators
among a population of n − k defectors is zero.

A lower bound on the fixation probability of a subpopulation of mutant defectors is established in the
next observation.

Observation 2 (Fixation probability of the strategy of defection). In the ESSG on a cycle of order n with payoff
parameters S and T, satisfying 2S < S + 1 < T, the fixation probability FD

A (n, k) of a subpopulation of k mutant defectors
among a population of n − k cooperators satisfies

FD
A (n, k) ≥

(n−k
k )

(n−1
k )

. (5)

Proof. Recall that once a player has adopted the strategy of defection it will not return to the strategy of
cooperation during any subsequent game round. This shows that a subpopulation of mutant defectors will
certainly establish itself.

Consider the likelihood that the mutating defectors are distributed in such a manner that there are no
defection runs of length at least 2 during the round in which the mutation occurs. This means that each
mutant defector is a singleton and so all cooperators adjacent to mutants adopt the strategy of defection during
the following game round because of the defectors’ payoff value of 2T each, the highest obtainable in the
game. After the initial mutation, at least k cooperators will therefore adopt the strategy of defection during
the following round in such a scenario (each initially mutated defector is adjacent to two possibly overlapping
cooperators). The number of ways in which the k mutant defectors may be positioned as described above is
(n−k

k ). The total number of arrangements of the k mutants among the n − k cooperating players is (n−k+k−1
k ) =

(n−1
k ). The probability of the scenario described above is therefore (n−k

k )/(n−1
k ). This is, however, only a lower

bound on the fixation probability of defection because in truth there only needs to be one such singleton
defector for growth of the mutant strategy to occur.

The results of Observations 1 and 2 demonstrate that the strategy of defection is favoured above the
strategy of cooperation in the ESSG on cycle in Region A. This claim would seem intuitive as there is never
any growth in length of cooperation runs while defection runs are able to exhibit growth in some instances.
It remains true that the probability of persistent cooperation in the ESSG on a cycle in Region A of the
(S, T)-phase plane is high and therefore cooperation is rarely eradicated entirely on large cycles, indicating
that population structure is an enabler of cooperation.

5. Game analysis in Region B

In Region B of the (S, T)-phase plane in Figure 2, the payoffs of players satisfy the inequality chain 0 <
2S < T < S + 1 < 2 < 2T. In this region, a cooperator playing against a defector receives a larger payoff than
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the defector if and only if it is also adjacent to a cooperator and the defector in question is adjacent to another
defector (CCDD) because of the inequality S+1 > T. If the cooperator were instead adjacent to another defector
(DCDD), its payoff of 2S < T would not be sufficient to retain its strategy of cooperation, and if the defector
were instead adjacent to another cooperator instead of a defector (CCDC), its payoff of 2T > S+ 1 would be the
largest achievable. If each cooperation run and each defection run has length at least 2, the growth in length of
each cooperation run will continue as long as the defection runs each has length at least 2.

5.1. Characterisation of game states leading to persistent cooperation

In this section, we characterise game states that lead to end states in Region B of the (S, T)-phase plane
containing the strategy of cooperation. By definition, steady states are end states in which no player updates
its strategy from one round to the next and therefore the game remains in the same automorphism class
indefinitely. There are, of course, two trivial steady states, the all-defector state and the all-cooperator state, in
which no player updates its strategy as there is no opportunity for “learning.” This observation, in fact, also
holds for players in the interior of any run of cooperation or defection.

Two other types of steady states may potentially exist, ones arising from ties between adjacent players of
opposite strategies, and ones arising from a pair of players straddling the boundary between two runs, each
retaining its strategy because either its own payoff is the larger of the two, or because its neighbour in the
interior of the same run obtains a payoff even larger than the neighbour in the adjacent run. The following
lemma, however, answers the question of the existence of such steady states in the negative.

Lemma 4 (Stand-offs are not possible). In the ESSG on a cycle of order n ≥ 4 with payoff parameters S and T,
satisfying 2S < T < S + 1, at least one player adjacent to the boundary between two adjacent runs of (different) strategies
changes its strategy during the next game round.

Proof. By contradiction. Consider the partial game state X`CDXr. The four players adopting these strategies
are referred to as the left-most player, the cooperator, the defector and the right-most player, from left to right.
For a stand-off to occur between the two central players, the cooperator and the defector, one of the following
cases must occur:

1. The payoff of the cooperator equals that of the defector. This is a contradiction, because no two payoff
parameters are equal in Region B of the (S, T)-phase plane.

2. Xr = D and the payoff of the defector is smaller than that of the cooperator which is, in turn, smaller than that of
the right-most player. In this case, the payoff of the right-most player is at most T, because this player is
adjacent to at least one other defector. Furthermore, the payoff of the cooperator is S + 1, since its payoff
is larger than that of the defector. But then the payoff of the right-most player is 2T, a contradiction.

3. X` = C and the payoff of the cooperator is smaller than that of the defector which is, in turn, smaller than that
of the left-most player. In this case, the cooperator is adjacent to a defector and another cooperator, and
so its payoff is S + 1. Furthermore, the payoff of the defector is 2T, and its payoff is greater than that of
the cooperator. But then the payoff of the left-most player is more than 2T, a contradiction, because the
largest payoff obtainable by a cooperator is 2.

Therefore, there can be no steady states other than the all-defector state and the all-cooperator state. That
leaves only limit cycles and transient states as end state candidates. The nature of the ESSG in Region B of
the (S, T)-phase plane is such that cooperation runs grow and defection runs diminish in length under certain
conditions. In order to establish these conditions, we first consider the situation in which there is only one
defection run. The asymptotic game behaviour in this special case is formalised in the following lemma.

Lemma 5 (The existence of oscillation clusters). In the ESSG on a cycle of order n ≥ 4 with payoff parameters S and
T, satisfying 2S < T < S + 1, a game state consisting of a single defection run D of length d ≥ 2 and a single cooperation
run C of length n − d ≥ 2, leads to the situation where the cooperation run grows in length by two during each round
while the defection run diminishes in length by two until either the all-cooperator state is reached or a singleton defector
remains. In the latter case, the defection run oscillates indefinitely between having length d = 1 and length d = 3 from
round to round.
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Proof. The payoff S + 1 of the two cooperators along the boundaries of the runs trumps the payoff T obtained
by the two defectors on these boundaries. These defectors therefore cooperate during the subsequent round.
Two cases are considered:
Case 1: The original length of the defection run d is even. In this case, the cooperation run continues to grow
in length by two during each round until it encompasses the entire cycle.
Case 2: The original length of the defection run d is odd. In this case the cooperation run continues to grow by
two until a singleton defector remains during some round t. This defector obtains a payoff of 2T, while each
adjacent cooperator obtains a payoff of S + 1 < 2T, and so the adjacent cooperators defect during round t + 1.
During round t + 1, the defection run again has length 3, so that the cooperation run again grows in length by
two during round t + 2, yielding a singleton defector yet again. This situation is repeated indefinitely, and the
set of three players centered on the singleton defector is said to form an oscillation cluster.

The above lemma establishes the existence of oscillation clusters in Region B of the (S, T)-phase plane,
which form an integral part of describing limit cycles and sets of transient states of the game in this region.
Clearly, if the entire cycle consists of sufficiently long cooperation runs with oscillation clusters between them,
the resulting state would form a limit cycle of length 2, as the game will return to that state during every second
subsequent round. In such a limit cycle, the oscillation clusters will have length 1 or 3, and we accommodate
this feature by referring to the phase of the oscillation cluster. One phase pertains to rounds during which the
defection run has length 1 while the other phase pertains to rounds during which the defection run has length
3. The following lemma establishes the behaviour of singleton players on the cycle.

Lemma 6 (The behaviour of singleton players). In the ESSG on a cycle of order n ≥ 3 and with payoff parameters
S and T, satisfying 2S < T < S + 1, any combination (possibly overlapping) of only the substates CDC and DCD
necessarily results in the entire ensemble defecting during the next game round.

Proof. In each instance of the substate CDC, each cooperator obtains a payoff of at most S+1 while the defector
obtains a payoff of 2T. The cooperators therefore necessarily defect during the next game round while the
defector retains its strategy.

Similarly, in any instance of the substate DCD, the cooperator obtains a payoff of 2S while the defectors
each obtains a payoff of at least T. The cooperator therefore defects during the following game round. Two
cases are finally considered to show that the defectors in the substate DCD do not change their strategy to
cooperation during the following game round:
Case 1: Such a defector is adjacent to a cooperator outside of the substate DCD. In this case, the payoff obtained
by the defector in question is the largest payoff achievable, namely 2T, and so the defector retains its strategy.
Case 2: Such a defector is adjacent to a defector outside the substate DCD. In this case, the payoff of the
defector in question remains T, while the only cooperator adjacent to it achieves a payoff of 2S < T. Therefore,
the defector retains its strategy during the following round.

Sufficient conditions for the formation of oscillation clusters and subsequently sufficient conditions for
game states being absorbed into limit cycles or sets of transient states are established next.

Lemma 7 (Sufficient conditions for the persistence of cooperation). In the ESSG on a cycle of order n ≥ 4 with
payoff parameters S and T, satisfying 2S < T < S + 1, each game state containing at least one of the substates CCDD or
CCCC eventually leads to a limit cycle or the all-cooperator steady state and, therefore, all defection is either eradicated
or remains only in the form of oscillation clusters.

Proof. Every player contained in (possibly overlapping) substates of the form CDC or DCD, or a substate of
the form

DC DD⋯D
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

k players

CD (6)

during round t defects during round t + 1 — in the substate CDC, both cooperators adopt the strategy of
defection and the defector retains its strategy by Lemma 6. In the substate CDCCCDC, the cooperators adjacent
to defectors defect during round t + 1 by Lemma 6, causing a formation of the substate DDDCDDD, in which



Open J. Discret. Appl. Math. 2021, 4(3), 36-59 46

the cooperator and the two adjacent defectors form the substate DCD and so this cooperator defects during
round t + 2, again by Lemma 6. Therefore, every player contained in neither the substate CCDD nor the
substate CCCC will have been absorbed into a defection run of length at least 2 by round t + 3 at the latest,
unless it already formed part of an oscillation cluster.

The substates CCDD and CCCC do not lead to defection runs, because in the former case the cooperator
on the boundary between the two runs obtains a payoff S + 1 > T and so the defection run shrinks by one in
length on that side, while in the latter case the partial state transitions to DCCD in a worst-case scenario during
the next round. This worst-case scenario only occurs if singleton defectors are adjacent to the cooperation run,
obtaining payoffs of 2T > S + 1 (in the subsequent state, which features two instances of the substate CCDD,
the cooperation run grows in length).

By the latest during round t + 2, therefore, all cooperation runs will either have been eradicated or have
length at least 2, while all of the defection runs already form part of oscillation clusters or have length d ≥ 2
and so each defection run shrinks by two in length during in each round until it is either eradicated or forms
an oscillation cluster.

As a result of the above lemma, each initial state either reaches the all-defector state, the all-cooperator
state, or else a limit cycle or a set of transient states consisting of cooperation runs interspersed with oscillation
clusters.

We now characterise those game states that lead to persistent cooperation in Region B of the (S, T)-phase
plane by showing that the sufficient conditions in Lemma 7 for the near-eradication of the defection strategy
are, indeed, also necessary for the persistence of cooperation.

Theorem 8 (Characterisation of states leading to persistent cooperation). In the ESSG on a cycle of order n ≥ 5
with payoff parameters S and T, satisfying 2S < T < S + 1, a game state leads to an end state containing the strategy of
cooperation if and only if it contains at least one of the substates CCDD and/or CCCC.

Proof. It follows from Lemma 6 that any game state consisting only of combinations of the substates CDC
and DCD (possibly with overlapping) leads to the all-defector state. Game states not consisting solely of
combinations of the substates CDC and DCD (possibly with overlapping) necessarily contain one or more of
the following substates:

1. CCDD,
2. a run of at least four cooperators,
3. a run of three cooperators flanked by singleton defectors, or
4. a run of at least three defectors flanked by singleton cooperators.

Cases 1 and 2 above have already been shown to lead to persistent cooperation in Lemma 7.
In case 3 above, the game state contains the substate CDCCCDC during some round t. In this substate,

there are two instances of the substate CDC with an additional cooperator between them. By Lemma 6, each
member of the substates CDC defects, while the internal cooperator retains its strategy of cooperation during
round t + 1. This leads to the substate DDDCDDD during round t + 1. By Lemma 6, the cooperator defects
during round t + 2.

In case 4 above, the game state contains the substate in (6) for some k ≥ 3 (this case is impossible for
n = 5, while for n = 6 the substate in (6) is realised in the game state DCDDDC in which both cooperators
are singletons which share an adjacent defector) during some round t. By Lemma 7 all of the players in the
substate will form a defection run of length k + 4 (length k + 3 for n = 6) during round t + 1.

5.2. Probability of persistent cooperation

The transfer matrix method may be used to enumerate the number of states that do not lead to persistent
cooperation by Theorem 8, by constructing a digraph D1 on the vertex set {v1, . . . , v8} in which each vertex
represents one of the possible binary strings of length 3 from the alphabet {C, D}. Moreover, vertex vi,
representing the string s1s2s3, is incident to vertex vj, representing the string s2s3s4, if and only if the string
s1s2s3s4 is neither of the substates CCDD nor CCCC required for persistent cooperation in the characterisation
of Theorem 8. The digraph D1 is represented graphically in Figure 5.
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Figure 5. A digraph, D1, required during the enumeration of states of length n that contain neither of the
substates CCDD nor CCCC in the characterisation of Theorem 8.

The adjacency matrix of D1 is

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

Since the determinant T(x) = det(I − xB) is 1− x − x2 − x3 + x5 + x6 + x7, where I is the identity matrix of order
8, it follows by the transfer matrix method [14], that the number bn of initial game states that contain neither of
the substates required for persistent cooperation on a cycle of order n, as characterised in Theorem 8, satisfies
the recurrence relation

bn = bn−1 + bn−2 + bn−3 − bn−5 − bn−6 − bn−7. (8)

This recurrence relation requires seed values b∗1 , . . . , b∗7 in order to facilitate calculation of the values b8, b9, b10,
. . . These seed values are the coefficients of the Maclaurin expansion of

xT′(x)
T(x) = −x

−1− 2x − 3x2 + 5x4 + 6x5 + 7x6

1− x − x2 − x3 + x5 + x6 + x7 , (9)

given by
x + 3x2 + 7x3 + 11x4 + 16x5 + 27x6 + 48x7 + 75x8 + . . . (10)

The seed values for (8) are therefore b∗1 = 1, b∗2 = 3, b∗3 = 7, b∗4 = 11, b∗5 = 16, b∗6 = 27 and b∗7 = 48. Note
that these values are not the numbers of initial states that lead to the all-defection steady states of the ESSG on
cycles of orders not exceeding 7, but are simply seed values for the recursive expression of bn for n ≥ 8.

Using these seed values in conjunction with the recursive expression (8), numerical values for b8, b9, b10,
. . . may be determined. Considering that bn denotes the number of possible initial states of the ESSG on a
cycle of order n that lead to the all-defector steady state, and that the total number of possible initial states
is 2n, the probability of all players eventually defecting from a randomly generated game state is bn

2n . Taking
the complement, the probability of persistent cooperation in the ESSG on a cycle of order n in Region B of the
(S, T)-phase plane of Figure 2, is given by

PB(n) = 1− bn

2n . (11)

This probability is plotted against n, the order of the underlying cycle, in Figure 6. It can be seen in the figure
that this probability is increasing.

Table 3 contains the values of bn and 2n for n ∈ {1, . . . , 13}, from which it would seem that the values of
bn are increasing in n, an observation which is not immediately obvious from the recurrence relation (8). The
following lemma clarifies that the sequence bn is indeed increasing.
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Figure 6. The probability PB(n) = 1− bn/2n of persistent cooperation in the ESSG on a cycle of order n in Region
B of the (S, T)-phase plane, as a function of n.

Table 3. Values of bn and 2n used to compute the probability PB(n) = 1− bn/2n of persistent cooperation resulting
from a randomly generated initial game state of the ESSG on a cycle of order n, with payoff parameter values
satisfying 2S < T < S + 1.

n 1 2 3 4 5 6 7 8 9 10 11 12 13
bn 1 3 7 11 16 27 48 80 134 228 388 659 1 120
2n 2 4 8 16 32 64 128 256 512 1 024 2 048 4 096 8 192

Lemma 9. The sequence b1, b2, b3, . . . satisfying the recurrence relation (8) with seed values b1 = 1, b2 = 3, b3 = 7,
b4 = 11, b5 = 16, b6 = 27 and b7 = 48, is strictly increasing.

Proof. It is shown by the strong form of induction that bn ≥ 6
5 bn−1 for any natural number n ≥ 2. Note,

as induction base case, that the statement is true for the seed values b2, . . . , b7 and assume, as induction
hypothesis, that it holds for all n ∈ {2, . . . , k}, where k is some integer. Note also that bn ≥ 0 for all
n ∈ {2, . . . , k − 1} by the induction hypothesis since b1 = 1. It follows from (8) and repeated use of the inequality
−bn−1 ≥ − 6

5 bn for n ≤ k that

bk+1 = bk + bk−1 + bk−2 − bk−4 − bk−5 − bk−6

≥ bk + bk−1 + bk−2 − bk−4 − bk−5 −
bk−5

a

≥ bk + bk−1 + bk−2 − bk−4 −
a + 1

a2 bk−4

≥ bk + bk−1 + bk−2 −
a2 + a + 1

a3 bk−3

≥ bk + bk−1 + bk−2 −
a2 + a + 1

a4 bk−2

≥ bk + bk−1 −
−a4 + a2 + a + 1

a5 bk−1

≥ bk −
−a5 − a4 + a2 + a + 1

a6 bk

= −−a6 − a5 − a4 + a2 + a + 1
a6 bk.

Therefore,

bk+1 ≥
( 6

5)
6 + ( 6

5)
5 + ( 6

5)
4 − ( 6

5)
2 − ( 6

5)− 1

( 6
5)6

bk. (12)

Since the coefficient on the right-hand side of (12) is larger than 6/5, it follows that bk+1 ≥ 6
5 bk, completing the

induction process.
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The fact that the sequence PB(1), PB(2), PB(3), . . . is increasing may be leveraged to show that the limit of
PB(n) as n →∞ is unity.

Theorem 10. The probability PB(n) that a randomly generated initial state of the ESSG on a cycle of order n with payoff
parameters S and T, satisfying 2S < T < S + 1, results in some form of persistent cooperation satisfies

lim
n→∞

PB(n) = lim
n→∞

(1− bn

2n ) = 1.

Proof. Setting Ln = bn−2 + bn−3 − bn−5 − bn−6 − bn−7 yields bn = bn−1 + Ln. Subtracting Ln from bn−1 therefore
gives

bn−1 − Ln = bn−2 + bn−3 + bn−4 − bn−6 − bn−7 − bn−8 − (bn−2 + bn−3 − bn−5 − bn−6 − bn−7)
= bn−4 + bn−5 − bn−8.

It follows from Lemma 9 that bn−4 + bn−5 − bn−8 > 0 and hence that bn−1 > Ln. This means that 0 < bn < 2bn−1.
Dividing this inequality chain right through by 2n yields

0 < bn

2n < bn−1

2n−1 ,

from which it follows that the sequence b8
28 , b9

29 , b10
210 , . . . remains positive and is strictly decreasing. The

Monotonic Sequence Theorem [15] guarantees convergence of the sequence under these conditions.
Having established that the sequence converges, denote its limiting value by

lim
n→∞

bn

2n = V. (13)

It then follows from (8) that

V = lim
n→∞

bn−1 + bn−2 + bn−3 − bn−5 − bn−6 − bn−7

2n

= lim
n→∞

bn−1

2n + lim
n→∞

bn−2

2n + lim
n→∞

bn−3

2n − lim
n→∞

bn−5

2n − lim
n→∞

bn−6

2n − lim
n→∞

bn−7

2n

= 1
2

lim
n→∞

bn−1

2n−1 +
1
22 lim

n→∞

bn−2

2n−2 +
1
23 lim

n→∞

bn−3

2n−3 −
1
25 lim

n→∞

bn−5

2n−5 −
1
26 lim

n→∞

bn−6

2n−6 −
1
27 lim

n→∞

bn−7

2n−7

=(1
2
+ 1

22 +
1
23 −

1
25 −

1
26 −

1
27 ) lim

n→∞

bn

2n .

=(1
2
+ 1

22 +
1
23 −

1
25 −

1
26 −

1
27 )V,

which implies that V = 0 and consequently that limn→∞ PB(n) = 1− 0 = 1.

5.3. Fixation probabilities

The long-term asymptotic limiting nature of states of the ESSG on a cycle is investigated in this section for
region B of the (S, T)-phase plane in the context of a small subpopulation (size k) of players playing strategy
A, being introduced into a population (size n − k) of players playing strategy B. Fixation occurs for strategy A,
if the number of players playing strategy A grows considerably and is not eradicated over successive game
rounds.

From Lemma 7 it is clear that instances of persistent cooperation coincide with the situation in which the
strategy of defection is largely eradicated, with the possible exception of oscillation clusters remaining. Should
this situation stem from a small subpopulation of cooperators being introduced into a population of defectors,
we have a form of “fixation." Moreover, a small subpopulation of defectors being introduced into a population
of cooperators may possibly establish themselves securely but in a situation of persistent cooperation, their
existence may be limited to oscillation clusters, which does not constitute widespread growth. Therefore,
“fixation" of the strategy of defection coincides with the much more stringent requirement of no persistent
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cooperation. As a result, we define the probability of fixation for the strategies of cooperation and defection as
follows: The probability of fixation of the strategy of cooperation (defection, respectively), upon introduction
of a subpopulation of k mutant cooperators (mutant defectors, respectively) into a population of n− k defectors
(cooperators, respectively), is denoted by FC

B (n, k) (FD
B (n, k), respectively) and is the probability of persistent

cooperation emerging (the probability of subsequently eradicating the strategy of cooperation, respectively).
We first establish a lower bound on the fixation probability of cooperation.

Theorem 11 (Lower bound on the fixation probability of cooperation). In the ESSG on a cycle of order n ≥ 5 with
payoff parameters S and T, satisfying 2S < T < S + 1, the fixation probability of a subpopulation of k < n/2 mutant
cooperators satisfies

FC
B (n, k) ≥ 1− ∑

n−k
i=0 (−1)i(n−k

i )(n−4i−1
k−4i )

(n−1
k )

. (14)

Proof. An occurrence of the substate CCCC guarantees persistent cooperation by Theorem 8. It also guarantees
that the game results in either the all-cooperator steady state or a limit cycle involving oscillation clusters. An
occurrence of the substate CCCC therefore guarantees fixation of the strategy of cooperation.

In order to determine the probability of at least one occurrence of the substate CCCC, when placing k
cooperators randomly among a cycle of n − k defectors, consider the probability of no run of at least four
cooperators resulting. This probability may be computed by considering the generating function for the
number of non-negative integer solutions to the equation

x1 + x2 + x3 +⋯+ xn−k = k, (15)

with x1, . . . , xn−k ≤ 3. The generating function for this quantity is given by

(1− z4)n−k( 1
1− z

)
n−k

. (16)

For all n and k, the coefficient of the term zk in the expansion of (16) is the number of non-negative integer
solutions to (15). This coefficient is

n−k
∑
i=0

(−1)i(n − k
i

)(n − 4i − 1
k − 4i

). (17)

The probability of not having any run of at least four cooperators is this term divided by the number of
distributions of k cooperators among n − k positions with replacement — that is,

∑n−k
i=0 (−1)i(n−k

i )(n−4i−1
k−4i )

(n−1
k )

. (18)

The complement of the quantity in (18) is the probability that there is at least one run of at least four
cooperators.

Consider next the probability of no persistent cooperation resulting from the introduction of a small
number, k, of defectors into a population of n − k cooperators, with k < n/2.

Theorem 12 (The fixation probability of defection for small k). In the ESSG on a cycle of order n ≥ 5 with payoff
parameters S and T, satisfying 2S < T < S + 1, the fixation probability of a subpopulation of k < n/4 mutant defectors is
zero.

Proof. For fixation of the strategy of defection, each defector adjacent to a pair of cooperators has to be a
singleton in order to avoid the substate CCDD and similarly each cooperator adjacent to a pair of defectors has
to be a singleton. The minimum number of defectors required to meet these conditions is n/4, as exemplified by
states of the form CCCDCCCD⋯CCCD, in which there is one defector for each triple of adjacent cooperators
and for which fixation of the strategy of defection will occur by the third round. For k ∈ {1, . . . , n/4 − 1},
however, it follows from the pigeonhole principle there will be at least one cooperation run of length at least
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4, resulting in the strategy of cooperation remaining ubiquitous, with the possible exception of the formation
of oscillation clusters, by Theorem 7.

The probability of fixation resulting from the introduction of a large number of defectors into a population
of cooperators is considered next.

Theorem 13 (Upper bound on the fixation probability of defection for large k). In the ESSG on a cycle of order
n ≥ 5 with payoff parameters S and T, satisfying 2S < T < S + 1, the fixation probability of a subpopulation of k > n/4
mutant defectors satisfies

FD
B (n, k) ≤ ∑

k
i=0(−1)i(k

i)(
n−4i−1

k−1 )
(n−1

n−k)
. (19)

Proof. Consider placing n− k cooperators at k vertex locations along a cycle of order n (one to the right of each
defector) and identifying the number of ways in which this may be achieved so that each cooperation run has
length at most 3. This number is also the number of non-negative integer solutions to the equation

x1 + x2 + x3 +⋯+ xk = n − k

in which x1, . . . , xk ≤ 3, which is the coefficient of the term zn−k in the generating function

(1− z4)k( 1
1− z

)
k
.

This coefficient is

cn,k =
k
∑
i=0

(−1)i(k
i
)(n − 4i − 1

k − 1
).

In order to obtain an upper bound on the desired fixation probability, the quantity cn,k is divided by the total
number of placements of n− k cooperators at k vertex locations along a cycle of order n with replacement, which
is (n−1

n−k). This quotient is merely an upper bound on the fixation probability FD
B (n, k) as there are instances

which satisfy the aforementioned condition in which no cooperation run has length at least 4, and for which
the fixation of defection is not guaranteed, such as, for example, instances containing the substate CCDD.

By comparing the lower bound on the fixation probability of cooperation and the upper bound on the
fixation probability of defection, it may be verified that the fixation probability of cooperation is greater than
that of defection for all values of n and k < n/2. The strategy of cooperation is therefore favoured above that of
defection in Region B of the (S, T)-phase plane in the ESSG on a cycle of order n. The aforementioned bounds
are plotted in Figure 7.

6. Game analysis in Region C

In Region C of the (S, T)-phase plane, the inequality chain 0 < T < 2S < S + 1 < 2 < 2T is satisfied, and so
it is clear that a singleton cooperator can now beat an adjacent defector if the defector in question is adjacent
to another defector, because T < 2S. This means that singleton cooperators can only be eliminated if they
are flanked on both sides by singleton defectors. Should one of the defectors be adjacent to another defector,
the former defector will adopt the strategy of cooperation during the following game round. In fact, the only
defectors who can retain their strategy in Region C of the phase plane are defectors in the interiors of defection
runs and defectors flanked by cooperators on both sides.

6.1. Characterisation of game states leading to persistent cooperation

As was the case for Region B, it can be shown in a manner akin to the proof of Lemma 4 that there also
cannot be stand-offs in Region C. This means that the only steady states are again the all-defector state and the
all-cooperator state. The following lemma establishes the existence of oscillation clusters in Region C.

Lemma 14 (The formation of oscillation clusters). In the ESSG on a cycle of order n ≥ 4 with payoff parameters S
and T, satisfying T < 2S < S+ 1, defection runs of length at least 3 shrink by two in length during each game round until
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Figure 7. Fixation probability bounds for the strategies of cooperation and defection. The upper bound on
the fixation probability of defection is plotted in red, while the lower bound on the fixation probability of
cooperation is plotted in blue.

they disappear or reach length 1 and subsequently form an oscillation cluster which alternates between having length 1
and length 3.

Proof. By definition, each defection run of length at least 3 in any state other than the all-defector state is
flanked on both sides by at least one cooperator (possibly the same one in the case of n = 4). Defection runs
of length at least 3 thus exhibit instances of the substate CDD in which the defector adjacent to the cooperator
adopts the strategy of cooperation during the next game round as a result of the inequality T < S + 1. Each
defection run of length at least 3 therefore shrinks by 2 in length during each game round until it disappears
(if its original length was even) or until it has length 1 (if its original length was odd). Furthermore, the
remaining defection runs of length 1 during any game round t are flanked by at least two cooperators on each
side, as a cooperator was induced on each side when the defection run shrank from length 3 to length 1. Such
singleton defectors obtain the largest payoff achievable, causing the defection run to grow in length to 3 during
game round t + 1. Again by the inequality T < S + 1, the resulting defection run in the newly formed substate
CDDDC reduces to length 1 during game round t + 2, and so the three central defectors of the substate form
an oscillation cluster in which the length of the defection run indefinitely alternates between having length 1
and length 3.

The next result establishes the fact that there are no end states of the ESSG on a cycle in Region C of the
(S, T)-phase plane other than the all-defector state, the all-cooperator state and limit cycles (or sets of transient
states) exhibiting oscillation clusters of the kind described in Lemma 14.

Lemma 15 (Sufficient conditions for the persistence of cooperation). In the ESSG on a cycle of order n ≥ 3 with
payoff parameters S and T, satisfying T < 2S < S + 1, a game state containing instances of the substates CCC and/or
CDD leads either to the all-cooperator state or to a limit cycle or set of transient states in which all defection runs form
part of oscillation clusters.

Proof. Any portion of a state not forming part of instances of the substates CCC or CDD is either a large
defection run (the ends of which exhibit instances of the substate CDD) or comprises (possibly overlapping)
instances of the substate CDC.
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In any instance of the substate CDC during some round t, the defector obtains a payoff of 2T, the largest
payoff achievable, and therefore retains its strategy while the adjacent cooperators both adopt the strategy
of defection during round t + 1. This results in a defection run of length at least 3 flanked on both sides
by cooperators (these cooperators are guaranteed at some point along the cycle due to the presence of the
substates CCC and/or CDD, both of which leave at least one cooperator during the following game round).
During round t + 1, the game state is such that all defection runs have length at least 3 (except those that had
length 3 or 4 during round t, and have therefore already shrunk in length to 1 or 2 by round t + 1). Moreover,
there exists at least one cooperation run during round t + 1. From round t + 1 onwards, each defection run
either already forms part of an oscillation cluster or shrinks in length by 2 during each subsequent round until
it disappears or forms an oscillation cluster, by Lemma 14. If all defection runs disappear, the all-cooperator
state is reached while if at least one oscillation cluster is formed, a limit cycle of length 2 or a set of transient
states of cardinality 2 is reached, defined by the number, positions and phases of the oscillation clusters.

Note that the strategy of cooperation will persist in some form under the conditions of Lemma 15. We
now characterise those game states that lead to persistent cooperation in Region C of the (S, T)-phase plane by
showing that the sufficient conditions in Lemma 15 for the persistence of cooperation are, in fact, also necessary
conditions for such persistence.

Theorem 16 (Characterisation of states leading to persistent cooperation). In the ESSG on a cycle of order n ≥ 3
with payoff parameters S and T, satisfying T < 2S < S + 1, an end state is reached which contains the strategy of
cooperation if and only if the initial state contains the substates CCC and/or CDD.

Proof. Cooperation persists from one game round to the next under the conditions of the theorem, by Lemma
15. This establishes the sufficiency of these conditions. In order to establish the necessity of the conditions,
note that the conditions are not satisfied only if the game state is the all-defector state or consists of portions
of alternating strategies of the form Dα1Dα2D⋯Dαk where αi ∈ {C, CC} for all i ∈ {1, . . . , k} and any natural
number k. Each defector therefore appears as a singleton, and so its payoff is 2T, strictly the largest payoff
achievable. Moreover, each cooperator is adjacent to at least one defector. All cooperators therefore change
their strategy to defection within a single game round.

6.2. Probability of persistent cooperation

In this section we establish the probability of persistent cooperation from a randomly generated initial
game state by enumerating all possible initial states that do not lead to persistent cooperation (i.e. states that
do not contain either of the substates CCC or CDD according to Theorem 16).

The directed graph D2, shown in Figure 8, contains four vertices, each representing a possible binary
string of length 2. In this digraph, a vertex vi, representing the string s1s2, is adjacent to another vertex vj,
representing the string s2s3, if and only if the string s1s2s3 contains neither of the substates CCC nor CDD
required for persistent cooperation. The adjacency matrix of D2 is

CD DC

CCDD

v1 v2

v3

v4

Figure 8. A directed graph D2 used to calculate the number of binary strings of length n that do not contain the
substates mentioned in Theorem 16.
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C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
1 0 1 0
1 0 0 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

Since D2 has two components, one of which represents the all-defector state for each n, the digraph can be
simplified by considering only the vertices v1, v2 and v3, thus counting the other initial states that do not lead
to persistent cooperation and adding one to this tally at a later stage. The adjacency matrix of this simplified
digraph, denoted by D∗

2 , is

C∗ =
⎡⎢⎢⎢⎢⎢⎣

0 1 0
1 0 1
1 0 0

⎤⎥⎥⎥⎥⎥⎦
. (21)

Now det(I − xC∗) = 1 − x2 − x3, where I is the 3 × 3 identity matrix. Let cn denote the number of initial states
(other than the all-defector state) for the ESSG on a cycle of order n that do not lead to persistent cooperation.
Then

∞

∑
n=1

cnxn = −x(−2x − 3x2)
1− x2 − x3 (22)

is a generating function for the sequence c1, c2, c3, . . . Furthermore, the recurrence relation

cn = cn−2 + cn−3 (23)

may be used to calculate the value of cn for all n ≥ 4. The seed values for this recurrence relation may be
determined by the Maclaurin series expansion

−x(−2x − 3x2)
1− x2 − x3 = 2x2 + 3x3 + 2x4 + . . . (24)

of the right-hand side of (22). The seed values to the recurrence relation (23) are therefore c∗1 = 0, c∗2 = 2 and
c∗3 = 3. Note, therefore, that the actual number of initial states which do not lead to persistent cooperation is
given by cn + 1, including the all-defector state. Having established the number of possible initial states that
do not lead to persistent cooperation, it follows that the number of states that do indeed allow for persistent
cooperation is the complement 2n − cn − 1. The probability of persistent cooperation resulting from a randomly
generated assignment of strategies on a cycle of order n within the context of the ESSG in Region C is therefore

PC(n) = 1− (cn + 1)
2n . (25)

Intuitively, a sequence defined as the sum of two previous, non-negative terms in the sequence is expected to
be increasing, yet the fourth term of the sequence is smaller than the third, as shown in Table 4. Moreover, the
sixth term is equal to the fifth. We show that the sequence is strictly increasing from the sixth term onwards.

Table 4. Values of cn and 2n for n ∈ {1, . . . , 10} appearing in the probability expression PC(n) = 1− (cn + 1)/2n of
persistent cooperation resulting from a randomly generated initial state in the ESSG on a cycle of order n, with
payoff parameter values satisfying T < 2S < S + 1.

n → 1 2 3 4 5 6 7 8 9 10
cn + 1 1 3 4 2 5 5 7 10 12 17

2n 2 4 8 16 32 64 128 256 512 1 024

Lemma 17. The sub-sequence c6, c7, c8, . . . satisfying (23), with seed values c1 = 0, c2 = 2 and c3 = 3, is strictly
increasing.
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Proof. By the strong form of induction over n. Observe, as induction base case, that c7 > c6 > 0 in Table 4.
Assume, as induction hypothesis, that cn > cn−1 > 0 for all n ≤ k. Finally, observe as induction step that

ck+1 − ck = (ck−1 + ck−2)− (ck−2 + ck−3)
= ck−1 − ck−3 > 0

because ck−1 > ck−2 > ck−3 by the induction assumption.

The probability of persistent cooperation in the ESSG on a cycle of order n in Region C of the (S, T)-phase
plane is plotted in Figure 9 as a function of n.

6 8 10 12 14 16 18 20
0.9

1

n

P C
(n

)

Figure 9. The probability PC(n) = 1− cn/2n of persistent cooperation in the ESSG on a cycle of order n in Region
C of the (S, T)-phase plane, as a function of n.

The fact that the sequence PC(6), PC(7), PC(8), . . . is increasing may be leveraged to show that the limit of
PC(n) as n →∞ is unity.

Theorem 18. The probability PC(n) that a randomly generated initial state of the ESSG on a cycle of order n with payoff
parameters S and T, satisfying T < 2S < S + 1, results in some form of persistent cooperation satisfies

lim
n→∞

PC(n) = lim
n→∞

(1− cn + 1
2n ) = 1.

Proof. Setting Jn = cn−3 yields Jn = cn−5 + cn−6 and cn = cn−2 + Jn by (23). Therefore,

cn−2 − Jn = cn−4 + cn−5 − (cn−5 + cn−6), (26)

which simplifies to
cn−2 − Jn = cn−4 − cn−6.

It follows from Lemma 17 that cn−4 − cn−6 > 0 and hence that cn−2 > Jn. This means that 0 < cn < 2cn−2 and so,
by Lemma 17, 2cn−1 > 2cn−2. Therefore, 0 < cn < 2cn−1. Dividing the latter inequality chain right through by 2n

yields

0 < cn

2n < cn−1

2n−1 ,

from which it follows that the sequence c6
26 , c7

27 , c8
28 , . . . remains positive and is strictly decreasing. The

Monotonic Sequence Theorem [15] therefore guarantees convergence of the sequence.
Having established that the sequence converges, denote its limiting value by

lim
n→∞

cn

2n = W. (27)

It then follows from (23) that

W = lim
n→∞

cn−2 + cn−3

2n = lim
n→∞

cn−2

2n + lim
n→∞

cn−3

2n = 1
22 lim

n→∞

cn−2

2n−2 +
1
23 lim

n→∞

cn−3

2n−3 = ( 1
22 +

1
23 ) lim

n→∞

cn

2n = ( 1
22 +

1
23 )W,
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implying that W = 0 and, consequently, that limn→∞ PC(n) = 1− 0 = 1.

This shows that the strategy of cooperation becomes more robust as the size of the population grows in
the context of the ESSG on a cycle in Region C of the (S, T)-phase plane.

6.3. Fixation probabilities

As in Region B, the nature of the game dynamics in Region C is such that an investigation into the
traditional notion of fixation probability makes little sense. This is because complete eradication of the strategy
of defection is conditioned on the lengths of defection runs which decrease as the game progresses and end
either by vanishing completely or by forming oscillation clusters. The definitions of the notions of fixation
probabilities of cooperation and defection in §5.3 are are therefore again adopted in the investigation of this
section pertaining to Region C of the (S, T)-phase plane.

Lemma 15 describes in what sense the strategy of defection remains in situations of persistent cooperation,
namely within oscillation clusters. This makes it clear that in instances of persistent cooperation, the strategy
of defection, although not eradicated completely, is diminished substantially. This again leads to the points
of investigation: The fixation of the strategy of cooperation is examined as the probability of persistent
cooperation in the context of a subpopulation of k mutant cooperators entering a population of n− k defectors.
The fixation of the strategy of defection, on the other hand, is investigated as the probability of no persistent
cooperation in the context of k < n/2 mutant defectors being introduced into a population of n − k cooperators.

Our first result pertains to the fixation probability of the strategy of cooperation.

Theorem 19 (Fixation probability of the strategy of cooperation). In the ESSG on a cycle of order n with payoff
parameters S and T, satisfying T < 2S < S + 1, the fixation probability FC

C (n, k) of an entering subpopulation of k < n/2
mutant cooperators among a population of n − k defectors is FC

C (n, k) = 1.

Proof. Arranging the players along the cycle may be thought of as placing the k cooperators and considering
each of them to be holding a container on its right-hand side. The n − k defectors then have to be distributed
among the k containers. For k < n/2, it follows that n − k > k and so by the pigeonhole principle, there is at
least one container into which at least two defectors are placed, forming an instance of the substate CDD.
By Lemma 15, the game will therefore result in either the all-cooperator steady state or a limit cycle of game
states in which defection is only present in the form of oscillation clusters. The presence of the substate CDD
consequently guarantees fixation of the strategy of cooperation.

The following theorem provides two lower bounds on the fixation probability of the strategy of defection.
These bounds are achieved by disallowing the presence of the substates CDD and CCC, respectively.

Theorem 20 (Fixation probability of the strategy of defection). In the ESSG on a cycle of order n with payoff
parameters S and T, satisfying T < 2S < S + 1, the fixation probability FD

C (n, k) of an entering subpopulation of k < n/2
mutant defectors among a population of n − k cooperators satisfies

FD
C (n, k) ≤

(n−k
k )

(n−1
k )

(28)

and

FD
C (n, k) ≤ ∑

k
i=0(−1)i(k

i)(
n−3i−1

k−1 )
(n−1

n−k)
. (29)

Proof. The upper bound in (28) is the probability of no occurrences of the substate DD, which is the same
as occurrences of the substate CDD as the defection run containing DD must at some point be broken by a
cooperation run. This probability is the number of distributions (n−k

k ) of k defectors among n − k containers
along the cycle, one to the right of each cooperator, without replacement, divided by the number (n−1

k ) of
distributions (including occurrences of the substate DD) of k defectors among n − k containers along the cycle
with replacement.
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The upper bound in (29) is the probability of no occurrences of the substate CCC. This is the number
of ways in which n − k cooperators are distributed among k containers along the cycle, one to the right of
each defector, without ever placing at least three cooperators in the same container, divided by the total
number of ways of placing these cooperators without restriction. The number of ways of thus distributing
these cooperators is number of integer solutions to the equation

x1 + x2 + x3 + ⋅ ⋅ ⋅ + xk = n − k

in which x1 . . . , xk ≤ 2. This number is also the coefficient of zn−k in the generating function

(1− z2)k ( 1
1− z

)
k

. (30)

The coefficient is

dn,k =
k
∑
i=0

(−1)i(k
i
)(n − 3i − 1

k − 1
). (31)

This number is divided by (k+n−k−1
n−k ) = (n−1

n−k), the number of distributions of n − k cooperators among k
containers with replacement to yield the probability of no occurrences of the substate CCC.

The upper bounds in (28) and (29) on the fixation probability of the strategy of defection are plotted in
Figure 7 for n ∈ {20, . . . , 50} and k ∈ {4, . . . , 20}. Note that each of the upper bounds dominates in a different
region of the (n, k)-plane, together forcing the fixation probability to be very small everywhere — certainly
smaller than 1, which means that the strategy of cooperation is favoured over the strategy of defection in
Region C.
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Figure 10. Upper bounds on the fixation probability of k defectors among n − k cooperators in the ESSG on a
cycle of order n in Region C. The upper bound in (28) is plotted in cyan and the upper bound in (29) is plotted
in purple.

7. Conclusion

In this paper, we analysed the long-term asymptotic behaviour of the ESSG on a cycle in respect of
convergence towards particular end states of the state graph. It was found that in Region A, the behaviour
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of the game is identical to that of the evolutionary spatial prisoner’s dilemma on a cycle of the same order, in
which all end states are steady states.

The remaining two regions of the (S, T)-phase plane, Regions B and C, exhibit the property that no
stand-offs are possible and hence there are only two steady states, namely those in which all players play
the same strategy. The remaining end states either appear as limit cycles of length 2 or else as sets of transient
states of cardinality 2. A set of transient states is similar to a limit cycle in appearance, but its members are
both members of the same automorphism class of game states. An emergence of limit cycles and sets of
transient states involving oscillation clusters in Regions B and C is interesting (Region A does not admit limit
cycles). The convergence of game states towards these limit cycles or sets of transient states is characterised
by a decline in length of defection runs up to the point where all the initial defectors cooperate, or singleton
defectors remain which form the centres of oscillation clusters, each containing three players.

The game dynamics were fully characterised in the context of strong and global selection dynamics
(previous authors focused almost entirely on weak selection or adopted a simulated approach). The results
line up particularly closely with those of Eshel et al., [9]. The differences in the methods of analysis are,
however, worth noting. The update rule adopted by Burger et al., [13] was that players directly imitate the best
performing player in their own neighbourhoods, rather than those of the average payoff of cooperators and
defectors, respectively. This rule is simpler as it does not require the computation of a mean. The investigation
we have conducted covers three payoff parameter regions in the context of the snowdrift game, while theirs
took place in the context of a prisoner’s dilemma and their payoff parameters were chosen on an isocline in the
payoff parameter plane. The context in which Eshel et al., [9] studied mutation is richer than ours, however,
as they included mutation throughout their imitation dynamics while we have included only one chance for
mutation (as is usual in the study of fixation probabilities). We thus see our investigation as complementary
to the work of Eshel et al., [9], and indeed note the inherent beauty in the similarity between results for the
prisoner’s dilemma with an average-based imitation update rule and for the snowdrift game with an update
rule based on imitating the best performing player.

The investigation culminated in an analysis of the probability of persistent cooperation in the context of a
random initial assignment of strategies to the players along the cycle. These probabilities were shown to tend
to unity as the order of the underlying cycle increases, indicating that in larger instances of the game, some
form of cooperation is almost certain to prevail, requiring only small groups of cooperators in the initial state
to overcome the defectors. The investigation then turned to the context of a small subpopulation of players
playing strategy A entering a population of players playing strategy B at random locations on the cycle. In this
context, attention was afforded to a variation on the notion of fixation probability adapted for deterministic
update rules. In Region A it was shown that the strategy of defection is favoured, while in Regions B and C,
the strategy of cooperation is favoured — this is due to the possibility of cooperation growth. The strategy of
cooperation appears to be fairly robust in this setting, exhibiting resilience in respect of near-eradication and
in some instances even exhibiting growth behaviour.

Alternative underlying graph structures on which to apply the same ESSG update rule, such as ladder
graphs or toroidal grids, may also be of interest, especially if the graph allows for a higher degree of clustering
than is possible in cycles.
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