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Abstract: TEMO = topological effect on molecular orbitals was discovered by Polansky and Zander in 1982, in
connection with the eigenvalues of molecular graphs. Eventually, analogous regularities were established for
a variety of other topological indices. We now show that a TEMO-type regularity also holds for the Sombor
index (SO): For the graphs S and T, constructed by connecting a pair of vertex-disjoint graphs by two edges,
SO(S) < SO(T) holds. Analogous relations are verified for several other degree-based graph invariants.
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1. Introduction

I n this paper, we consider a pair of graphs that traditionally are denoted by S and T. These are constructed
by starting with any two vertex-disjoint graphs G1 and G2. Let a and b be two distinct vertices of G1, and

let c and d be two distinct vertices of G2. Then S is the graph obtained from G1 and G2 by connecting a with c
and b with d. The graph T is obtained analogously, by connecting a with d and b with c, see Figure 1.
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Figure 1. The structure of the graphs S and T and the labeling of their vertices.

In 1982, Polansky and Zander discovered a remarkable property of the graphs S and T [1]. They
established that the characteristic polynomials of S and T are related as

ϕ(T, λ) − ϕ(S, λ) = [ϕ(G1 − a, λ) − ϕ(G1 − b, λ)][ϕ(G2 − c, λ) − ϕ(G2 − d, λ)] .

In the special case when G1 ≅ G2,

ϕ(T, λ) − ϕ(S, λ) = [ϕ(G1 − a, λ) − ϕ(G1 − b, λ)]
2

,

which means that the inequality
ϕ(T, λ) ≥ ϕ(S, λ) (1)

holds for all real values of the variable λ.
The inequality (1) implies certain regularities for the distribution of the eigenvalues of S and T [2–4] and

have appropriate (experimentally verifiable) consequences on the distribution of the molecular orbital energy
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levels [5]. The authors of [1] called this a “topological effect on molecular orbitals” and used the acronym TEMO.
Eventually, TEMO was extensively investigated; a detailed bibliography of this research can be found in the
books [6,7].

After the discovery of the regularities between the eigenvalues of S and T, a number of other TEMO-like
relations for these pairs of graphs was discovered [8–16].

2. TEMO for Sombor index

The Sombor index (SO) is a recently conceived vertex-degree-based graph invariant [17], that already
attracted much attention (see, e.g. [18–22]). It is defined as

SO = SO(G) = ∑
uv∈E(G)

√

δ2
u + δ2

v , (2)

where δu is the degree (= number of first neighbors) of the vertex u, uv denotes the edge connecting the vertices
u and v, and the summation goes over all edges of the underlying graph G.

In what follows, we establish a TEMO-like property of the Sombor index, i.e., investigate the relation
between SO(S) and SO(T).

Denote by δa, δb, δc, δd the degrees of the vertices a, b, c, d of the graphs S and T (see Fig. 1). It is obvious
that if either δa = δb or δc = δd or both, then SO(S) = SO(T). Therefore, we consider the case δa ≠ δb and δc ≠ δd.
Without loss of generality, we may assume that δa > δb and δc > δd.

Theorem 1. Let G1 and G2 be arbitrary vertex-disjoint graphs and a, b, c, d their vertices as indicated in Figure 1. If
δa > δb and δc > δd, then SO(S) < SO(T).

Note that the degree of the vertex a in the graph G1 is δa − 1, etc.

Proof. Observe first that

SO(S) =
√

δ2
a + δ2

c +
√

δ2
b + δ2

d + SO∗ ,

SO(T) =
√

δ2
a + δ2

d +
√

δ2
b + δ2

c + SO∗ ,

where SO∗ is the sum of the terms
√

δ2
u + δ2

v over other edges of S or T. Thus,

SO(S) − SO(T) =
√

δ2
a + δ2

c +
√

δ2
b + δ2

d −
√

δ2
a + δ2

d −
√

δ2
b + δ2

c .

It needs to be demonstrated that
√

δ2
a + δ2

d +
√

δ2
b + δ2

c >

√

δ2
a + δ2

c +
√

δ2
b + δ2

d . (3)

In order to achieve this goal, consider
Q = (δ2

a − δ2
b)(δ

2
c − δ2

d) ,

which by the assumptions made in the statement of Theorem 1 is evidently positive-valued.

Q > 0 ⇐⇒ δ2
a δ2

c + δ2
b δ2

d > δ2
a δ2

d + δ2
b δ2

c

⇐⇒ δ2
a δ2

b + δ2
c δ2

d + δ2
a δ2

c + δ2
b δ2

d > δ2
a δ2

b + δ2
c δ2

d + δ2
a δ2

d + δ2
b δ2

c

⇐⇒ (δ2
a + δ2

d)(δ
2
b + δ2

c ) > (δ
2
a + δ2

c )(δ
2
b + δ2

d)

⇐⇒ 2
√

(δ2
a + δ2

d)(δ
2
b + δ2

c ) > 2
√

(δ2
a + δ2

c )(δ
2
b + δ2

d)

⇐⇒ (δ2
a + δ2

d) + (δ
2
b + δ2

c ) + 2
√

(δ2
a + δ2

d)(δ
2
b + δ2

c ) > (δ
2
a + δ2

c ) + (δ
2
b + δ2

d) + 2
√

(δ2
a + δ2

c )(δ
2
b + δ2

d)

⇐⇒ (

√

δ2
a + δ2

d +
√

δ2
b + δ2

c)
2
> (

√

δ2
a + δ2

c +
√

δ2
b + δ2

d)
2

which directly implies the inequality (3).



Open J. Discret. Appl. Math. 2022, 5(1), 25-28 27

3. More TEMO-type relations

In an analogous, yet slightly easier, manner, we can verify the following TEMO-type results.
Using the notation of Eq. (2), the second Zagreb index M2, the Randić index R, the reciprocal Randić

index RR, and the nirmala index N are, respectively, defined as [23–26]

M2 = M2(G) = ∑
uv∈E(G)

δu δv ,

R = R(G) = ∑
uv∈E(G)

1
√

δu δv
,

RR = RR(G) = ∑
uv∈E(G)

√
δu δv ,

N = N(G) = ∑
uv∈E(G)

√
δu + δv .

Theorem 2. Let G1 and G2 be arbitrary vertex-disjoint graphs and a, b, c, d their vertices as indicated in Figure 1. If
δa > δb and δc > δd, then

(a) M2(S) > M2(T),
(b) R(S) > R(T),
(c) RR(S) > RR(T),
(d) N(S) < N(T) .

Analogous relations hold also for the reduced versions of these indices, in which δ is replaced by δ − 1.
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