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Abstract: The paper is concerned with the KG-Sombor index (KG), a recently introduced
vertex-and-edge-degree-based version of the Sombor index, applied to Kragujevac trees (Kg). A
general combinatorial expression for KG(Kg) is established. The species with minimum and maximum
KG(Kg)-values are determined.
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1. Introduction

L et G be a simple graph, with vertex set V(G) and edge set E(G). Then ∣V(G)∣ and ∣E(G)∣ are the number
of vertices and edges of G. By e = uv ∈ E(G) we denote the edge of G, connecting the vertices u and v.

The degree of a vertex u ∈ V(G) (= number of vertices that are adjacent to u) is denoted by d(u). The degree
of an edge e ∈ E(G) (= number of edges that are incident to e) is denoted by d(e). Recall that if e = uv, then
d(e) = d(u)+ d(v)− 2.

For other graph-theoretical notions, the readers are referred to textbooks [1–3].
In the mathematical and chemical literature, some fifty or more different vertex-degree-based graph

invariants (topological indices) have been defined and examined, all of the form

TI(G) = ∑
uv∈E(G)

F(d(u), d(v)) , (1)

where F(x, y) is some function with property F(x, y) = F(y, x).
The oldest such invariant, conceived as early as in the 1970s, is the first Zagreb index, Zg [4]. One of the

newest such invariant is the Sombor index, SO [5,6]. These are defined as

Zg = Zg(G) = ∑
uv∈E(G)

[d(u)+ d(v)] = ∑
u∈V(G)

d(u)2 (2)

SO = SO(G) = ∑
uv∈E(G)

√

d(u)2 + d(v)2 . (3)

Recently the Sombor index attracted much attention and numerous of its mathematical properties have
been established (see, for instance, [7–12]). For chemical applications of SO see [13–15].

Recently a vertex-edge variant of the Sombor index was introduced [16,17], defined as

KG = KG(G) =∑
ue

√

d(u)2 + d(e)2 , (4)

where the summation goes over pairs of vertices (u) and edges (e), such that u is an endpoint of the edge e. It
could be easily shown [16] that KG is a topological index of the form (1), namely:

Open J. Discret. Appl. Math. 2022, 5(2), 19-25; doi:10.30538/psrp-odam2022.0075 https://pisrt.org/psr-press/journals/odam

https://pisrt.org/psr-press/journals/odam/
https://pisrt.org/psr-press
https://pisrt.org/psr-press/journals/odam


Open J. Discret. Appl. Math. 2022, 5(2), 19-25 20

KG(G) = ∑
uv∈E(G)

[

√

d(u)2 + [d(u)+ d(v)− 2]2 +
√

d(v)2 + [d(u)+ d(v)− 2]2 ]. (5)

In this paper we are concerned with a class of trees, called Kragujevac trees, defined below. Kragujevac
trees emerged within the study of the atom-bond-connectivity (ABC) index. It was conjectured that the graph
with minimal ABC-index is a Kragujevac tree [18]. Later it was found that the conjecture is violated for graphs
with larger number of vertices; see [19] and the references cited therein. Nevertheless, Kragujevac trees were
eventually extensively investigated [20–26]). In particular, the Sombor index of Kragujevac trees was studied
in [27].

By continuing the considerations from Ref. [27], we now focus our attention to the KG-Sombor index.
In order that the present article be self-contained, we repeat the definition of Kragujevac trees (as slightly
modified in [27]).

2. Preparations

Let n be a positive integer. For k = 0, 1, . . . , n, we denote by Bk the rooted tree with 2k + 1 vertices,
constructed by attaching k two-vertex branches to the root, see Figure 1.

B0 B1 B2 B3 Bk
}k

Figure 1. Rooted trees B0, B1, B2, B3, and Bk. Their roots are indicated by large dots.

Let ki , i = 1, 2, . . . , n, be non-negative integers, such that

0 ≤ k1 ≤ k2 ≤ ⋯ ≤ kn , (6)

and let
k1 + k2 +⋯+ kn = K . (7)

Throughout this paper, both parameters n and K are assumed to have fixed values.

Definition 1. Let the parameters k1, k2, . . . , kn satisfy the condition (6). Then the Kragujevac tree
Kg(k1, k2, . . . , kn) is the tree obtained from Bk1

, Bk2 , . . . Bkn , by connecting their roots to a new vertex.

In Figure 2 an example is depicted, illustrating Definition 1.

Figure 2. The Kragujevac tree Kg(0, 0, 2, 4, 4), for which n = 5 and K = 10. Note that there exist 30 mutually
non-isomorphic Kragujevac trees with parameters n = 5 and K = 10.
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According to Definition 1, the Kragujevac tree with parameters k1, k2, . . . , kn has

1+
n
∑
i=1
(2 ki + 1) = 2K + n + 1

vertices.
An edge connecting a vertex of degree i and a vertex of degree j will be referred to as an (i, j)-edge.

Directly from Definition 1 we obtain:

Proposition 2. Let Kg(k1, k2, . . . , kn) be a Kragujevac tree. Then it has K (1, 2)-edges, ki (ki + 1, 2)-edges for each
i = 1, 2, . . . , n, and a (ki + 1, n)-edge for each i = 1, 2, . . . , n.

Applying Proposition 2 to Eq. (5) we arrive at:

Lemma 3. The KG-Sombor index of the Kragujevac tree Kg(k1, k2, . . . , kn) depends on its structural parameters as

KG(Kg) = (
√

5+
√

2)K +
n
∑
i=1

ki[
√

2 (ki + 1)+
√

(ki + 1)2 + 4 ]

+
n
∑
i=1
[

√

(ki + 1)2 + (n + ki − 1)2 +
√

n2 + (n + ki − 1)2 ] . (8)

3. Main results

In this section, we determine the extremal Kragujevac trees (minimal and maximal) concerning the
KG-Sombor index. In order to achieve this goal, we first recall a similar result established for the first Zagreb
index, [27].

Lemma 4. Let Kg = Kg(k1, k2, . . . , kn) be the Kragujevac tree whose parameters satisfy Eqs. (6) and (7). Then Zg(Kg)
is minimal if and only if

ki ∈ {⌊
K
n
⌋ , ⌈

K
n
⌉} for i = 1, 2, . . . , n, i.e., kn − k1 ≤ 1 .

and Zg(Kg) is maximal if and only if

k1 = k2 = ⋯ = kn−1 = 0 and kn = K .

In order to use the results of Lemma 4, we need to establish a relation between the first Zagreb and the
KG-Sombor indices. This is achieved using the following simple argument. Note that bounds analogous to
(10) were previously obtained for the ordinary Sombor index, Eq. (3) [6].

For any positive numbers a and b,

1
√

2
(a + b) ≤

√
a2 + b2 < a + b (9)

Equality on the left-hand side holds if and only if a = b. Applying the right-hand side inequality to Eq. (5), and
taking into account the definition of the first Zagreb index, Eq. (2), we get

KG(G) < ∑
uv∈E(G)

[(d(u)+ [d(u)+ d(v)− 2])+ (d(v)+ [d(u)+ d(v)− 2]) ]

= ∑
uv∈E(G)

[3 d(u)+ 3 d(v)− 4 ] = 3 ∑
uv∈E(G)

[d(u)+ d(v)]− 4m

= 3 Zg(G)− 4m ,
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where m is the number of edges of the graph G. Thus, in view of the inequalities (9), we arrive at:

Lemma 5. For any graph G with m edges,

1
√

2
(3 Zg(G)− 4m) ≤ KG(G) < 3 Zg(G)− 4m . (10)

Lemma 5 corrects Theorem 4.2 in Ref. [27].
Inequalities (10) indicate that the KG-Sombor and first Zagreb indices should be linearly correlated.

Indeed, in the case of trees (with a fixed number of vertices) this correlation was found to be remarkably
good, see Figures 3 and 4, and Table 1.
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Figure 3. KG-Sombor indices (KG) of 10-vertex trees, plotted versus the respective first Zagreb indices (Zg), cf.
Table 1.

Table 1. The parameters of the regression line KG = a Zg + b for N-vertex trees; R = correlation coefficient.

N a b R
10 2.61± 0.03 −40.27± 1.15 0.9952
11 2.60± 0.02 −44.94± 0.89 0.9947
12 2.58± 0.01 −49.13± 0.64 0.9946
13 2.58± 0.01 −53.71± 0.47 0.9942
14 2.57± 0.01 −58.13± 0.34 0.9940
15 2.57± 0.03 −62.69± 0.24 0.9937
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Figure 4. KG-Sombor indices (KG) of Kragujevac trees with parameters n = 5 and K = 10, plotted versus the
respective first Zagreb indices (Zg); cf. caption of Figure 2.
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Bearing these numerical results in mind, we maintain to be justified to state the following analogue of
Lemma 4:

Proposition 6. Let Kg = Kg(k1, k2, . . . , kn) be the Kragujevac tree whose parameters satisfy Eqs. (6) and (7). Then
KG(Kg) is minimal if and only if

ki ∈ {⌊
K
n
⌋ , ⌈

K
n
⌉} for i = 1, 2, . . . , n, i.e., kn − k1 ≤ 1 .

and KG(Kg) is maximal if and only if

k1 = k2 = ⋯ = kn−1 = 0 and kn = K .

A somewhat stronger claim, based on the numerical results presented in Figure 4, would be:

Proposition 7. Let Kga and Kgb be two Kragujevac trees with equal n and K values. Then

Zg(Kga) > Zg(Kgb) ⇔ KG(Kga) > KG(Kgb) .

Assuming that Proposition 6 is valid, we have the following results:
If Kg is a Kragujevac tree with parameters n and K, then the maximum value of KG(Kg) is

(
√

8+
√

5)K +
√

2 K2
+K
√

K2 + 2K + 5+
√

2K2 + n2 + 2nK − 2n + 2+
√

K2 + 2Kn − 2K + 2n2 − 2n + 1 .

The minimum value of KG(Kg) depends on the parameter p, defined via K ≡ p (mod n). For instance, for
p = 0, this minimum value is

(
√

8+
√

5)K +
√

2 K x +K
√

x2 + 2x + 5+ n
√

2x2 + n2 + 2nx − 2n + 2+ n
√

x2 + 2nx − 2x + 2n2 − 2n + 1 ,

where x = K/n.

4. Concluding remarks

Recently, the first Banhatti (a,b)-KA index of a graph was defined as [17]

BKA1
a,b(G) =∑

ue
[d(u)a + d(e)a]

b
.

We quickly see that BKA1
1,1 is the ordinary first Bahnatti index [28], whereas BKA1

2,1/2 is the KG-Sombor index.

Thus, studying the BKA1
a,b-index and its extremal values will be challenging.

In this paper, a combinatorial expression, Eq. (5), is established for the KG-Sombor index of Kragujevac
trees. Because of the perplexing form of formula (5), our approach towards finding the extremal values of
KG(Kg), Proposition 6, used the analogous results earlier established for the first Zagreb index (Lemma 4),
combined with Lemma 5, and the fact that there exists an excellent linear correlation between KG-Sombor and
first Zagreb indices. This latter fact was empirically verified for both general and Kragujevac trees, see Figs. 3
and 4. Finding a rigorous analytical proof of our Propositions 6 and 7 remains a challenge for the future but
appears to be a prohibitively tricky task.

Comparing Eqs. (3) Furthermore, (4), it is obvious why “Sombor” is used in the name of the KG-index.
At this point, we reveal that “KG” indicates the names of the inventors of this index – V. R. K & I. G.
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