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Abstract: In an improper coloring, an edge uv for which, c(u) = c(v) is called a bad edge. The notion of
the chromatic completion number of a graph G denoted by ζ(G), is the maximum number of edges over all
chromatic colorings that can be added to G without adding a bad edge. We introduce the stability of a
graph in respect of chromatic completion. We prove that the set of chromatic completion edges denoted by
Eχ(G), which corresponds to ζ(G) is unique if and only if G is stable in respect of chromatic completion.
After that, chromatic completion and stability regarding Johan coloring are discussed. The difficulty of
studying chromatic completion of graph operations is shown by presenting results for two elementary graph
operations.
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1. Introduction

F or general notation and concepts in graphs, see [1–3]. The set of vertices and the set of edges of a graph
G are denoted by V(G), E(G), respectively. The number of vertices is denoted by ν(G), and the number

of edges of G is denoted by ε(G). Unless stated otherwise, all graphs will be undirected, finite, simple, and
connected.

For a set of (distinct) colors C = {c1, c2, c3, . . . , cℓ} a vertex coloring of a graph G is an assignment φ ∶
V(G) to C. A vertex coloring is said to be a proper vertex coloring of a graph G if no two distinct adjacent vertices
have the same color. The cardinality of a minimum set of distinct colors in a proper vertex coloring of G is
called the chromatic number of G and is denoted by, χ(G). We call such a coloring a χ-coloring or a chromatic
coloring of G. A chromatic coloring of G is denoted by φχ(G). Generally a graph G of order n is k-colorable for
χ(G) ≤ k ≤ n.

Generally the set, c(V(G)) is a subset of C or put as c(V(G)) ⊆ C. A set {ci ∈ C ∶ c(v) = ci for at least one
v ∈ V(G)} is called a color class of the coloring of G. If C is the chromatic set it can be agreed that c(G) means
set c(V(G)) hence, c(G) to C and ∣c(G)∣ = ∣C∣. For the set of vertices X ⊆ V(G), the induced subgraph induced
by X is denoted by, ⟨X⟩. The coloring of ⟨X⟩ permitted by φ ∶ V(G) to C is denoted by, c(⟨X⟩). The number of
times a color ci is allocated to vertices of a graph G is denoted by θG(ci) or if the context is clear simply, θ(ci).

Index labeling the elements of a graph such as the vertices say, v1, v2, v3, . . . , vn or written as, vi, i =
1, 2, 3, . . . , n, is called minimum parameter indexing. Similarly, a minimum parameter coloring of a graph G is
a proper coloring of G which consists of the colors ci; 1 ≤ i ≤ ℓ. All graphs will have index labeled vertices.
Only if the context is clear will general references to vertices such as u ∈ V(G) or v, w ∈ V(G) be used.

This paper is organized as follows. §2 recalls important results of the chromatic completion number of a
graph G from [4]. The concept of stability in respect of chromatic completion of graphs is introduced. A
uniqueness theorem in respect of the set of chromatic completion edges denoted by, Eχ(G) is also presented.
§3 addresses chromatic completion and stability of a graph in respect of Johan colorings. §4 concludes this
paper by discussing results for two elementary graph operations.
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2. Stability

In an improper coloring an edge uv for which, c(u) = c(v) is called a bad edge. See [5] for an introduction to
k-defect coloring and corresponding polynomials. For a color set C, ∣C∣ ≥ χ(G) a graph G can always be colored
properly hence, such that no bad edge results. Also, for a set of colors C, ∣C∣ = χ(G) ≥ 2 a graph G of order n
with corresponding chromatic polynomial PG(λ, n), can always be colored properly in PG(χ, n) distinct ways.
Hence, chromatic coloring of a graph is generally not a unique coloring.

The notion of the chromatic completion number of a graph G denoted by, ζ(G) is the maximum number of
edges over all chromatic colorings that can be added to G without adding a bad edge [4]. The resultant graph
Gζ is called a chromatic completion graph of G. The additional edges are called chromatic completion edges. It is
trivially true that G ⊆ Gζ . Clearly for a complete graph Kn, ζ(Kn) = 0. In fact for any complete ℓ-partite graph
H = Kn1,n2,n3,...,nℓ

, ζ(H) = 0. Hereafter, all graphs will not be ℓ-partite complete. For graphs G and H both
of order n with ε(G) ≥ ε(H) no relation between ζ(G) and ζ(H) could be found. We state the following six
important results from [4], which form a basis of this paper.

Theorem 1. [10] A graph G of order n is not complete, if and only if Gζ is not complete.

Lemma 2. [10] For a chromatic coloring φ ∶ V(G) to C a pseudo completion graph, H(φ) = Kn1,n2,n3,...,nχ exists such
that,

ε(H(φ))− ε(G) =
χ−1

∑
i=1

θG(ci)θG(cj)(j=i+1,i+2,i+3,...,χ) − ε(G) ≤ ζ(G).

A main result in the form of a corollary is a direct consequence of Lemma 2.

Corollary 3. [10] Let G be a graph. Then

ζ(G) = max{ε(H(φ))− ε(G) ∶ over all φ ∶ V(G) to C}.

Theorem 4. [10] Let G be a graph. Then ζ(G) ≤ ε(G).

If for all chromatic colorings of G we have that, θ(ci) ≥ 2 for some ci then, ζ(G) < ε(G). Hence, equality
holds if and only if a graph G of order n is complete.

Theorem 5 ((Lucky’s Theorem)). [4] For a positive integer n ≥ 2 and 2 ≤ p ≤ n let integers, 1 ≤

a1, a2, a3, . . . , ap−r, a′1, a′2, a′3, . . . , a′r ≤ n − 1 be such that n =
p−r
∑
i=1

ai +
r
∑
j=1

a′j then, the ℓ-completion sum-product L =

max{
p−r−1
∑
i=1

p−r
∏

k=i+1
aiak +

p−r
∑
i=1

r
∏
j=1

aia′j +
r−1
∑
j=1

r
∏

k=j+1
a′ja
′
k} over all possible, n =

p−r
∑
i=1

ai +
r
∑
j=1

a′j.

From Theorem 5 the next lemma followed which prescribes a particular coloring convention.

Lemma 6. [10] If a subset of m vertices say, X ⊆ V(G) can be chromatically colored by t distinct colors then allocate
colors as follows:

• For t vertex subsets each of cardinality s = ⌊m
t ⌋ allocate a distinct color followed by:

• Color one additional vertex (from the r ≥ 0 which are uncolored), each in a distinct color,

if the graph structure permits such color allocation. This chromatic coloring permits the maximum number of
chromatic completion edges between the vertices in X amongst all possible chromatic colorings of X.

It is known that for a graph which does not permit a color allocation as prescribed in Lemma 6, an optimal
near-completion ℓ-partition of the vertex set exists which yields the maximum chromatic completion edges, [4].
Note that the coloring in accordance with Lemma 6 is essentially a special case of an optimal near-completion
ℓ-partition of the vertex set V(G). Henceforth, a chromatic coloring in accordance with either Lemma 6 or an
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optimal near-completion ℓ-partition will be called a Lucky coloring1 denoted by, φL(G). If all possible Lucky
colorings of a graph G, yield identical vertex partitions then graph G is said to be, stable in respect of chromatic
completion. Such graph is denoted to be, SCC. It means that if χ(G) ≥ 2, the different Lucky colorings only
effect pairwise interchange of color classes. Such different colorings are said to be congruent and is denoted
by, φL(G)1 ≅ φL(G)2. For all graphs for which ζ(G) = 0 it follows that Eχ(G) = ∅ and therefore, inherently
unique. All such graphs are inherently SCC. Unless mentioned otherwise, graphs for which ζ(G) > 0 will be
considered hereafter.

Theorem 7. For a graph G, ζ(G) > 0 is SCC if and only if the chromatic completion edge set Eχ(G) is unique.

Proof. Let the vertices of a graph G of order n ≥ 1 be, vi, i = 1, 2, 3, . . . , n. Assume that the chromatic completion
edge set Eχ(G) is unique. Then all possible Lucky colorings of G yield identical vertex partitions with only
possible interchange of color classes. By definition G is SCC.

Converse: Assume that G is SCC the vertex partitions over all possible Lucky colorings are identical.
Since, ζ(G) > 0 at least one edge vivj ∈ Eχ(G) exists. It means that, if for any given Lucky coloring the edge
vivj ∈ Eχ(G) then, vivj ∉ E(G) and c(vi) ≠ c(vj). It also means that in any other Lucky coloring, c(vj) ≠ c(vj).
Hence, vivj ∈ Eχ(G) over all Lucky colorings. Therefore, Eχ(G) is unique.

Corollary 8. For a graph G, ζ(G) > 0, the chromatic completion edge set Eχ(G), is unique if G is 2-colorable.

Proof. Consider any 2-colorable graph G, ζ(G) > 0. The vertex set can be partitioned in two unique subsets.
Only two Lucky colorings are possible i.e. interchanging colors c1 and c2. Hence, G is SCC. By Theorem 7 the
result follows.

Corollary 9. A graph G, χ(G) ≥ 3 which has a pendant vertex is not SCC.

Proof. Let u be a pendant vertex and assume without loss of generality that, c(u) = c1. Also assume u is
adjacent to vertex v and c(v) = c2. Since χ(G) ≥ 3 a vertex w ∈ V(G) exists with c(w) = cj, j ≠ 1, 2 and edge
uw ∉ E(G). Obviously the color interchange c(u) = cj and c(w) = c1 is possible and the coloring remains
a Lucky coloring. Also, ζ(G) remains constant. Whereas before the color interchange, edges uw′ ∈ Eχ(G),
∀ w′ ∈ {v′ ∶ c(v′) = cj, v′ ≠ w}, these edges do not exist after the color change. Hence, not all Lucky colorings
yield identical vertex partitions. Thus, G is not SCC.

For any proper coloring of a graph with k colors the vertex set can be partitioned into k independent
subsets say, Xi, i = 1, 2, 3, . . . , k. It is obvious that c(Xi) ≠ c(Xj) if and only if i ≠ j. Call these vertex subsets,
chromatic vertex subsets of V(G).

Theorem 10. A graph G, ζ(G) > 0 is SCC if and only if for any Lucky coloring the chromatic vertex subsets, Xi,
i = 1, 2, 3, . . . , χ(G) are such that every vertex v ∈ Xi, ∀i is adjacent to at least one vertex u ∈ Xj, j = 1, 2, 3, . . . , i − 1, i +
1, . . . , χ(G).

Proof. For a graph G for which a Lucky coloring exists such that the chromatic vertex subsets, Xi,
i = 1, 2, 3, . . . , χ(G) are such that every vertex v ∈ Xi, ∀i is adjacent to at least one vertex u ∈ Xj,
j = 1, 2, 3, . . . , i − 1, i + 1, . . . , χ(G) implies that identical vertex partitions are yielded for all Lucky colorings.
Hence, G is SCC.

Conversely, let G be SCC. Consider a Lucky coloring and its corresponding chromatic vertex subsets,
Xi, i = 1, 2, 3, . . . , χ(G). If a vertex v ∈ Xi exists such that v is not adjacent to any vertex in say, Xj, i ≠ j then v
may be colored c(Xj) whilst ζ(G) remains unchanged. Now the chromatic vertex subsets changed to include

1 Note that a Lucky coloring is an alias for an equitable χ-coloring. The alias is meant to associate the paper with Lucky’s Theorem and
the notion of chromatic completion in [4].
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Xi/v and Xj ∪ {v}. It implies that G is not SCC which is a contradiction. Hence, v must be adjacent to at least
one vertex vj ∈ Xj, ∀j, j = 1, 2, 3, . . . , i − 1, i + 1, . . . , χ(G).

An important implication is that a graph G which satisfies the conditions of Theorem 10 in respect of its
chromatic vertex subsets has a unique set of chromatic completion edges.

Recall that the rainbow neighborhood convention prescribed that we color the vertices of a graph G in such
a way that C1 = I1, the maximal independent set in G, C2 = I2, the maximal independent set in G1 = G − C1 and
proceed like this until all vertices are colored [6–8]. In [6] the concept of a rainbow neighborhood yielded by
vertex u in graph G was introduced. It is important to note that the graph G had to be colored in accordance to
the rainbow neighborhood convention to determine the rainbow neighborhood number, rχ(G) of a graph G.
Hence, well-defined coloring conventions may serve to generalize the concept of the rainbow neighborhood
number i.e. the number of vertices which yield rainbow neighborhoods in G. The rainbow neighborhood
number associated with a Lucky coloring of a graph G will be denoted by, rL(G).

Theorem 11. A graph G is SCC if and only if for a Lucky coloring of G, rL(G) = ∣V(G)∣ = ν(G).

Proof. If rL(G) = ∣V(G)∣ = ν(G) then every vertex is adjacent to at least one colored vertex of each color in a
Lucky coloring of G. By Theorem 10 it follows that G is SCC.

Conversely, if G is SCC then by Theorem 10 the result follows.

Since a Lucky coloring is a relaxation of the rainbow neighborhood convention it follows that if a graph is
SCC in respect of a coloring in accordance with the rainbow neighborhood convention, it is SCC in accordance
with a Lucky coloring. In fact, it follows that in respect of such G both coloring conventions are congruent
colorings. See [6–9] for further results in respect of rainbow neighborhood numbers.

3. Chromatic completion and stability in respect of J -coloring

Thus far the notion of chromatic completion of a graph related strictly to chromatic colorings by the
convention of Lucky colorings. This requirement can be relaxed to generalize over all chromatic colorings
φχ(G). Clearly, we have by analogy that, ζφ(G) ≤ ζ(G). We further generalize to a recently introduced coloring
convention called Johan coloring or J -coloring [10–13]. The chromatic completion edge set denoted by EJ (G),
will be investigated. Corresponding to a J -coloring the cardinality of the chromatic completing edge set is
denoted by, ζJ (G) = ∣EJ (G)∣. Recall the definition from [13].

Definition 12. A maximal proper coloring of a graph G is a Johan coloring of G, denoted by J -coloring, if and
only if every vertex of G yields a rainbow neighborhood of G. The maximum number of colors in a J -coloring
is called the J -chromatic number of G, denoted by J (G).

Recall that not all graphs permit a J -coloring [13]. Unless stated otherwise, all graphs in this subsection
will permit a J -coloring. Figure 1 depicts a graph with a Lucky coloring with χ(G) = 2 colors. It is easy to
verify that ζ(G) = 4. Figure 2 depicts the same graph with a J -coloring with J (G) = 4 colors. Note that the
J -coloring complies with the color allocations of Lemma 6. It is easy to verify that, ζJ (G) = ∣EJ (G)∣ = 12. The
aforesaid serves as an illustration of the next result.

Proposition 13. For a graph G it follows that, ζφ(G) ≤ ζ(G) ≤ ζJ (G).

Proof. That ζφ(G) ≤ ζ(G) holds follows directly from Theorem 5. The result ζ(G) ≤ ζJ (G) is a direct
consequence of the number theoretical result (or optimal near-completion ℓ-partition) as the number of colors
i.e. ℓ, increases whilst the order of G remains constant.

Proposition 13 can informally be understood by saying, that if for a particular Lucky coloring, some
vertices in some color classes are allocated new colors, then more edges are permitted in terms of the definition
of chromatic completion of a graph.

Theorem 14. For a graph G it follows that, ζφ(G) = ζ(G) = ζJ (G) if and only if φχ(G) ≅ φL(G) ≅ φJ (G).
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Figure 1. Graph G with a Lucky coloring.
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Figure 2. Graph G with a J -coloring.

Proof. If φχ(G) ≅ φL(G) ≅ φJ (G) it follows trivially that, ζφ(G) = ζ(G) = ζJ (G).
If ζφ(G) = ζ(G) = ζJ (G) it follows from Theorem 10 that, φχ(G) ≅ φL(G) ≅ φJ (G).

The next corollaries are direct consequences of Theorem 14

Corollary 15. For a graph G equality holds in accordance with Proposition 13 if and only if G is SCC in respect of a
proper coloring.

Corollary 16. Eφ(G) is unique, implies that EL(G) is unique, implies that EJ (G) is unique.

An example is that, the alternating coloring c(vi) = c1, c(vi+1) = c2, i = 1, 2, 3, . . . , n − 1 of the vertices of
an even cycle graph, Cn, n ≥ 4 is firstly, a J -coloring because it is a maximal proper coloring with each vertex
yielding a rainbow neighborhood in Cn. It follows easily that the coloring is indeed a Lucky coloring followed
by the implication that it is a chromatic coloring. Clearly, for all three coloring conventions the even cycle
graph is SCC as well as, Eφ(G) = EL(G) = EJ (G). and unique to Cn, n ≥ 4, n even.

Since any graph G is k-colorable for some k ≥ 1 it is chromatic colorable. Therefore, it permits a Lucky
coloring. However not all graphs permit a J -coloring. This observation leads to the next result.
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Theorem 17. A graph G which does not permit a J -coloring is not SCC.

Proof. A graph G which does not permit a J -coloring has for all proper colorings, including all Lucky
colorings, a corresponding color class vertex partition such that a vertex v, c(v) = ci exists which is not adjacent
to at least one vertex in each color class Cj, j = 1, 2, 3, . . . , i − 1, i + 1, . . . , χ(G). Hence, by Theorem 10, G is not
SCC.

Put differently, Theorem 17 implies that the set of SCC graphs is a subset of the set of J -colorable graphs.
As example, it follows that any graph G which contains an odd cycle of length n ≥ 5 and n ≡ 1 or 2 (mod 3) is
not SCC. See [13] for J -colorable results on odd cycle graphs.

4. Elementary Graph Operations

In this subsection the disjoint union and the join of graphs G and H are considered. In the disjoint union
operation between graphs G and H the respective values, ζ(G) and ζ(H) remain the same if φL(G),, φL(H)

remain the same. The term
χ(G)
∑
i=1

χ(H)
∏
j=1

θG(ci)θH(cj)i≠j follows from the definition of chromatic completion of a

graph.

Proposition 18. For graphs G and H it follows that, ζ(G ∪H) ≥ ζ(G)+ ζ(H)+
χ(G)
∑
i=1

χ(H)
∏
j=1

θG(ci)θH(cj)i≠j.

Proof. For φL(G) and φL(H) it is possible (not necessarily) to find a pair of vertices u, v ∈ V(G) such that
c(u) = c(v) in G but c(u) ≠ c(v) in G ∪ H. Therefore, the edge uv ∈ Eχ(G ∪ H) but uv ∉ Eχ(G). Similarly in
H. It is also possible (not necessarily) to find a pair of vertices u ∈ V(G), v ∈ V(H) such that c(u) = c(v)
in G and H respectively, but c(u) ≠ c(v) in G ∪ H. Therefore, the edge uv ∈ Eχ(G ∪ H). Hence, ζ(G ∪ H) ≥

ζ(G)+ ζ(H)+
χ(G)
∑
i=1

χ(H)
∏
j=1

θG(ci)θH(cj)i≠j.

The complexity to improve on the lower bound of Proposition 13 stem from the facts that firstly, χ(G ∪
H) = max{χ(G), χ(H)} and secondly, that the value χ(G ∪ H) must be applied to ν(G ∪ H) = ν(G) + ν(H)
vertices to find an appropriate optimal near-completion ℓ-partition.

Conjecture 1. If both graphs G, H permit a Lucky coloring as prescribed in accordance to Theorem 5 and

Lemma 6 then, ζ(G ∪H) = ζ(G)+ ζ(H)+
χ(G)
∑
i=1

χ(H)
∏
j=1

θG(ci)θH(cj)i≠j.

The graph (G − E(G)) + (H − E(H)) is a spanning subgraph of G + H and chromatic completion does
not result in additional edges uv, u ∈ V(G), v ∈ V(H). Since χ(G + H) = χ(G) + χ(H) with colors say, C =
{c1, c2, c3, . . . , cχ(G), cχ(G)+1, cχ(G)+2, cχ(G)+3, . . . , cχ(G)+χ(H)}, the values ζ(G) and ζ(H) remain the same in the
join operation between graphs G and H. Hence, ζ(G + H) = ζ(G) + ζ(H) for all graphs. It thus follows that
ζ(K1 +H) = ζ(H). Despite this trivial observation it is hard to find ζ(G ○H) in general, where G ○H denote the
corona graph.

Corollary 19. G and H are SCC if and only if G +H is SCC.

Proof. If G + H is SCC then a vertex v ∈ V(G), c(v) = ci is adjacent to at least one vertex u, c(u) = cj, j =
1, 2, 3, . . . i−1, i+1, . . . , χ(G)+χ(H). Therefore, v ∈ V(G), c(v) = ci is adjacent to at least one vertex u ∈ V(G+H),
c(u) = cj, j = 1, 2, 3, . . . i − 1, i + 1, . . . , χ(G) + χ(H). Hence, v ∈ V(G), c(v) = ci is adjacent to at least one vertex
u ∈ V(G), c(u) = cj, j = 1, 2, 3, . . . i − 1, i + 1, . . . , χ(G). Thus, by Theorem 10, G is SCC. Similarly it follows that H
is SCC.

Conversely, if both G and H are SCC the join operation implies that uv ∈ E(G + H), ∀ distinct pairs
u ∈ V(G), v ∈ V(H). Hence, G + H is SCC. Clearly, if say G is not SCC and H is SCC then, by Theorem 10,
G +H is not SCC because there exists at least one vertex v ∈ V(G), c(v) = ci which is not adjacent to at least one
vertex colored cj, 1, 2, 3, . . . i − 1, i + 1, . . . , χ(G).
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Proposition 18 read together with ζ(G +H) = ζ(G)+ ζ(H) implies that, ζ(G ∪H) ≥ ζ(G +H).

5. Conclusion

Lucky’s theorem read with Lemma 2 allows for the determination of an upper bound of ζ(G). Note
that for two proper colorings say, φ ∶ V(G) to C, ∣C∣ = k and φ′ ∶ V(G) to C′, ∣C′∣ = k + t, 1 ≤ t ≤ n − k,
which are both allocated according to Lemma 6 or as a near-completion k-partition and a near-completion
(k + t)-partition respectively, then ε(Gφ′) ≥ ε(Gφ), where ε(Gφ′), ε(Gφ) denote the respective proper coloring
completion graphs. The aforesaid leads to the following algorithm which provides an upper bound on ζ(G).
For the purpose of the algorithm we utilize a deviation of the minimum parameter indexing of the vertices.

5.1. Near-Lucky proper coloring of graph G

Consider a graph G of order n ≥ 1 with vertices vi, i = 0, 1, 2, . . . , n − 1 such that, d(v0) ≥ d(v1) ≥ d(v2) ≥
⋯ ≥ d(v(n−1)). Let φ ∶ V(G) to C, C = {c0, c1, c2, . . . , c(χ(G)−1)} be a chromatic coloring of G.

Step 1: Let j = 1, Cj = C and i = j. Go to step 2.
Step 2: Let Ci = Cj. Color vi, c(vi) = ci (mod χ(G)) if possible, alternatively any permissible color ct ∈ Ci if
possible. Else, color with an additional color c′i ∉ Ci and let Cj = Ci ∪ {c′i}. Go to step 3.
Step 3: Let j = i + 1. If j > n − 1, go to step 4. Else, let i = j. Go to step 2.
Step 4: Let φ′ ∶ V(G) to Ci and stop.

Clearly the algorithm converges in finite time. The result is ∣Cn∣ ≥ ∣C∣. Hence, it follows easily from
Lucky’s theorem read with Lemma 2 that, ζ(G) = ζφ(G) ≤ ζφ′(G). It is easy to verify that the algorithm
results in an exact Lucky coloring for all cycle graphs, Cn, n ≥ 3 if the vertices are consecutively labeled.
Hence, the upper bound is best possible if a Lucky coloring results. Improving the efficiency of the algorithm
remains open. The authors suggest that for graphs in general, coloring vi followed by coloring N(vi),
i ∈ {0, 1, 2, . . . , n − 1} until all vertices have been colored is a worthy avenue of research.

Improving the upper bound in Theorem 4 for graphs which are not complete, remains open.
Theorem 10 characterizes graphs which are SCC. Finding well-defined families of graphs that are SCC

remains open and is certainly worthy of further research. Furthermore, if a graph G is SCC it implies that for
all lucky colorings, the corresponding chromatic completions graphs are isomorphic. However, it is possible
to find graphs that are not SCC, but up to isomorphism, the chromatic completion graphs remain equivalent.
For the graphs above, the vertices might require relabeling. Finding such graphs remains open for research.

The difficulty seen with the disjoint union signals that advanced graph operations such as the various
graph products, graph powers, derivative corona’s, and others permit worthwhile research. Finding a Lucky
coloring for a given graph G remains an open problem. Characterizing graphs G, H such that G ○ H is SCC
and doing the same for other graph operations remain open problems.
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