

Article A note on extremal intersecting linear Ryser systems

Adrián Vázquez-Ávila

Subdirección de Ingeniería y Posgrado, Universidad Aeronáutica en Querétaro, Querétaro, México; adrian.vazquez@unaq.mx

Academic Editor: Muhammad Kamran Jamil

Received: 12 March 2023; Accepted: 21 April 2023; Published: 30 April 2023.

Abstract: A famous conjecture of Ryser states that any *r*-partite set system has transversal number at most r - 1 times their matching number. This conjecture is only known to be true for $r \le 3$ in general, for $r \le 5$ if the set system is intersecting, and for $r \le 9$ if the set system is intersecting and linear. In this note, we deal with Ryser's conjecture for intersecting *r*-partite linear systems: if τ is the transversal number for an intersecting *r*-partite linear system, then $\tau \le r - 1$. If this conjecture is true, this is known to be sharp for *r* for which there exists a projective plane of order r - 1. There has also been considerable effort to find intersecting *r*-partite set systems whose transversal number is r - 1. In this note, we prove that if $r \ge 2$ is an even integer, then $f_l(r) \ge 3r - 5$, where $f_l(r)$ is the minimum number of lines of an intersecting *r*-partite linear system whose transversal number is r - 1. R. Aharoni, J. Barát and I.M. Wanless, *Multipartite hypergraphs achieving equality in Ryser's conjecture*, Graphs Combin. **32**, 1–15 (2016)] gave an asymptotic lower bound: $f_l(r) \ge 3.052r + O(1)$ as $r \to \infty$. For some small values of r ($r \ge 2$ an even integer), our lower bound is better. Also, we prove that any *r*-partite linear system satisfies $\tau \le r - 1$ if $\nu_2 \le r$ for all $r \ge 3$ odd integer and $\nu_2 \le r - 2$ for all $r \ge 4$ even integer, where ν_2 is the maximum cardinality of a subset of lines $R \subseteq \mathcal{L}$ such that any three elements chosen in R do not have a common point.

Keywords: Ryser's Conjecture; Linear systems; Transversal number; 2-packing number.

MSC: 05C65; 05C69.

1. Introduction

set system is a pair (X, \mathcal{F}) where \mathcal{F} is a finite family of subsets on a ground set X. A set system can be also thought of as a hypergraph, where the elements of X and \mathcal{F} are called *vertices* and *hyperedges* respectively. The set system (X, \mathcal{F}) is called *r-uniform*, when all subsets of \mathcal{F} are of size r. The set system (X, \mathcal{F}) is *r-partite* if the elements of X can be partitioned into r sets X_1, \ldots, X_r , called the *sides*, such that each element of \mathcal{F} contains exactly one element of X_i , for every $i = 1, \ldots, r$. Thus, an *r*-partite set system is an *r*-uniform set system.

Let (X, \mathcal{F}) be a set system. A subset $T \subseteq X$ is a *transversal* of (X, \mathcal{F}) if $T \cap F \neq \emptyset$, for every $F \in \mathcal{F}$. The *transversal number* of (X, \mathcal{F}) , $\tau = \tau(X, \mathcal{F})$, is the smallest possible cardinality of a transversal of (X, \mathcal{F}) . The transversal number has been studied in the literature in many different contexts and names. For example, with the name of *piercing number* and *covering number*, see for instance [1–9].

Let (X, \mathcal{F}) be a set system. A subset $\mathcal{E} \subseteq \mathcal{F}$ is called a *matching* if $F \cap \hat{F} = \emptyset$, for every $F, \hat{F} \in \mathcal{E}$. The matching number of (X, \mathcal{F}) , $\nu = \nu(X, \mathcal{F})$, is the cardinality of the largest matching of (X, \mathcal{F}) . A set system is called *intersecting* if $\nu = 1$; that is, $F \cap \hat{F} \neq \emptyset$, for every $F, \hat{F} \in \mathcal{F}$.

It is not hard to see that any *r*-uniform set system (X, \mathcal{F}) satisfies the inequality $\tau \leq r\nu$. It is well-known that this bound is sharp, as shown by the family of all subsets of size *r* in a ground set of size kr - 1, which has $\nu = k - 1$ and $\tau = (k - 1)r$. On the other hand, if $\nu = 1$, any projective plane of order r - 1, Π_{r-1} , where r - 1 is a prime power, satisfies $\tau = r$. However, for *r*-partite set systems, Ryser conjectured in the 1960's that the upper bound could be improved.

Ryser's Conjecture: Any *r*-partite set system satisfies $\tau \le (r-1)\nu$, for every $r \ge 2$ an integer.

For the special case r = 2, Ryser's conjecture is equivalent to Kőnig's Theorem. Aharoni [10] proved the only other known general case of the conjecture when r = 3. However, Ryser's conjecture is also known to

be true in some special cases. Tuza [11] verified Ryser's conjecture for $r \le 5$ if the set system is intersecting. Furthermore, Francetić *et al.*, [12] verified Ryser's conjecture for $r \le 9$ if the set system is linear, that is, a set system (X, \mathcal{F}) is a *linear system* if it satisfies $|E \cap F| \le 1$, for every pair of distinct subsets $E, F \in \mathcal{F}$. In this note, a linear system will be written by (P, \mathcal{L}) instead of (X, \mathcal{F}) ; the elements of P and \mathcal{L} are called *points* and *lines*, respectively. In the rest of this paper, only linear systems are considered. Most of the definitions can be generalized for set systems. Thus, we deal with Ryser's conjecture for intersecting *r*-partite linear systems, for every $r \ge 2$ an integer.

Intersecting linear Ryser's Conjecture: Every intersecting *r*-partite linear system satisfies $\tau \le r - 1$, for every $r \ge 2$ an integer.

In case the conjecture would be true, it is tight in the sense that for infinitely many r's there are constructions of intersecting r-partite linear systems with $\tau = r - 1$. For example, if r - 1 is a prime power, consider the finite projective plane of order r - 1 as a linear system, Π_{r-1} . This linear system is r-uniform and intersecting. To make it r-partite, one just needs to delete one point from the projective plane. This truncated projective plane, Π'_{r-1} , gives an intersecting r-partite linear system with $\tau \ge r - 1$, and r(r-1) points and $(r-1)^2$ lines. However, the construction obtained from the projective plane is not the "optimal" extremal. Although the projective plane construction only contains r(r-1) points (which is an optimal number of points), it has a lot of lines. Let f(r) be the minimum integer so that there exists an intersecting r-partite set system (X, \mathcal{F}) with $\tau = r - 1$ and $|\mathcal{F}| = f(r)$ lines. Analogously, let $f_l(r)$ be the minimum integer so that there exists an intersecting r-partite linear system (P, \mathcal{L}) with $\tau = r - 1$ and $|\mathcal{L}| = f_l(r)$ lines. $f_l(r)$ probably does not exist for some values of r (if r - 1 is a prime power, then Π'_{r-1} is known to exist, providing proof that $f_l(r)$ is well-defined). Hence, if $f_l(r)$ does exist, for some $r \ge 2$ integer, then $f(r) \le f_l(r)$ (since any extremal linear system with $f_l(r)$ edges is in particular a set system).

It is not difficult to prove that $f_l(2) = 1$ and $f_l(3) = 3$, see [13]. Furthermore, Mansour *et al.*, [13] proved that $f_l(4) = 6$ and $f_l(5) = 9$. On the other hand, Aharoni *et al.*, [14] proved that $f_l(6) = 13$ and f(7) = 17 (even when the truncated projective plane does not exist, since it has been proved that finite projective planes of order six do not exist, see [15]); however Francetić *et al.*, [12] proved that $f_l(7)$ does not exist, that is, there is no intersecting 7-partite linear system such that $\tau = 6$. Abu-Khazneha *et al.*, [16] constructed a new infinite family of intersecting *r*-partite set systems extremal to Ryser's conjecture, which exist whenever a projective plane of order r - 2 exists. That construction produces a large number of non-isomorphic extremal set systems. Finally, Aharoni *et al.*, [14] gave a lower bound on f(r) when $r \to \infty$, showing that $f(r) \ge 3.052r + O(1)$, this lower bound is an improvement since Mansour *et al.*, [13] proved that $f(r) \ge (3 - \frac{1}{\sqrt{18}})r(1 - o(1)) \approx 2.764(1 - o(1))$, when $r \to \infty$.

In this note, we give a lower bound for $f_l(r)$ for small values of $r \ge 2$ an even integer.

Theorem 1. If $r \ge 2$ is an even integer, then $3r - 5 \le f_l(r)$.

Our lower bound is better than that given in [14], for some small values of $r \ge 2$ an even integer. If $r \in \{2,4,6\}$, then $f_l(r) = 3r - 5$. Aharoni *et al.*, [14] proved that $18 \le f(8)$ and $24 \le f(10)$. Hence, Theorem 1 implies that $19 \le f_l(8)$ and $25 \le f_l(10)$.

2. Main Results

In this section, the main results of this paper are presented. Before this, Some definitions and results are necessary.

Let (P, \mathcal{L}) be a linear system and $p \in P$ be a point. The set \mathcal{L}_p is the set of lines incident to p. In this context, the *degree* of p is deg $(p) = |\mathcal{L}_p|$ and $\Delta = \Delta(P, \mathcal{L})$ is the maximum degree over all points of the linear system.

A subset *R* of lines of a linear system (P, \mathcal{L}) is a 2-*packing* of (P, \mathcal{L}) if any three elements chosen in *R* do not have a common point. The 2-packing number of (P, \mathcal{L}) , $\nu = \nu_2(P, \mathcal{L})$, is the maximum cardinality of a 2-packing of (P, \mathcal{L}) . There are some works that study this new parameter, see [17–25].

Theorem 2. [20] Let (P, \mathcal{L}) be a linear system and $p \in P$ be a point such that $\Delta = \deg(p)$ and $\Delta' = \max\{\deg(x) : x \in P \setminus \{p\}\}$. If $|\mathcal{L}| \le \Delta + \Delta' + \nu_2 - 3$, then $\tau \le \nu_2 - 1$.

Let $r \ge 3$ be an integer. If (P, \mathcal{L}) is an intersecting *r*-uniform linear system, then $v_2 \le r + 1$. However, if $v_2 = r + 1$, for $r \ge 4$ an even integer, then $\tau = \lfloor v_2/2 \rfloor$, see [24]. Hence, we assume that $v_2 \le r$ if $r \ge 4$ is an even integer.

Lemma 1. [22] Let (P, \mathcal{L}) be an intersecting *r*-uniform linear system, with $r \ge 3$ an odd integer. If $\tau = r$, then $v_2 = r + 1$.

Lemma 2. [24] Let (P, \mathcal{L}) be an intersecting *r*-uniform linear system, with $r \ge 4$ an even integer. If $\tau = r$, then $v_2 = r$.

Lemma 3. Let (P, \mathcal{L}) be an intersecting *r*-uniform linear system with $r \ge 4$ an even integer. If $\tau = r - 1$, then $v_2 = r$.

Proof. Let (P, \mathcal{L}) be an intersecting *r*-uniform linear system. Let $p \in P$ be a point such that $\Delta = \deg(p)$ and $\Delta' = \max\{\deg(x) : x \in P \setminus \{p\}\}$. By Theorem 2 if $|\mathcal{L}| \le \Delta + \Delta' + \nu_2 - 3 \le 3(r-1)$ (since $\Delta \le r$ and $\nu_2 \le r$), then $\tau \le \nu_2 - 1$, which implies that $\nu_2 = r$, since $r - 1 \le \tau \le \nu_2 - 1 \le r - 1$.

By Lemmas 2 and 3, we have:

Corollary 1. Let (P, \mathcal{L}) be an intersecting *r*-uniform linear system with $r \ge 4$ an even number. If $\tau \in \{r - 1, r\}$, then $v_2 = r$.

By Lemma 1 and Corollary 1, we have:

Theorem 3. Let $r \ge 3$ be an integer. Then every intersecting *r*-partite linear system satisfies

1. $\tau \le r - 1$ If $v_2 \le r$ and $r \ge 3$ an odd integer; and 2. $\tau \le r - 2$ if $v_2 \le r - 1$ and $r \ge 4$ an even integer.

To prove intersecting linear Ryser's Conjecture it suffices to analyze the following two cases concerning the 2-packing number:

Conjecture 1. Let $r \ge 3$ be an integer. Then every intersecting *r*-partite linear system satisfies:

1. $\tau \le r - 1$ if $\nu_2 = r + 1$, with $r \ge 3$ an odd number. 2. $\tau \le r - 1$ if $\nu_2 = r$, with $r \ge 4$ an even number.

Theorem 4. Let $r \ge 4$ be an even integer, then $3r - 5 \le f_l(r)$.

Proof. Assume that $v_2 \le r - 1$ (by Corollary 1). Let $p \in P$ be a point such that $\Delta = \deg(p)$ and $\Delta' = \max\{\deg(x) : x \in P \setminus \{p\}\}$. By Theorem 2 if $|\mathcal{L}| \le \Delta + \Delta' + v_2 - 3 \le 3r - 6$ (since $\Delta \le r - 1$), then $\tau \le v_2 - 1 \le r - 2$. Therefore, $3r - 5 \le f_l(r)$.

Acknowledgments: The author would like to thank the referees for careful reading of the manuscript. Research was partially supported by SNI and CONACyT.

Conflicts of Interest: "The author declares no conflict of interest."

References

- [1] Alon, N., & Kleitman, D. J. (1992). Piercing convex sets. Bulletin of the American Mathematical Society, 29, 252-256.
- [2] Alon, N., & Kleitman, D. J. (1992). Piercing convex sets and the Hadwiger Debrunner (p,q)-problem. *Advances in Mathematics*, *96*, 103-112.
- [3] Alon, N., Kalai, G., Matoušek, J., & Meshulam, R. (2002). Transversal numbers for hypergraphs arising in geometry. *Advances in Applied Mathematics*, *29*, 79-101.
- [4] Eckhoff, J. (2003). A Survey of Hadwiger-Debrunner (p,q)-problem. *Discrete and Computational Geometry, The Goodman-Pollack Festschrift Algorithms and Combinatorics, 25, 347-377.*
- [5] Huicochea, M., Jerónimo-Castro, J., Montejano, L., & Oliveros D. (2015). About the piercing number of a family of intervals. *Discrete Mathematics*, 338(12), 2545-2548.
- [6] Montejano, L., & Soberón, P. (2011). Piercing numbers for balanced and unbalanced families. Discrete & Computational Geometry, 45(2), 358-364.

- [7] Noga, A., Gil, K., Matousek, J., & Meshulam, R. (2002). Transversal numbers for hypergraphs arising in geometry. *Advances in Applied Mathematics*, 29(1), 79-101.
- [8] Noga, A., & Kleitman, D. J. (1992). Piercing convex sets. Bulletin of the American Mathematical Society, 27(2), 252-256.
- Oliveros, D., O'Neill, C., & Zerbib, S. (2020). The geometry and combinatorics of discrete line segment hypergraphs. *Discrete Mathematics*, 343(6), 111825, https://doi.org/10.1016/j.disc.2020.111825.
- [10] Aharoni, R. (2021). Ryser's conjecture for 3-graphs. Combinatorica, 21(1), 1-4.
- [11] Tuza, Z. (1983). Ryser's conjecture on transversals of r-partite hypergraphs. Ars Combinatoria, 16, 201-209.
- [12] Francetić, N., Herke, S., McKay, B. D., & Wanless, I. M. (2017). On Ryser's conjecture for linear intersecting multipartite hypergraphs. *European Journal of Combinatorics*, 61, 91-105.
- [13] Mansour, T., Song, C., & Yuster, R. (2009). A comment on Ryser's conjecture for intersecting hypergraphs. *Graphs and Combinatorics*, 25, 101–109.
- [14] Aharoni, R., Barát, J., & Wanless, I. M. (2016). Multipartite hypergraphs achieving equality in Ryser's conjecture. *Graphs and Combinatorics*, 32, 1-15.
- [15] Tarry, G. (1901). Le probléme de 36 officiers. Compte Rendu de l'Assoc. Francais Avanc. Sci. Naturel, 2, 170-203.
- [16] Abu-Khazneha, A., Barát, J., Pokrovskiy, A., & Szabó, T. (2019). A family of extremal hypergraphs for Ryser's conjecture. *Journal of Combinatorial Theory, Series A*, 161, 164-177.
- [17] Vázquez-Ávila, A. (2022). On intersecting straight line systems. Journal of Discrete Mathematical Sciences and Cryptography, 25(6), 1931-1936.
- [18] Vázquez-Ávila, A. (2021). On transversal numbers of intersecting straight line systems and intersecting segment systems. *Boletin de la Sociedad Matemática Mexicana*, 27(3), 64.
- [19] Alfaro C. & Vázquez-Ávila, A. (2020). A note on a problem of Henning and Yeo about the transversal number of uniform linear systems whose 2-packing number is fixed. *Discrete Mathematics Letters*, 3, 61-66.
- [20] Alfaro, C., Araujo-Pardo, G., Rubio-Montiel, C., & Vázquez-Ávila, A. (2020). On transversal and 2-packing numbers in uniform linear systems. AKCE International Journal of Graphs and Combinatorics, 17(1), 335-3341.
- [21] Araujo-Pardo, G., Montejano, A., Montejano, L., & Vázquez-Ávila, A. (2017). On transversal and 2-packing numbers in straight line systems on ℝ². *Utilitas Mathematica*, 105, 317-336.
- [22] Vázquez-Ávila, A. (2019). A note on domination and 2-packing numbers in intersecting linear systems. Applied Mathematics E-Notes, 19, 310-314.
- [23] Alfaro, C., Rubio-Montiel, C., & Vázquez-Ávila, A. (2023). Covering and 2-degree-packing number in graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, accepted.
- [24] Vázquez-Ávila, A. (2023). On domination and 2-packing numbers in intersecting linear systems. *Ars Combinatoria*, accepted.
- [25] Vázquez-Ávila, A. (2023). Domination and 2-degree-packing number in graphs. *Journal of Combinatorial Mathematics and Combinatorial Computing*, accepted.

© 2023 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).