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Abstract: The Sombor index has gained lot of attention in the recent days for its mathematical properties
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root of the sum of squares of block numbers of adjacent vertices, where the block number of a vertex is the
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and characterizations of BS(G) and its Block Sombor energy EBS. Also, we estimate some properties of
spectral radius of Block Sombor matrix ABS(G).
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1. Introduction

T he graph G = (V, E) considered are simple, finite, non-trivial and undirected with p-vertices in V(G)
and q-edges in E(G). The number of vertices adjacent to v is said to be degree of vertex v and is

represented as dv. The minimum and the maximum degrees of vertices are represented as δ = δ(G) and
∆ = ∆(G), respectively. For the graph theoretic terminology not defined here, we refer to [1].

A vertex whose removal results in a trivial or disconnected graph is said to be the cut vertex. A graph
that is connected, non-trivial, and has no cut vertices is said to be a non-separable graph. The maximal
non-separable subgraph of a graph is said to be the block of that graph. Two blocks are said to be adjacent if
they have a cut vertex in common. The block number b(G) represents the total number of blocks in G. The
concept of separable graphs play very significant role of Parsimony Haplotyping problem from computational
biology, see [2]. For more details, we refer to [3–7].

A graph in which edges represent bonds and vertices represent atoms is said to be a molecular graph.
The invariants of the form ∑ f (x, y) with the property f (x, y) = f (y, x) are called graphical indices. These are
the real numbers derived from the structure of a graph, which are invariant under graph isomorphism. These
indices reflect the chemical and physical properties of molecules. Many such invariants have been introduced
so far, see [8]. Few of them are as in the Table 1.

Table 1. Graphical indices

Graphical Index f (x, y) = f (du, dv) or f (du, bu)

Sombor Index [SO(G)] (Gutman [9])
√

d2
u + d2

v
First Zagreb Index [M1(G)] (Gutman et al. [10]) du + dv

Second Zagreb Index [M2(G)] (Gutman et al. [10]) du.dv
Forgotten Index [F(G)] (Furtula and Gutman [11]) d2

u + d2
v

First Atom Valency Block Index [AVB1(G)] (Chaluvaraju and Vyshnavi [12]) du + bu
Second Atom Valency Block Index [AVB2(G)] (Chaluvaraju and Vyshnavi [12]) du.bu
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2. Discussion and Main Results

In this section, we will discuss the concepts: Block Sombor Index, Matrix representation of Block Sombor
index and Block Sombor Energy.

2.1. Block Sombor Index

Recently, many graph theorists showed interest in finding some potential mathematical properties and
their chemical applicabilities of the sombor index. Inspired by these aspects, we define the Block Sombor
index BS(G) of a graph G as

BS(G) = BS = ∑
uv∈E(G)

√

b2
u + b2

v. (1)

where bu represents the number of blocks to which the vertex u belongs to.

Theorem 1. Let G be a separable graph with k-cut vertices. Then

BS(G) =
k
∑
i=1

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
dci − ∑

ci∼cj

1
⎞

⎠

√

1+ b2
ci

⎤
⎥
⎥
⎥
⎥
⎦

+ ∑
ci∼cj

√
b2

ci
+ b2

cj
+
⎛

⎝
q −

k
∑
i=1

dci + ∑
ci∼cj

1
⎞

⎠

√
2.

Proof. Let G be a separable (p, q)-graph and c1, c2,⋯, ck be the cut vertices of G. Let their degrees be
dc1 , dc2 ,⋯, dck and block numbers be bc1 , bc2 ,⋯, bck , respectively. We have the following stages:

Stage 1. Since the cut vertices are adjacent to non-cut vertices and/or cut vertices, number of partitions
of the form (1, bci) is the difference of the degree of the cut vertex and the number of cut vertices adjacent to it.

Stage 2. Since the number of blocks adjacent to each cut vertex varies, number of partitions of the form
(bci , bcj) depends on the adjacencies of cut vertices.

Stage 3. For the non-cut vertices which belong to the same block, the number of partitions of the form
(1, 1) is difference of total number of edges added to the number of adjacencies of cut vertices and the sum of
degrees of all cut vertices.

Formulating these partitions mentioned in three stages, we get the required result.

Corollary 1. Let G be a separable graph. Then,

(i) BS(G) = (q − dc)
√

2+ dc
√

1+ b2
c , if G has only one cut vertex.

(ii) BS(G) =(dc1 − 1)
√

1+ b2
c1 + (dc2 − 1)

√

1+ b2
c2 +

√

b2
c1 + b2

c2 + (q − dc1 − dc2 + 1)
√

2, if G has two cut vertices.

Theorem 2. Let G be a non-separable graph with p ≥ 2. Then,

BS(G) =
√

2q. (2)

Proof. Since the block number of each vertex is exactly one in any non-separable graph G. Hence the result
follows.

Corollary 2.

(i) For a complete graph Kp with p ≥ 2,

BS(Kp) =
p(p − 1)
√

2
.

(ii) For a cycle Cp with p ≥ 3,
BS(Cp) =

√
2p.

(iii) For a complete bipartite graph Km,n with 2 ≤ m ≤ n,

BS(Km,n) =
√

2mn.

(iv) For a generalized Petersen graph GP(n, t),

GP(n, t) = 3
√

2n,
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where GP(n, t) is defined to be a graph on 2n vertices with V(GP(n, t)) = {vi, ui ∶ 0 ≤ i ≤ n − 1} and
E(GP(n, t)) = {vivi+1, viui, uiui+t ∶ 0 ≤ i ≤ n − 1, subscripts modulo n}.

(v) For a n-hypercube graph Qn ,
BS(Qn) = n 2n−1/2,

where Qn also called the n-cube graph is a graph whose vertex set V, consists of the 2n, n-dimensional boolean
vectors, i.e., vectors with binary coordinates 0 or 1, where two vertices are adjacent whenever they differ in exactly
one coordinate.

(vi) For a m × n grid graph L(m, n),
BS(L(m, n)) =

√
2(2mn − n −m),

where the m× n grid graph can be represented as a cartesian product of Pm ◻ Pn of a path of length m− 1 and a path
of length n − 1.

2.1.1. Inequalities

Lemma 1. Let G be a non-trivial connected (p, q)-graph. Then

(i) 1 ≤ bu ≤ p − 1.
Left inequality holds if and only if u is a non-cut vertex and right inequality holds for a central vertex of a star.

(ii) bu ≤ du.
Equality holds for all vertices in a tree.

Theorem 3. Let G be a non-trivial connected graph. Then

√
2q ≤ BS(G) ≤

√
2q(p − 1).

Left inequality holds if and only if G is non-separable.

Proof. Let G be a non-trivial connected graph. By Lemma 1(i), we have 1 ≤ bu ≤ p − 1. Therefore squaring up
and adding the block numbers of two vertices, we have 2 ≤ b2

u + b2
v ≤ 2(p − 1)2. Also, taking square root of this

inequality and adding up them over the number of edges, we have the required inequality.
Now, we prove the second part.
If the graph G has no cut vertices, then each vertex has block number bu = 1 as they belong to exactly one

block, which leads to the partition (1, 1) for each edge uv ∈ E(G). Thus we obtain the left equality.

For existence of right equality of the above theorem, we pose the following open problem.
Open Problem. Characterize when BS(G) =

√
2q(p − 1)?

Theorem 4. Let G be a non-trivial connected graph. Then

BS(G) ≤ SO(G).

Equality holds if and only if G is a non-trivial tree.

Proof. Let G be a simple connected graph. By Lemma 1(ii), we have

BS(G) = ∑
uv∈E(G)

√

b2
u + b2

v ≤ ∑
uv∈E(G)

√

d2
u + d2

v = SO(G).

Now, we prove the second part.
Since each vertex in a non-trivial tree, apart from the pendant vertices is a cut vertex, the block number of

each vertex is same as the degree of that vertex. Hence the equality holds.
Conversely, suppose BS(G) = SO(G) holds for a graph which is not a tree. Then there exist at least three
vertices such that every pair of vertices are adjacent forming a complete graph. This is a contradiction to our

assumption as BS(Kp) =
p(p − 1)
√

2
and SO(Kp) =

p(p − 1)2
√

2
. Hence BS(G) < SO(G) if G is not a tree.
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In [13], it was proven for a non-trivial connected graph that,

SO(G) ≤
1
√

2
(M1(G)+ q(∆ − δ)).

From the above and Theorem 4, we obtain the following result:

Corollary 3. Let G be a simple connected graph with p ≥ 2. Then

BS(G) ≤
1
√

2
(M1(G)+ q(∆ − δ)).

Theorem 5. Let G be a non-trivial connected graph. Then

BS(G) ≤
√

2M2(G)
δ(G)

.

Proof. Let G be a non-trivial connected graph. Then

BS(G) = ∑
uv∈E(G)

√

b2
u + b2

v = ∑
uv∈E(G)

bubv

√
1
b2

u
+

1
b2

v

≤ ∑
uv∈E(G)

dudv

√
1
δ2 +

1
δ2

=

√
2M2(G)
δ(G)

.

Theorem 6. Let G be a non-trivial connected graph. Then

BS(G) ≤
√

qF(G).

Proof. Let G be a non-trivial connected graph. Then

BS(G) = ∑
uv∈E(G)

√

b2
u + b2

v = ∑
uv∈E(G)

1.
√

b2
u + b2

v

≤
√

∑
uv∈E(G)

12. ∑
uv∈E(G)

(d2
u + d2

v) =
√

qF(G).

In [14], it was proven for a non-trivial connected graph that,

F(G) ≤ (∆ + δ)M1(G)− 2q∆δ.

From the above and Theorem 6, we obtain the following result:

Corollary 4. Let G be a simple connected graph with p ≥ 2. Then

BS(G) ≤
√

q[(∆ + δ)M1(G)− 2q∆δ].

In [15], it was proven for a non-trivial connected graph that,

F(G) ≤ ∆M1(G)−
(2q∆ −M1(G))2

n∆ − 2q
.

From the above and Theorem 6, we obtain the following result:
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Corollary 5. Let G be a simple connected graph. Then

BS(G) ≤

¿
Á
ÁÀq [∆M1(G)−

(2q∆ −M1(G))2

n∆ − 2q
].

Theorem 7. Let G be a connected regular graph with p ≥ 2. Then

BS(G) ≤
√

2 AVB2(G)
δ(G)

.

Proof. Let G be a (p, q)-regular graph with p ≥ 2. Then

BS(G) = ∑
uv∈E(G)

√

b2
u + b2

v = ∑
uv∈E(G)

bubv

√
1
b2

u
+

1
b2

v

≤ ∑
uv∈E(G)

budu

√
1
δ2 +

1
δ2

=

√
2AVB2(G)

δ(G)
.

In [12], it was proven for a non-trivial connected graph that,

AVB2(G) ≤
1
4

AVB1(G)2.

From the above and Theorem 7, we obtain the following result:

Corollary 6. Let G be a simple connected graph with p ≥ 2. Then

BS(G) ≤
AVB1(G)2

2
√

2δ(G)
.

2.2. Matrix representation of Block Sombor index

The spectral graph theory including the concept of graph energy plays a good role in analyzing the
matrices. For more details we refer to [16–26]. The Adjacency matrix A(G) = A = [aij]p×p of a graph G
with vertex set V(G) = {v1, v2,⋯, vp} is the symmetric matrix whose elements are,

aij =

⎧⎪⎪
⎨
⎪⎪⎩

1, i f vivj ∈ E(G)

0, otherwise.

The energy EA(G) = EA of a graph G is the sum of all absolute eigen values of the adjacency matrix A.
Anologously, we define the Block Sombor Matrix ABS(G) = ABS = [bsij]p×p of the graph G as the symmetric
matrix of order p, whose elements are

bsij =

⎧⎪⎪
⎨
⎪⎪⎩

√
b2

vi
+ b2

vj
, vivj ∈ E(G)

0, otherwise.

The characteristic polynomial is influential aspect of spectral graph theory, due to its algebraic construction,
which has massive graphical information. For this purpose, we define the following:
The Block Sombor polynomial of a graph G is defined as PBS(G, λ) = det(λI − ABS), where I is a p × p unit
matrix.

As ABS is a real symmetric matrix, all roots of ϕBS(G, λ) = 0 are real. Therefore, they can be arranged in
order as λ1 ≥ λ2 ≥ λ3⋯ ≥ λp, where λ1 is said to be spectral radius of ABS.

Lemma 2. Let λ1 ≥ λ2 ≥ ⋯ ≥ λp be the eigen values of ABS. Then
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(i) ∑
p
i=1 λi = 0.

(ii) ∑
p
i=1 λ2

i ≤ 2F(G).
Equality holds if and only if G is a non-trivial tree.

Proof. Let λ1 ≥ λ2 ≥ λ3⋯ ≥ λp be the eigen values of ABS.

(i) If the sum of all the eigen values counted with multiplicities is the trace of the matrix, then the principal
diagonal elements of ABS are all zeroes. Hence the trace is zero. Thus the result.

(ii) If {v1, v2,⋯, vp} is the set of vertices of G, then

p

∑
i=1

λ2
i = tr(A2

BS) =
p

∑
i=1

p

∑
j=1

ABS(vi, vj)ABS(vj, vi)

= 2 ∑
vivj∈E(G)

ABS(vi, vj)ABS(vj, vi)

= 2 ∑
vivj∈E(G)

b2
vi
+ b2

vj

≤ 2 ∑
vivj∈E(G)

d2
vi
+ d2

vj
= 2F(G).

Now, we prove the second part of (ii).

Since each vertex in a non-trivial tree, other than the pendant vertices is a cut vertex, the block number
of each vertex is same as the degree of that vertex. Hence the equality holds.

Conversely, suppose G is not a tree but ∑
p
i=1 λ2

i = 2F(G) holds. Then there exist at least three vertices
such that every pair of vertices are adjacent forming a complete graph. This is a contradiction to our
assumption because in a complete graph, ∑

p
i=1 λ2

i = 2p(p − 1) and F(Kp) = 2q(p − 1)2. Hence ∑
p
i=1 λ2

i <

2F(G) if G is not a tree.

Hence the proof.

Theorem 8. Let G be any non-trivial connected (p, q)-graph. Then,

λ1 ≤

¿
Á
ÁÀ2(p − 1)
(p − 2)

F(G).

Proof. Let G be non-trivial connected (p, q)-graph. Then, taking ai = λi and bi = 1 for i = 1, 2,⋯, p in
Cauchy-Schwarz inequality, we get,

(

p

∑
i=2

λi)

2

≤ (p − 1)
p

∑
i=2

λ2
i .

Ô⇒ (

p

∑
i=2

λi)

2

− λ2
1 ≤ (p − 1) [

p

∑
i=2

λ2
i − λ2

1] .

Solving this, we get the required inequality.

2.3. Block Sombor Energy

The Block Sombor Energy of a graph G is defined as,

EBS =
p

∑
i=1
∣λi∣ =

p

∑
i=1

σi,

where σ1 ≥ σ2 ≥ σ3 ≥ ⋯ ≥ σp are the absolute values of λi.
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Lemma 3. [27] Consider a class of real polynomials P(a1, a2), of the form

Pn(x) = xn
+ a1xn−1

+ a2xn−2
+ b3xn−3

+⋯+ bn,

where a1 and a2 are given real numbers. Let x1 ≥ x2 ≥ ⋯ ≥ xn be roots of Pn(x) ∈ P(a1, a2). Then,

x +
1
n

√
θ

n − 1
≤ x1 ≤ x +

1
n

√
θ(n − 1), (3)

x +
1
n

√
θ(i − 1)
n − i + 1

≤ xi ≤ x +
1
n

√
θ(n − i)

i
; i = 2, 3,⋯, n − 1, (4)

x −
1
n

√
θ(n − 1) ≤ xn ≤ x −

1
n

√
θ

n − 1
, (5)

where x =
1
n
∑

n
i=1 xi and θ = n∑n

i=1 x2
i − (∑

n
i=1 xi)

2
.

Lemma 4. The following inequalities hold for σ1 ≥ σ2 ≥ ⋯ ≥ σp

EBS

p
+

1
p

¿
Á
ÁÀ p tr(A2

BS)− E2
BS

p − 1
≤ σ1 ≤

EBS

p
+

1
p

√

(p − 1)(p tr(A2
BS)− E2

BS),

EBS

p
+

1
p

¿
Á
ÁÀ(i − 1) [p tr(A2

BS)− E2
BS]

p − i + 1
≤ σi ≤

EBS

p
+

1
p

¿
Á
ÁÀ(p − i) [p tr(A2

BS)− E2
BS]

i
; i = 2, 3,⋯, p − 1,

EBS

p
−

1
p

√

(p − 1)(p tr(A2
BS)− E2

BS) ≤ σp ≤
EBS

p
−

1
p

¿
Á
ÁÀ p tr(A2

BS)− E2
BS

p − 1
.

Proof. Consider the polynomial,

Pp(x) =
p

∏
i=1
(x − σi) = xp

+ a1xp−1
+ a2xp−2

+ b3xp−3
+⋯+ bp.

Since a1 = −∑
p
i=1 σi = −EBS and a2 =

1
2 ((∑

p
i=1 σi)

2
−∑

p
i=1 σ2

i ) =
1
2 [E

2
BS − tr(ABS)

2] , polynomial Pp(x) belongs to

the class of real polynomials of the form P(−EBS, 1
2 E2

BS −
1
2 tr(ABS)

2).
By Lemma 3, we have,

x =
1
p

p

∑
i=1

σi =
EBS

p
.

θ = p
p

∑
i=1

σ2
i − (

p

∑
i=1

σi)

2

= p tr(A2
BS)− E2

BS.

Substituting these in inequalities (3), (4) and (5), we get the required results.

Theorem 9. Let G be a connected (p, q)-graph with p ≥ 2. Then

EBS ≤ k +
√

(p − 1)(tr(A2
BS)− k2), (6)

for any real number k with the property σ1 ≥ k ≥ σp.
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Proof. By Lemma 4, we have

k ≤ σ1 ≤
EBS

p
+

1
p

√

(p − 1)(p tr(A2
BS)− E2

BS)

Ô⇒ (pk − EBS)
2
≤ (p − 1)p tr(A2

BS)− pE2
BS + E2

BS

Ô⇒ p2k2
+ E2

BS − 2pkEBS + pE2
BS − E2

BS ≤ (p − 1)p tr(A2
BS)

Ô⇒ (EBS − k)2 ≤ (p − 1)tr(A2
BS)− (p − 1)k2

Ô⇒ EBS ≤ k +
√

(p − 1)(tr(A2
BS)− k2).

By Lemma 4 and Theorem 9, we have the following result:

Corollary 7. Let G be a (p, q)-graph with p ≥ 2. Then,

EBS ≤ min{σ1 +
√

(p − 1)tr(A2
BS)− σ2

1), σp +
√

(p − 1)tr(A2
BS)− σ2

p)} .

Corollary 8. Let G be a (p, q)-graph with p ≥ 2. Then,

EBS ≤
√

2pF(G).

Proof. For k =

¿
Á
ÁÀ tr(A2

BS)

p
, σ1 ≥

¿
Á
ÁÀ tr(A2

BS)

p
≥ σp, by Theorem 9, we have,

EBS ≤

¿
Á
ÁÀ tr(A2

BS)

p
+

¿
Á
ÁÀ(p − 1) [tr(A2

BS)−
tr(A2

BS)

p
]

=

¿
Á
ÁÀ tr(A2

BS)

p
+

¿
Á
ÁÀ(p − 1)2

p
tr(A2

BS)

= p

¿
Á
ÁÀ tr(A2

BS)

p
≤
√

2pF(G).

Lemma 5. [28] For a sequence of non-negative real numbers b1 ≥ b2 ≥ ⋯ ≥ bn ≥ 0,

n
∑
i=1

bi + n(n − 1)(
n
∏
i=1

bi)

1
n

≤ (
n
∑
i=1

√
bi)

2

≤ (n − 1)
n
∑
i=1

bi + n(
n
∏
i=1

bi)

1
n

. (7)

Theorem 10. Let G be a (p,q)-graph with p ≥ 2. Then

√

tr(A2
BS)+ p(p − 1)(∣detA∣)

2
p ≤ EBS ≤

√

(p − 1)tr(A2
BS)+ p(∣detA∣)

2
p .

Proof. Substituting bi = σ2
i (i = 1, 2,⋯, p), in equation 7 of Lemma 5, we obtain

p

∑
i=1

σ2
i + p(p − 1)(

p

∏
i=1

σi2)

1
p

≤ (

p

∑
i=1

√
σi2)

2

≤ (p − 1)
p

∑
i=1

σi2 + p(
p

∏
i=1

σi2)

1
p

.

Ô⇒ tr(A2
BS)+ p(p − 1)(∣detA∣)

2
p ≤ E2

BS ≤ (p − 1)tr(A2
BS)+ p(∣detA∣)

2
p .

Thus, we obtain the above inequality.

Theorem 11. Let G be a (p,q)-graph with p ≥ 2. Then

√

2tr(A2
BS) ≤ EBS ≤

√

p tr(A2
BS).
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Left equality holds if and only if λ1 = −λp, λ2 = λ3 = ⋯ = λp−1 = 0. Right equality holds if and only if σ1 = σ2 = ⋯ = σp.

Proof. We have,

(

p

∑
i=1

λi)
2

= 0 =
p

∑
i=1

λi2 + 2∑
i<j

λiλj.

Thus,
p

∑
i=1

λ2
i = −2∑

i<j
λiλj = 2

RRRRRRRRRRRR

∑
i<j

λiλj

RRRRRRRRRRRR

.

Therefore,

E2
BS = (

p

∑
i=1
∣λi∣)

2

=

p

∑
i=1
∣λi∣2 + 2∑

i<j
∣λi∣ ∣λj∣

≥

p

∑
i=1
∣λi∣2 + 2

RRRRRRRRRRRR

∑
i<j

λiλj

RRRRRRRRRRRR

= 2
p

∑
i=1
∣λi∣2 = 2tr(A2

BS).

Thus the left inequality is proved.
The equality holds if and only if ∑i<j ∣λi∣ ∣λj∣ = ∣∑i<j λiλj∣, that is when λ1 = −λp, λ2 = λ3 = ⋯ = λp−1 = 0.
The Lagrange’s identity says, for (a) = (a1, a2,⋯, an) and (b) = (b1, b2,⋯, bn), the two sets of real numbers,

n
∑
i=1

a2
i

n
∑
i=1

b2
i − (

n
∑
i=1

aibi)

2

= ∑
1≤i<j≤n

(aibj − ajbi)
2.

Substituting ai = σi, bi = 1, (i = 1, 2,⋯, p) in the above identity, we get,

p
p

∑
i=1

σ2
i − (

p

∑
i=1

σi)
2

= ∑
1≤i<j≤p

(σi − σj)
2.

∑1≤i<j≤p(σi − σj)
2 ≥ 0 with equality if and only if σ1 = σ2 = ⋯ = σp. Thus we have,

p
p

∑
i=1

σ2
i − (

p

∑
i=1

σi)
2

≥ 0 Ô⇒ p tr(A2
BS) ≥ E2

BS.

Thus the right inequality is obtained.

Corollary 9. Let G be a (p,q)-graph with p ≥ 2. If
√

b2
u + b2

v ≥ c > 0, then

2c
√

q ≤ 2
√

cBS(G) ≤ EBS.

Theorem 12. For any connected (p, q)-graph with p ≥ 2,

√
2

(p − 1)
BS(G) ≤ EA(G) ≤ (

√
2pBS(G))

1
2 .

Proof. Let G be a connected (p, q)-graph with p ≥ 2.
By Theorem 3, we have

q ≤
BS(G)
√

2
and q ≥

BS(G)
√

2(p − 1)
. (8)

McClelland inequality is EA(G) ≤
√

2pq. Thus from first inequality of (8) and McClelland inequality, we have
the required left inequality. Also, the required right inequality follows from the second inequality of (8).
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3. Conclusion

Spectral graph theory has a wide variety of applications in many computational sciences. In view of the
above fact, here, we discussed the properties, bounds and characterizations of the newly introduced Block
Sombor Index and its Matrix representation along with Block Sombor Energy and Spectral radius of a graph.

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the
final manuscript.
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