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Abstract: For all positive even integers n, graphs of order n with degree sequence Sn ∶ 1, 2, . . . , n/2, n/2, n/2+
1, n/2+ 2, . . . , n − 1 naturally arose in the study of a labeling problem in [1].This fact motivated the authors of
the aforementioned paper to study these sequences and as a result of this study they proved that there is a
unique graph of order n realizing Sn for every even integer n. The main goal of this paper is to generalize this
result.
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1. Introduction

U nless stated otherwise, the graph-theoretical notation and terminology used here will follow Chartrand
and Lesniak [2]. In particular, we assume that graphs considered in this paper are simple, that is,

without loops or multiple edges. To indicate that a graph G has vertex set V and edge set E, we write G = (V, E).
To emphasize that V and E are the vertex set and edge set of a graph G, we will write V as V (G) and E as
E (G).

The removal of a vertex v from a graph G results in that subgraph G − v of G consisting of all vertices of
G except v and all edges not incident with v. Thus, G − v is the maximal subgraph of G not containing v. On
the other hand, if v is not adjacent in G, the addition of vertex v results in the smallest supergraph G + v of G
containing the vertex v and all edges incident with v. The union G ≅ G1 ∪G2 has V (G) = V (G1) ∪V (G2) and
E (G) = E (G1)∪ E (G2).

The degree of a vertex v in a graph G denoted by degG v is the number of edges incident with v. A sequence
s ∶ d1, d2, . . . , dn of nonnegative integers is called a degree sequence of a graph G of order n if the vertices of G can
be labeled v1, v2, . . . , vn so that deg vi = di for 1 ≤ i ≤ n. Throughout this paper, we write the degree sequence of
a graph as an increasing sequence. A finite sequence s of nonnegative integers is graphical if there exists some
graph that realizes s, that is, s is a degree sequence of some graph.

A necessary and sufficient condition for a sequence to be graphical was found by Havel [3] and later
rediscovered by Hakimi [4]. This result actually provides an efficient algorithm for determining whether a
given finite sequence of nonnegative integers is graphical. Another well-known characterization for graphical
sequences was provided by Erdös and Gallai [5]. All these references provide excellent sources for the
interested reader.

The concepts of graph isomorphism and isomorphic graphs are also crucial for the development of this
paper, and although they are very basic in graph theory, we introduce them as a matter of completeness. Let
G1 = (V1, E1) and G2 = (V2, E2) be two graphs. They are isomorphic (written G1 ≅ G2) if there exists a bijective
function ϕ ∶ V1 → V2 such that xy ∈ E1 if and only if ϕ (x)ϕ (y) ∈ E2. In this case, the function ϕ is called an
isomorphism from G1 to G2.

The following two lemmas regarding isomorphism of graphs are very elementary and fundamental, but
nevertheless, necessary for the proof of our main result of this paper. Hence, we state and prove them next.
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Lemma 1. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs of order n for which there exist unique vertices v1 ∈ V1

and v2 ∈ V2 such that
degG1

v1 = degG2
v2 = n − 1.

Then G1 ≅ G2 if and only if G1 − v1 ≅ G2 − v2.

Proof. First, assume that G1 ≅ G2. Then there exists an isomorphism ϕ ∶ V1 → V2. Since vi (i = 1, 2) are the only
vertices of Vi with degree n − 1 and each isomorphism preserves degrees, it follows that ϕ (v1) = v2. Thus, if
we consider G1 − v1 and G2 − v2, it follows that the function ϕ′ ∶ V1/{v1} → V2/{v2} defined by ϕ′ (a) = ϕ (a)
for all a ∈ V1/{v1} is well defined and bijective. Furthermore, ab ∈ E1/{v1x ∣ x ∈ V1/{v1}} if and only if
ϕ′ (a)ϕ′ (b) ∈ E2/{v2x ∣ x ∈ V2/{v2}}. This implies that ϕ′ ∶ V1/{v1} → V2/{v2} is an isomorphism and hence
G1 ≅ G2.

Next, assume that H1 = (V′1 , E′1) and H2 = (V′2 , E′2) are two isomorphic graphs with an isomorphism
ϕ ∶ V′1 → V′2 . Also, let v1 and v2 be two new vertices and consider two graphs H1 + v1 and H2 + v2. We show
that H1 + v1 ≅ H2 + v2. To do this, consider the function ϕ′ ∶ V (H1 + v1)→ V (H2 + v2) defined by

ϕ′ (v) = { ϕ (v) if v ∈ V′1
v2 if v = v1.

We will show that ϕ′ is an isomorphism from H1 + v1 to H2 + v2. Since ϕ is an isomorphism from H1 to H2, it
follows that ab ∈ E (H1 + v1) and {a, b}∩ {v1} = ∅ if and only if ϕ′ (a)ϕ′ (b) ∈ E (H2 + v2). On the other hand, if
av1 ∈ E (H1 + v1) for all a ∈ V′1 and bv2 ∈ E (H2 + v2) for all b ∈ V′2 , then ϕ′ (a)ϕ′ (v1) = ϕ (a) v2 ∈ E (H2 + v2). This
implies that ϕ′ is an isomorphism from H1 + v1 to H2 + v2 so that H1 + v1 ≅ H2 + v2.

Lemma 2. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. If v1 and v2 are two new vertices, then G1 ≅ G2 if and
only if G1 ∪ v1 ≅ G2 ∪ v2.

Proof. First, assume that G1 ≅ G2. Then there exists an isomorphism ϕ ∶ V1 → V2. Now, consider the function
ϕ′ ∶ V1 ∪ {v1}→ V2 ∪ {v1} defined by

ϕ′ (v) = { ϕ (v) if v ∈ V1

v2 if v = v1.

Since no edge of the form av1 exists in G1 ∪ v1 and no edge of the form bv2 exists in G2 ∪ v2, it follows that ϕ′ is
an isomorphism from G1 ∪ v1 to G2 ∪ v2 and hence G1 ∪ v1 ≅ G2 ∪ v2.

Next, assume that G1 ∪ v1 ≅ G2 ∪ v2. Then there exists an isomorphism ϕ ∶ V1 → V2. Since the image under
ϕ of any isolated vertex is an isolated vertex, we may assume, without loss of generality, that ϕ (v1) = v2. This
implies that the function ϕ′ ∶ V1 → V2 defined by ϕ (v) = v for all v ∈ V1 is clearly well defined, bijective and an
isomorphism from G1 to G2. Therefore, G1 ≅ G2.

2. Main results

With the information provided in the introduction, we are ready to present our main results.
Let S0 ∶ 0 ≦ a1 ≦ a2 ≦ ⋯ ≦ an−1 ≦ an be a graphical sequence. If we assume that there exist exactly k (k ≥ 1)

graphs that realize S0, then we have the following result.

Theorem 1. The sequences
S(1)0 ∶ 1, a1 + 1, a2 + 1, . . . , an + 1, n + 1;

S(2)0 ∶ 1, 2, a1 + 2, a2 + 2, . . . , an + 2, n + 2, n + 3;

S(3)0 ∶ 1, 2, 3, a1 + 3, a2 + 3, . . . , an + 3, n + 3, n + 4, n + 5;

⋮

S(i)0 ∶ 1, 2, 3, . . . , i, a1 + i, a2 + i, . . . , an + i, n + i, n + i + 1, . . . , n + 2i − 1

⋮
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are all graphical. Furthermore, there exist exactly k, k ≥ 1, connected non-isomorphic graphs that realize each one of the
sequences S(1)0 , S(2)0 , . . . , S(i)0 , . . . .

Proof. We start by showing that each sequence S(i)0 is graphical for any positive integer i. To do this, we only
need to take a graph that realizes S0, introduce two new vertices and join one of these two new vertices with all
remaining vertices. Hence, S(1)0 is graphical. To obtain a graph that realizes S(2)0 , we just need to take a graph

that realizes S(1)0 and once again introduce two new vertices joining one of these new two vertices with all

remaining vertices. If we continue this process inductively, we obtain a graph that realizes S(i)0 for any positive
integer i.

Now, observe that since each graph realizing S(i)0 (i ≥ 1) has a vertex which is adjacent to all the other
vertices, it follows that all these graphs are connected. Thus, it remains to show that each one of these
sequences realizes exactly k (k ≥ 1) graphs. To see this, let S0 = S(0)0 and proceed by induction on the

super subscript i of S(i)0 for i ≥ 0. First, observe that S(0)0 has the property that there exist exactly k (k ≥ 1)

non-isomorphic graphs that realize S(0)0 by assumption.

Next, let i = l (l ≥ 0) and assume that there exist exactly k (k ≥ 1) non-isomorphic graphs realizing S(l)0 .
Consider the sequence

S(l+1)
0 ∶ 1, 2, . . . , l, l + 1, a1 + l + 1, a2 + l + 1, . . . , an + l + 1, n + l + 1, n + l + 2, . . . , n + 2l + 1.

and let G(l+1)
0 be any graph that realizes S(l+1)

0 . It is now clear that the vertex of degree n + 2l + 1 is adjacent

to all other vertices of V (G(l+1)
0 ). It is also true that if we eliminate this vertex, then we obtain a new graph

with degree sequence 0, S(l)0 . By inductive hypothesis, there exist exactly k (k ≥ 1) non-isomorphic graphs with

degree sequence S(l)0 . Then Lemma 2 yields that there are exactly k (k ≥ 1) non-isomorphic graphs with degree

sequence 0, S(l)0 , and Lemma 1 implies that there are exactly k (k ≥ 1) non-isomorphic graphs realizing S(l+1)
0 .

Therefore, the result follows.

To conclude this section, notice that it is clear that the only graph that realizes the sequence s ∶ 1, 1 is the
complete graph K2 of order 2. From this observation together with Theorem 1, the next result found in [1]
follows as an immediate corollary.

Corollary 1. For all positive integers n, there exists a unique graph of order n that realizes the sequence Sn ∶

1, 2, . . . , n/2.n/2, n/2+ 1, n/2+ 2, . . . , n − 1.

In summary, what we have proved in this paper is that if a degree sequence is realized by exactly k
(k ≥ 1) non-isomorphic graphs of order n, then there exist infinitely many sequences that realize exactly k
(k ≥ 1) non-isomorphic graphs. Furthermore, all these graphs have the additional property that they are all
connected.
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